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Recent progress in diffusion MRI and tractography algorithms as well as the launch of the

Human Connectome Project (HCP)1 have provided brain research with an abundance

of structural connectivity data. In this work, we describe and evaluate a method that

can infer the structural brain network that interconnects a given set of Regions of

Interest (ROIs) from probabilistic tractography data. The proposed method, referred to

as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the

connectivity between two ROIs based on an arbitrary connectivity threshold. Instead,

we exploit a basic limitation of the tractography process: the observed streamlines

from a source to a target do not provide any information about the polarity of the

underlying white matter, and so if there are some fibers connecting two voxels (or two

ROIs) X and Y, tractography should be able in principle to follow this connection in both

directions, from X to Y and from Y to X. We leverage this limitation to formulate the

network inference process as an optimization problem that minimizes the (appropriately

normalized) asymmetry of the observed network. We evaluate the proposed method

using both the FiberCup dataset and based on a noise model that randomly corrupts

the observed connectivity of synthetic networks. As a case-study, we apply MANIA on

diffusion MRI data from 28 healthy subjects to infer the structural network between 18

corticolimbic ROIs that are associated with various neuropsychiatric conditions including

depression, anxiety and addiction.

Keywords: connectome, diffusion MRI, tractography, structural network, network analysis

INTRODUCTION

Diffusion MRI has opened a new window at the meso-scale structure of the living brain (Sporns
et al., 2005). Clinicians and researchers can now observe and measure the properties of white
matter in a non-invasive manner, analyzing the location and density of neuronal fibers at a spatial
granularity of 1–2 mm isotropic voxels (Glasser et al., 2016b). Such structural information is
important in deciphering how the brain works (Sporns, 2012, 2013), and it also creates new ways

1www.humanconnectome.org/.
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to understand and potentially diagnose (Ciccarelli et al., 2008;
Fornito and Bullmore, 2015) or even treat (Mayberg et al., 2005)
various brain diseases (Buckner et al., 2005; Bassett et al., 2008).

Processing diffusion MRI data using tractography algorithms
is the next step forward: instead of analyzing the properties
of white matter at the level of individual voxels, tractography
aims to detect individual bundles of neuronal fibers originating
or passing through a given “seed” voxel (Jbabdi et al., 2015).
Additionally, given a seed voxel and a target ROI, it is now
possible to examine the likelihood that some white matter fibers
connect the two (referred to as “probabilistic tractography”), and
to track the shape of these connections (Behrens et al., 2007).
In this paper, we propose a method to further process the noisy
connectivity information provided by probabilistic tractography
in order to estimate an interconnection network between a given
set of gray matter ROIs.

Diffusion MRI data, jointly with deterministic (Mori et al.,
1999) or probabilistic tractography methods (Behrens et al.,
2007) have been used successfully during the last decade to infer
the structure of the human brain between hundreds of ROIs
(Hagmann et al., 2007). Various structural properties of these
networks have been discovered for the healthy brain (Bassett
et al., 2011) and for various psychiatric diseases (McIntosh
et al., 2008; Daianu et al., 2013). When combined with fMRI
and behavioral or genomic analysis, these non-trivial topological
properties provide new insights about the role of individual
ROIs in specific networks and the way in which these distinct
ROIs exchange information to produce integrated function
(Damoiseaux and Greicius, 2009; Greicius et al., 2009).

A major challenge in this research effort is that the inferred
brain networks, as well as their topological properties, are often
sensitive to the parameters of the tractography process (Rubinov
and Sporns, 2010; Bastiani et al., 2012; Duda et al., 2014; Thomas
et al., 2014). In probabilistic tractography, the most critical of
those parameters is the connectivity threshold τ that determines
whether the tractography-generated streamlines from a given
seed voxel to a target ROI occur with sufficiently large probability
to indicate the presence of an actual connection (Li et al., 2012b).
If τ is too low the resulting network includes connections that
do not exist in reality and the converse happens if τ is too high.
Even a small number of spurious or miss-detected edges can
adversly effect the properties of the inferred networks (Van Wijk
et al., 2010). Further, the optimal value of τ , i.e., the threshold
that would result in the most accurate reconstruction of the
underlying “ground truth” network, may vary between different

Abbreviations: AD, Addictive Disorder; DTI, Diffusion Tensor Imaging; FACT,

Fiber Assignment by Continous Tracking; FDT, FMRIB’s Diffusion Toolbox;

fMRI, functional Magnetic Resonance Imaging; FMRIB, Oxford centre for

Functional Magnetic Resonance Imaging of the Brain; fODF-PROBA, Fiber

Orientation Distribution Function-Probabilistic; FSL, FMRIB Software Library;

GAD, Generalized Anxiety Disorder; HCP, Human Connectome Project; MANIA,

Minimum Asymmetry Network Inference Algorithm; MDD, Major Depressive

Disorder; MNI, Montreal Neurological Institute; MRI, Magnetic Resonance

Imaging; OCD, Obsessive Compulsive Disorder; PiCo, Probabilistic Index of

Connectivity; PTSD, Post-Traumatic Stress Disorder; ROI, Region Of Interest;

WGB, White matter/Gray matter Boundary.

subjects (Gong et al., 2009) and image acquisions parameters
(Jones et al., 2013).

The problem of selecting an appropriate connectivity
threshold in either deterministic or probabilistic tractography is
not new. One approach has been to select the largest possible
threshold (i.e., fewest possible edges) so that the final inferred
network remains connected across the majority of subjects (Li
et al., 2009). Depending on the selected ROIs, this approach
can lead to many miss-detections (if those ROIs are densely
interconnected) or false alarms (if the ROIs are not directly
connected).

Another approach has been to analyze the tractography data
with a wide range of threshold values, hoping that certain
qualitative properties are robust and independent of the exact
threshold. Li et al. investigated how the connectivity thresholds
affects network density and therefore network efficiency metrics
(Li et al., 2012b). Duda et al. have shown the importance of
the connectivity threshold for various network metrics such as
clustering coefficient and characteristic path length (Duda et al.,
2014).

This work focuses on the following problem: how to infer
the structural network between a given set of gray matter ROIs
in a reliable way that does not require an arbitrary choice of
the connectivity threshold? The proposed method, referred to as
Minimum Asymmetry Network Inference Algorithm (MANIA),
exploits a fundamental limitation of diffusion MRI imaging and
of the tractography process: diffusion MRI can estimate the
orientation of fibers in each voxel but it cannot infer the polarity
(afferent vs. efferent) of those fibers (Robinson et al., 2010; Jbabdi
and Johansen-Berg, 2011). Similarly, a tractography algorithm
can combine those per-voxel orientations to “stitch together”
expected connections but it does not provide any information
about the direction of those connections (Hagmann et al., 2008;
Donahue et al., 2016). Given this limitation, MANIA expects that
the presence of an actual connection from voxel X to voxel Y
(in that direction) will be detected by the tractography process
as a symmetric connection between X and Y. Similarly, if there
is no connection between X and Y, the tractography process
should not detect a connection in either direction. Based on this
principle, MANIA formulates the network inference problem as
an optimization over the range of connectivity threshold values:
it selects the value of τ that minimizes the asymmetry of the
resulting network. The network asymmetry is normalized relative
to the asymmetry that would be expected due to chance alone in
a random network of the same density.

MANIA can work in tandem with all probabilistic
tractography methods, such as FSL’s probtrackx (Behrens et al.,
2007), PiCo (Parker et al., 2003), and fDF-PROBA (Descoteaux
et al., 2009). It can be also combined with deterministic
tractography methods, such as FACT (Mori et al., 1999), but only
if a large number of streamlines (in the thousands) are generated
from randomly placed seeds within each voxel (Cheng et al.,
2012).

We expect that the given set of ROIs primarily reside in gray
matter. Dilating a gray matter ROI so that it includes some white
matter voxels may result in connectivity errors, especially with
cortical ROIs, because of the dense white matter systems just
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beneath the cortical sheet (Reveley et al., 2015). The selection of
ROIs and the estimation of their boundaries is an important issue
that is further discussed in the Discussion.

We evaluate the accuracy of MANIA using both the well-
known FiberCup dataset and based on synthetically generated
data in which the ground-truth network is known. We also
compare MANIA with an ideal threshold-based method in
which the optimal connectivity threshold is assumed to be
known. Further, we show how to associate a confidence level
with each edge, and how to apply MANIA in a group
of subjects. Finally, as a case-study, we apply MANIA on
diffusion MRI data from 28 healthy subjects (Chen et al.,
2013) to infer the structural network between 18 corticolimbic
ROIs that are implicated with neuropsychiatric disorders
such as major depressive disorder (MDD), post-traumatic
stress disorder (PTSD), obsessive compulsive disorder (OCD),
generalized anxiety disorder (GAD) and addictive disorder (AD)
(Seminowicz et al., 2004; Elman et al., 2013; Beucke et al., 2014;
Peterson et al., 2014). We note however that, even though these
ROIs are generally associated with various psychiatric disorders
and the aspects of emotional regulation putatively impacted by
these disorders, the objective of this work is not to infer the
network that is associated with any particular disorder.

MATERIALS AND METHODS

MANIA Inputs
The proposed network inference method requires the following
inputs:

1. A set of N ROIs that represent the nodes of the structural
brain network. The i’th ROI is a spatially connected cluster
of vi voxels (i = 1 · · ·N). The selection of ROIs is important
(Zalesky et al., 2010; de Reus and van den Heuvel, 2013b)
but outside the scope of MANIA. MANIA attempts to find
the anatomic network between the given ROIs independent of
whether the latter are defined by an expert neuroanatomist or
by a data-driven method. For instance, ROIs may correspond
to different Brodmann areas or other anatomical atlases
(Tzourio et al., 1997; Petrides, 2005). Or, it could be that the
spatial extent of ROIs results from the analysis of fMRI data
(McKeown et al., 1997; Craddock et al., 2012; Blumensath
et al., 2013; Thirion et al., 2014). ROIs can also be defined
based on both fMRI analysis and anatomical knowledge
(Glasser et al., 2016a).

2. The results of the tractography process between the previous
N ROIs. We assume that the tractography results are
structured as voxel-to-ROI matrices (i.e., streamlines are
generated from each voxel toward each target ROI), instead
of voxel-to-voxel or ROI-to-ROI matrices. Specifically, we
represent the output of tractography with N matrices Ti (i =
1 · · ·N), defined as follows. The i’th ROI corresponds to a
matrix Ti with vi rows (i.e., the number of voxels in that ROI)
and N columns. The element (j, k) of matrix Ti represents
the fraction of tractography-generated streamlines that originate
from the seed voxel j of the i’th ROI and reach any voxel of
the k’th ROI. The same number of streamlines is generated for

FIGURE 1 | Running tractography with streamlines from a seed voxel q

in the i’th ROI to the j’th target ROI. Two streamlines hit the target ROI,

therefore Ti (q, j) =
2
3 .

every seed to target pair (j, k). The i’th column of matrix Ti

is set to zero, meaning that we do not consider edges from an
ROI back to itself (even if such fibers exist). Figure 1 illustrates
this notation. Since we have N ROIs, there will be N input
matrices, one for each source ROI.

Connectivity Threshold τ
How can we decide whether voxel j of the i’th ROI connects to the
k’th ROI given the fraction Ti (j, k)? The simplest approach is to
examine if Ti (j, k) is larger than a given “connectivity threshold”
τ (0 < τ < 1). In MANIA, τ is not a given threshold but an
optimization variable, as described in the next section.

As in prior work, we assume that the i’th ROI is connected
to the k’th ROI as long as at least one voxel of the former is
connected to the latter (Hagmann et al., 2008; Bassett et al.,
2011). This assumption is not central to MANIA however, and
it can be easily replaced with a stronger connectivity constraint,
depending on the size of the given ROIs and the spatial resolution
at which those ROIs are specified.

Network Inference As an Optimization
Problem
For a given value of τ , we can identify the voxels of the i’th ROI
that connect to every other ROI. If this process is repeated for
every i, we can construct a directed network in which the i’th
ROI is connected to the j’th ROI if there is at least one voxel
in the former that is connected to the latter for that value of τ .
This network can be represented with an adjacency matrix2 Gτ ,
as follows:

Gτ

(

i, k
)

=

{

1 if Ti

(

j, k
)

> τ for at least one voxel j
0 otherwise

(1)

So, the element (i, k) of this matrix is equal to one if there
is a (directed) edge from the i’th ROI to the k’th ROI. The
diagonal entries of Gτ are set to zero because we do not consider
streamlines from a source ROI back to itself.
2In graph theory, anN ×N adjacencymatrix represents a directed and unweighted

graph with N nodes as follows: if there is an edge from node i to node j the

(i, j) element of the adjacency matrix is 1; otherwise it is 0. The graph (and the

corresponding adjacency matrix) are referred to as “weighted” if each edge is

associated with a weight, which typically represents the strength of the edge.
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We define the asymmetry φ (G) of a directed network G as the
fraction of edges that are present in only one direction,

φ(G) =

∑N
i= 1

∑N
k= 1 G

(

i, k
) (

1− G
(

k, i
))

∑i=N
i= 1

∑N
k= 1 G

(

i, k
)

(2)

The asymmetry of a network G depends on its density ρ (G),
defined as the fraction of connected node-pairs,

ρ (G) =

∑N
i=1

∑N
k=1 G

(

i, k
)

N (N − 1)
(3)

The more edges a directed network has, the more likely it
becomes that a pair of nodes will be connected in both directions,
i.e., the higher the density, the lower the asymmetry.

More formally, consider a directed network with K directed
edges and N nodes. The density is ρ = K/[N (N − 1)] (0 < ρ <

1). To construct such a network randomly, denoted by Gρ , we
simply connect N(N − 1)ρ randomly selected but distinct pairs
of nodes with directed edges. The expected number of edges that
exist in only one direction is N (N − 1)ρ (1 − ρ) and so the
expected value of the asymmetry of Gρ is:

φ̄
(

Gρ

)

=
N (N − 1) ρ (1− ρ)

N (N − 1) ρ
= 1− ρ (4)

To quantify the actual asymmetry of an observed network Gτ ,
we normalize φ(Gτ ) by the asymmetry that is expected simply
due to chance given the density of this network. So, we define the
normalized asymmetry of Gτ as

8(Gτ ) =
φ (Gτ )

φ̄ (Gτ )
(5)

which is well defined as long as ρ (Gτ ) < 1.
MANIA is based on the following premise: the inferred

directed network should be as symmetric as possible. The reason
is that the tractography process is unable to infer the actual
direction (polarity) of the underlying neural fibers. So, if there
are some fibers connecting two voxels X and Y, tractography
should be able, in principle, to follow this connection in both
directions, from X to Y and from Y to X. We do not claim that
two connected ROIs are always attached with both afferent and
efferent fibers; instead, we argue that tractography is not able to
discover the polarity of those fibers and so the corresponding
connection should be trace-able in both directions.

The presence of some streamlines from some voxels in ROI
X to ROI Y does not necessarily mean however that the network
inference method will detect an edge both from X to Y and from
Y to X; this also depends on the parameter τ . Given that we aim
to minimize the asymmetry of the inferred network, MANIA
aims to select the value of τ that leads to the lowest possible
asymmetry.

The corresponding optimization problem can be stated as
follows: determine the adjacency matrix Ĝ = G∗

τ , where
τ ∗ is a value of the connectivity threshold that minimizes the
normalized asymmetry of Gτ across all possible values of τ ,

τ ∗ = argmin0< τ < 1 8(Gτ ) (6)

So,MANIA is based on the premise that there is an ideal value (or
range of values) of the connectivity threshold that can correctly
classify every directed pair of ROIs as either “connection exists”
or “connection does not exist.” When such a threshold exists, it
will result in a completely symmetric network (because a perfectly
accurate tractography-based network cannot be asymmetric). On
the other hand, if such an ideal threshold does not exist (for
instance, it may be that two connected ROIs are too far from each
other and tractography cannot “see” their connection, or that
it is impossible for streamlines to cross the White matter/Gray
matter Boundary (WGB) of a certain ROI in one direction but
not in the opposite), then MANIA aims to at least minimize the
normalized asymmetry metric, even if the resulting network will
not be completely symmetric.

If there is more than one value of τ that results in the
same minimum of the normalized asymmetry (potentially zero),
MANIA reports the network with the largest density. The
rationale behind this tie-breaker is to avoid trivial solutions that
include only a subset of the actual network edges. The previous
optimization problem can be solved numerically by scanning the
range of τ values with a given resolution3. The density of the
resulting network is denoted by

ρ∗ = ρ(Gτ∗ ) (7)

As an illustration of the previous method, Figure 2 shows how
the network asymmetry (both φ and 8) varies with the density
ρ as well as the relation between ρ and τ for the dataset that
corresponds to one of the subjects in our case-study.

Threshold-Based Network Inference with
Post-Symmetrization
A common network inference method is to rely on a given
connectivity threshold τ , as shown in Equation (1). This
threshold is sometimes chosen to achieve a certain network
density or to ensure that the network is connected (Li et al., 2009).

Given that tractography cannot detect the direction of
inferred edges, the resulting network is often “post-symmetrized”
(Azadbakht et al., 2015; Donahue et al., 2016). Consider two
network nodes i and j and suppose that the fraction of streamlines
from i to j is denoted by Ti, j. Supose that Ti, j > τ but Tj, i < τ ,
where τ is a given threshold (not necessarily the threshold chosen
by MANIA). We can resolve this conflicting evidence between
the two directions of the edge by comparing the ratio ( Ti, j− τ )/(
1 − τ ), which reflects our confidence that the edge from i to j
exists, with the ratio ( τ −Tj, i)/τ that reflects our confidence that
the edge from j to i does not exist. The two nodes are connected
with an (undirected) edge only if the former ratio is larger.

If MANIA cannot find a threshold value that gives
a completely symmetric network, the aforementioned post-
symmetrization method is applied on the network that results
from MANIA.

3Since we set the number of streamlines to 5000, the minimum resolution is

τ = 1
5000 = 0.0002.
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FIGURE 2 | (Top) Network density ρ as a function of the connectivity

threshold τ (plotted for one subject in our DTI dataset). (Bottom) Network

asymmetry (red) and normalized network asymmetry (blue) as functions of the

network density ρ. The optimal density ρ* is the largest value that minimizes

the normalized network asymmetry.

Performance Metrics
MANIA can be viewed as a binary classifier: each possible
directed edge is classified as present or absent. We evaluate
MANIA based on the following standard metrics for binary
classification: the false positive rate (or false alarm) pf , and
the false negative rate (or miss detection) pm. The former is
defined as the fraction of absent edges that are incorrectly
classified as present, while the latter is defined as the
fraction of present edges that are incorrectly classified as
absent.

Also, the Jaccard similarity between the sets of edges E (G)

and E(Ĝ) of the actual network G and the MANIA network Ĝ,
respectively, is defined as

J
(

G, Ĝ
)

=
|E (G)∩ E (Ĝ)|

|E (G)∪ E (Ĝ)|
(8)

and it varies between zero (no common edges) and one (identical
networks).

Optimal Threshold-Based Network
Inference
We can also compare the network that results fromMANIA with
the network that would result if we knew the optimal value τ opt

of the connectivity threshold, i.e., the value of τ that maximizes
the Jaccard similarity between the inferred network Gτ and the
ground truth network G:

τ opt = argmax0< τ < 1 J (Gτ ,G) (9)

Even though it is not possible to know this optimal threshold
value when analyzing real tractography data, we can easily
compute its value (or range of values) in experiments with
synthetically generated networks, where the ground-truth
network G is known.

Edge Ranking and Confidence Metric in
MANIA
The output of MANIA is an unweighted directed network. We
can quantify the level of confidence we have in each edge with
the following edge ranking scheme.

Let ρα be the minimum network density at which edge α

is present. If the edge α is from a source X to a target Y, the
lower ρα is, the higher the fraction of streamlines from X to Y.
Consequently, we can rank edges so that we are more confident
in the presence of edge α than of edge β if ρα < ρβ (see Figure 3).

We define a confidence metric for an edge α that is present in
the MANIA network (i.e., ρα < ρ∗) as follows

C (α) =
ρ∗ − ρα

ρ∗
(10)

C (α) varies from 0 (the edge is only marginally present) to 1
(highest confidence that the edge is present). Similarly, if edge α

is absent from theMANIA network (i.e., ρα > ρ∗), its confidence
metric is defined as

C (α) =
ρ∗ − ρα

1− ρ∗
(11)

and C (α) varies from 0 (the edge is only marginally absent) to−1
(highest confidence that the edge is absent).

We also define a confidencemetric for a pair of nodes (X,Y), as
the arithmetic mean of the confidence metric of the two directed
edges between X and Y,

C (X,Y) =
C (X → Y) + C (Y → X)

2
(12)
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FIGURE 3 | As we decrease the connectivity threshold, each edge first

appears at a certain value of the network density. If this density is larger

than ρ*, the corresponding edge is not present in the MANIA network.

Note that one of the two edges may be present while the other
may be absent. In that case, the confidence of the corresponding
node-pair will be less than the confidence of the present edge.

Note that this edge confidence metric is not related to
connection “strength” or “quality,” and the resulting network is
still meant to be interpreted as an unweighted graph.

Group Analysis Using MANIA
If the objective is to create a single “average network” based on
data from several subjects, the question is how to best aggregate
the tractography data from the given group. One approach is
to average the diffusion MRI data, after transforming them in
a standard space. Another approach is to average the fraction
of streamlines from a given seed voxel to a given target ROI,
across all subjects. The previous approaches can be sensitive to
outliers, variations in the diffusion MRI process across subjects,
tractography errors and mapping/warping into a standard space.
A recently proposed method is to construct a group-level
network based on the consistency of the edge weights across
subjects (Roberts et al., 2016); this approach preserves edges that
appear consistently strong for their length, rather than penalizing
long-distance connections. This approach may not be applicable
however when the group size is small.

Another method is to construct an individual network
for each subject, perhaps using MANIA, and then form an
aggregate network by only keeping those edges that appear in
a large fraction of subjects. This approach requires a group-
level threshold for the minimum fraction of subjects that should
have a connection. For instance, de Reus et al. have proposed
a statistically rigorous method to compute such a threshold (de
Reus and van den Heuvel, 2013a).

Here we propose a different group analysis method, referred
to as group-MANIA, that is based on the aggregation of edge-
rankings across subjects. The rank-based nature of this method
makes it robust to outliers.

As in the previous section, the edges of a subject can be ranked
based on the minimum network density at which an edge first
appears. We are more confident in the presence of edge α than of
edge β if ρα < ρβ (see Figure 3).

Suppose that we compute an edge rank vector Rm for each
subjectm, so that the lowest rank Rm (1) corresponds to the edge
for which we are most confident. The number of possible (not
necessarily present) directed edges is the same for all subjects: N
(N− 1) where N is the number of network nodes.

Given a group of size M, we have M distinct rank vectors
Rm,m = 1 · · ·M. The computational problem of rank
aggregation (Schalekamp and van Zuylen, 2009) is to compute
an optimal permutation R̂ of the N (N− 1) possible edges that
captures as well as possible the ordering relations in theM input
rank vectors. Specifically, the Kemeny distance between two rank
vectors R1 and R2 is defined as

∑

i

∑

j

δi,j (R1,R2) (13)

where δi,j (R1,R2) = 1 if R1 and R2 disagree in the relative
position of elements i and j, and zero otherwise. Rank aggregation
aims to compute a vector R̂ that minimizes the cumulative
Kemeny distance between R̂ and all input rank vectors Rm. It is
anNP-hard problem, and so it is typically solved heuristically.We
use theQuicksort algorithm (Ailon et al., 2008) since it is has been
shown to provide a good approximation of the optimum solution.
QuickSort selects a random edge as pivot at each recursive step,
while the remaining edges are separated in a left and right list.
The left list includes edges that have a lower rank than the pivot
in the majority of the subjects; similarly for the right list. The
algorithm proceeds recursively in the left and right lists until all
edges are ordered.

After computing the optimal aggregate rank vector, we apply
MANIA on R̂ to compute the network with the minimum
normalized asymmetry (as in the case of a single subject). Note
however that the input to MANIA in this case is an ordered list
of edges R̂ rather than the set of connectivity matrices T (see
the MANIA Inputs section). Group-MANIA forms a network
with the first K = N (N − 1) ρ edges in R̂, and it computes
the normalized asymmetry of that network. It then repeats
this step, for all values of K, to identify the network with the
minimum value of 8. We refer to the resulting network as the
rank-aggregated network.

FiberCup Phantom Dataset
We utilize the publicly available FiberCup dataset (Poupon et al.,
2008, 2010; Fillard et al., 2011) as one of the benchmarks to
evaluate MANIA’s accuracy. We use a FiberCup acquisition in
which the b-value is 1500. FiberCup resembles a human brain
coronal section with 18 ROIs and seven fiber bundles—see Figure
2 of Neher et al. (2014). These fiber bundles are constructed to
include sharp turns as well as crossing, kissing and branching
points, making it a challenging benchmark for any tractography
algorithm. Due to the practical difficulties of generating a realistic
phantom, FiberCup does not contain any complex 3D fiber
structures.

We apply probtrackx and MANIA on the FiberCup phantom
to infer the network of the seven underlying connections. The
FDT probabilistic tractography parameters are set to their default
values (number of streamlines = 5000, maximum number of
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steps = 2000, loop check: set, curvature threshold = 0.2, step
length = 0.5 mm, no distance bias correction). Probtrackx is
seeded at the WGB of the ROIs that are connected to fiber
terminals.

Synthetically Generated Networks
To evaluate the accuracy and sensitivity of MANIA in a
reliable manner we need to rely on synthetic networks rather
than actual DTI and tractography data. The benefit of these
computational experiments is that we can test MANIA under
a wide range of noise conditions and for arbitrary network
densities. Unfortunately there are no good statistical models
for the noise in the output of tractography data (Jbabdi and
Johansen-Berg, 2011). We evaluate MANIA based on a simple
noise model that is based on the theory of maximum entropy
distributions, as described next.

For simplicity, each ROI of the synthetically generated
networks is simply a voxel. Modeling multi-voxel ROIs in these
simulation experiments would not add any new insights. Suppose
that the directed network between N nodes is represented by the
N × N adjacency matrix G. Let Ti, j be the fraction of streamlines
that originate from node i and terminate at node j. Ideally, in the
absence of any noise in the DTI data and without any errors in
the tractography process, it should be that

Ti, j =

{

1 if Gi, j = 1 or Gj, i = 1
0 if Gi, j = 0 and Gj, i = 0

(14)

So, if there is an edge between nodes i and j in either direction,
the fraction of streamlines from node i to node j should be 100%;
otherwise, it should be zero.

In practice, there is significant noise in DTI data and the
tractography process can be error-prone, especially when the
ROIs are in gray matter and/or when neural fibers cross each
other, split or merge, or fan out as they approach their targets.
Consequently, the tractography output may show that some
streamlines do not reach from node i to node j even when the
two nodes are connected, or that some streamlines get from i to
j even when there is no connection between the two nodes. We
model these errors probabilistically, as follows:

Ti, j =

{

1− Z1 if Gi, j = 1 or Gj, i = 1
Z2 if Gi, j = 0 and Gj, i = 0

(15)

where Z1 and Z2 are two (generally different) random variables
with [0, 1] support. If their probability mass is concentrated close
to 0, the results of the tractography process are not significantly
affected by noise. On the other hand, if these two random
variables are uniformly distributed in [0, 1], the tractography
results are completely random and any network inference process
is hopeless.

We model the two random variables Z1 and Z2 with the
MaximumEntropy distribution with one-degree of freedom. In this
case, this distribution is the truncated exponential distribution
with support [0,1],

fZ(ζ ) =

{

e α
1−e−α e

−αζ ζ ∈ [0, 1]

0 otherwise,
(16)

FIGURE 4 | Probabilistic error model (Z) for tractography-generated

connection probabilities using the maximum entropy distribution (with

one degree of freedom).

where α > 0 is a parameter that determines the mean and
variance of the distribution. Instead of controlling α, we control
the intensity of noise through the mean of Z,

µ = E [Z] =
1− (1+ α)e−α

α (1− e−α)
(17)

The two distributions Z1 and Z2 follow this statistical model
with means µ1 and µ2, respectively. Figure 4 shows the previous
distribution for four values of µ. Note that the distribution Z
becomes almost “flat” (close to the uniform distribution) when
its mean is higher than 0.3, meaning that tractography would be
extremely inaccurate when the noise intensity exceeds that level .
In the rest of this paper we limit the range of µ1 and µ2 between
0 and 0.3.

DTI Data, Tractography Parameters, and
Selected ROIs
We also apply MANIA in Diffusion Tensor Imaging (DTI)
data collected by an earlier study: “Brain aging in humans,
chimpanzees (Pan troglodytes), and rhesus macaques (Macaca
mulatta): magnetic resonance imaging studies of macro- and
microstructural changes” (Chen et al., 2013). All subjects
gave written informed consent, and the study was approved
by the Emory University Institutional Review Board. We
analyzed the data for 28 of those subjects mostly based
on handedness (right-handed females, without a history of
psychiatric disorder). Diffusion-weighted images were acquired
using a Siemens 3T with a 12-channel parallel imaging phase-
array coil. Foam cushions were used to minimize head motion.
Diffusion MRI data were collected with a diffusion weighted
SE-EPI sequence (Generalized Autocalibrating Partially Parallel
Acquisitions [GRAPPA] factor of 2). A dual spin-echo technique
combined with bipolar gradients was used to minimize eddy-
current effects. The parameters used for diffusion data acquisition
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were as follows: diffusion-weighting gradients applied in 60
directions with a b-value of 1000 s/mm2; TR/TE of 8500/95 ms;
FOV of 216 × 256mm2; matrix size of 108 × 128; resolution
of 2 × 2 × 2mm3; and 64 slices with no gap, covering the
whole brain. Averages of 2 sets of diffusion-weighted images
with phase-encoding directions of opposite polarity (left–right)
were acquired to correct for susceptibility distortion. For each
average of diffusion-weighted images, 4 images without diffusion
weighting (b = 0 s/mm2) were also acquired with matching
imaging parameters. The total diffusion MRI scan time was
approximately 20 min. T1-weighted images were acquired with a
3DMPRAGE sequence (GRAPPA factor of 2) for all participants.
The scan protocol, optimized at 3T, used a TR/TI/TE of
2600/900/3.02ms, flip angle of 8◦, volume of view of 224 × 256
× 176mm3, matrix of 224 × 256 × 176, and resolution of 1 × 1
× 1mm3. Total T1 scan time was approximately 4min.

The resulting DTI data were processed using the FMRIB’s
Diffusion Toolbox (FDT) provided by FSL (FMRIB 4 Software
Library) (Behrens et al., 2003). The FDT probabilistic
tractography parameters were set to their default values
(number of streamlines = 5000, maximum number of steps =
2000, loop check: set, curvature threshold = 0.2, step length =

0.5mm, no distance bias correction).
We applied MANIA on 18 corticolimbic ROIs. All ROIs are

in the left hemisphere and localized in Montreal Neurological
Institute (MNI) standard space using the Automated Anatomical
Labeling (AAL) (Jenkinson and Smith, 2001) of the WFU
PickAtlas toolbox (Lancaster et al., 2000). The ROI acronym as
well as the number of voxels in each ROI are shown in Table 1.
The shape of these ROIs are not dilated and we adhere to the
standard masks provided in the WFU PickAtlas toolbox. We
chose these ROIs because they are known to play a significant
role in various psychiatric disorders such as MDD, PTSD, OCD,
anxiety and addiction (Mayberg, 1997; Seminowicz et al., 2004;
Craddock et al., 2009; James et al., 2009). This sample of ROIs
includes cortical, subcortical and limbic regions. Specifically, the
cortical ROIs are BA6, BA9, BA10, BA40, BA46, BA47, the limbic
are BA24, Th, BS, and the sub-cortical are BA11, BA25, BA32,
Acb, Amg, Hp, Ht, Ins, Pc.

RESULTS

Evaluation with the FiberCup Dataset
Figure 5A shows that the MANIA threshold results in almost
the same accuracy (Jaccard similarity within 5%) as the
optimal threshold (see the Optimal Threshold-based Network
Inference section). However, neither MANIA nor the optimal
threshold are able to perfectly reconstruct the correct network.
Figure 5B shows the network inferred by MANIA. There are two
asymmetric false-positive edges (shown in blue) and one false-
negative edge (shown in red). However, the confidence metric
(shown in Figure 5C) of the three miss-classified edges is close
to zero, while the confidence metric of the true-positives and
true-negatives is significantly different than zero. Further, if we
also perform post-symmetrization on MANIA’s output, the false
positive edge from ROI-13 to ROI-17 is removed because it has
negative confidence.

TABLE 1 | The 18 left hemisphere corticolimbic ROIs we consider in the

case-study.

ROIs Acronym Number of voxels

Premotor cortex BA6 3131

Insula Ins 1858

Ventromedial prefrontal cortex BA10 1784

Inferior parietal cortex BA40 1598

Dorsolateral prefrontal cortex BA9 1422

Mid-brain and pons BS 1406

Orbito-frontal cortex BA11 1243

Thalamus Th 1100

Hippocampus Hp 932

Precuneus Pc 861

Inferior prefrontal gyrus BA47 851

Ventral anterior cingulate BA32 721

Dorsal anterior cingulate cortex BA24 593

Dorsolateral prefrontal cortex BA46 574

Amygdala Amg 220

Subcallosal cingulate BA25 204

Nucleus accumbens Acb 140

Hypothalamus Ht 13

Figure 5D explains the root-cause of the previous miss-
classified edges. Seeding Probtrackx at ROI-13, most streamlines
are incorrectly directed to ROI-17 (instead of ROI-15) because of
the overlap with the fiber bundle between ROI-11 and ROI-17.
The probability map generated by Probtrackx makes its highly
unlikely that any threshold-based network inference method
would be able to discover the right connection between ROI-13
and ROI-15.

Evaluation with Synthetic Data
We evaluate MANIA based on computational experiments
with synthetic data and random networks. The “ground-truth”
networks G are constructed as follows. Suppose that G has N

nodes and density ρ. We place
⌊

ρ
N (N− 1)

2

⌋

undirected edges

between randomly selected but distinct pairs of nodes. Note that
G is symmetric by construction because the tractography process
cannot infer the true polarity of the underlying neural fibers.
GivenG, we then create the tractographymatrix T that represents
the “noisy” fraction of streamlines between any pair of nodes,
as shown in Equation (15). Note that the fraction of streamlines
from a node X to a node Y is typically different than the fraction
of streamlines from Y to X. In the following experiments, N
is set to 50 nodes, and each experiment is repeated for 1000
networks G.

We first examine the effect of post-symmetrization on
the accuracy of both threshold-based network inference and
MANIA. In the former, the connections are determined based
on a given threshold τ0, as discussed in the Threshold-based
Network Inference with Post-Symmetrization section.We denote
the Jaccard similarity between the inferred network and the
ground-truth network with JSYM when post-symmetrization is
performed, and with JNO−SYM otherwise. Figure 6 shows the
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FIGURE 5 | Running MANIA on the FiberCup dataset. (A) The normalized asymmetry metric and the network density that results from MANIA as well as from the

optimal threshold. The Jaccard similarity with the correct, ground-truth network is also shown. (B) The network inferred by MANIA. (C) The thirteen ROI-pairs with the

largest confidence metric. (D) The probability map generated by Probtrackx when seeded at the WGB of ROI-13.

difference ∆J = JSYM − JNO−SYM for several choices of τ0
as well as for MANIA. Each box-plot is generated from 1000
experiments; in each experiment we generate a random network
with density between 0 and 1, while the noise parameters µ1

and µ2 are uniformly distributed between 0 and 0.3. The red
line corresponds to the median, the box boundaries correspond
to the 25 and 75th percentiles, while the dashed lines show the
10 and 90th percentiles. In all cases, ∆J > 0 (one-sided Mann-
WhitneyU-test—p-values shown next to each box plot), meaning
that post-symmetrization helps to improve the accuracy of network
inference. This is true for both MANIA and threshold-based
inference, even though the improvement is larger for the latter.
Because of the positive effect of post-symmetrization, in the rest
of the paper we apply it in all network inference experiments.

Figure 7 illustrates the performance of MANIA in the two-
dimensional space defined by the noise parameters µ1 and µ2

for three values of the network density. Each square in these heat

maps is the median across 1000 experiments. The false positive
and false negative rates are close to 0 (less than 5%) in the lower-
left half of each heat map (i.e., when µ1 + µ2 < 0.3). For higher
values of the noise intensity, the accuracy of MANIA depends
on the density of the underlying network. In the case of sparse
networks, MANIA also infers a sparse network and most errors
are false negatives, i.e., MANIA does not detect some of the few
existing edges. For dense networks, MANIA also infers a dense
network andmost errors are false positives, i.e., MANIA detects a
few extra edges that do not actually exist. In mid-range densities,
the errors are more balanced between false positives and false
negatives. In all cases the maximum false positive (or negative)
rate when µ1 = µ2 = 0.3 is less than 25%. Recall from Figure 4

that these noise intensity levels should be considered quite high
in practice.

Figure 8 compares the MANIA-inferred network with the
network that corresponds to the optimal threshold τ opt , as
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FIGURE 6 | The Jaccard similarity difference ( ∆J = JSYM − JNO−SYM )

with and without post-symmetrization for five threshold values and for

MANIA. Each box plot is generated from 1000 experiments; in each

experiment we generate a random network with density between 0 and 1,

while the noise parameters µ1 and µ2 are uniformly distributed between 0 and

0.3. The red line corresponds to the median, the box boundaries to the 25 and

75th percentiles, while the dashed lines show the 10 and 90th percentiles. In

all cases, ∆J > 0 (one-sided Mann-Whitney U-test—p-values are shown next

to each box plot) meaning that post-symmetrization helps to improve the

accuracy of network inference.

discussed in the Optimal Threshold-based Network Inference
section. Specifically, the heat maps of Figure 8 compare the
Jaccard similarity JMANIA between MANIA and the ground-truth
network, with the Jaccard similarity Jτ opt between the optimal
threshold based network and the ground-truth network. The
accuracy of MANIA is typically close to that of the optimal
threshold method. Even under the highest noise intensity we
consider (µ1 = µ2 = 0.3), JMANIA is only 10% lower than
Jτ opt . These results suggest that MANIA selects automatically
a connectivity threshold value that results in almost optimal
accuracy, across all possible such threshold values.

Finally, Figure 9 compares MANIA with five given threshold
values τ0. The comparison is in terms of the Jaccard similarity
difference ∆J = JMANIA − Jτ0 . As in Figure 6, each box-plot is
generated from 1000 experiments in which we vary the network
density between 0 and 1, and the noise parameters µ1 and µ2

between 0 and 0.3. The median ∆J is always positive and the
distribution of ∆J is skewed toward positive values (one-sided
Mann-Whitney U-test—p-values shown next to each box plot),
meaning that MANIA typically performs better than a fixed
threshold scheme, independent of the selected threshold.

Case-Study: A Rank-Aggregated Network
between 18 ROIs
We applied MANIA in the DTI data presented in DTI Data,
Tractography Parameters, and Selected ROIs, based on the 18
ROIs listed in Table 1. A single rank-aggregated network is

constructed, using the group analysis method of the Group
Analysis section. Using MANIA, aggregating data from 28
subjects. The rank-aggregated network is shown in the left graph
of Figure 10.

Two ROIs (Pc and BA40) appear to not be directly connected
with the other 16 ROIs; of course there may be indirect
connections through other ROIs that have not been included here
(we return to this point in the Discussion section). Every edge
in the connected component of Figure 10 has been detected in
both directions, i.e., MANIA identifies a completely symmetric
network in this case (i.e., no post-symmetrization is needed).
The density of the connected component (16 ROIs) is 19%. The
color of each edge in the subfigure represents the fraction of the
28 subjects that have the corresponding edge in their individual
networks (constructed by MANIA).

We measured the “centrality” of each node in the rank-
aggregated network, based on four centrality metrics (degree,
closeness, betweenness, PageRank) (Newman, 2010). Different
centrality metrics focus on different notions of importance.
For instance, the degree centrality metric associates importance
with the number of direct connections a node has; BA32
(Ventral anterior cingulate) has the largest number (six) of direct
connections in this network (see Table 2). This may be because
BA32 is spatially adjacent to both BA10 and BA25, and those
ROIs are also of high degree. The betweenness centrality of a node
X, on the other hand, focuses on the number of shortest paths
between any pair of nodes that go through X; BA25 (subcallosal
cingulate) is the most important node from this perspective
because it serves as the “unique bridge” between the 6 red nodes
at its left and the 9 blue nodes at its right. BA25 is also the most
central node in terms of its average distance to all other nodes
(closeness centrality).

Similarly, we measured the edge centrality of all connected
node pairs. In terms of edge betweenness centrality, the
connection between BA25 and the Nucleus Accumbens (Acb)
is by far the most central in this network. It is interesting to
note that this edge includes the segment of white matter that
is the target of Deep Brain Stimulation (DBS) therapies for the
treatment of MDD (Mayberg et al., 2005). In fact, the DBS target
is typically the point at which the fibers between (BA25-Acb),
(BA25-BA32), and (BA25-BA24) intersect.

Figure 10 also shows some percentiles of the per-subject
node-pair confidence metric (median, 25–75th percentiles, 10–
90th percentiles, and outliers) for each node-pair that appears
connected in at least one of the 28 subjects. The connections
between the following node pairs appear in all subjects and
have the highest confidence: Hp-Acb, Amg-Acb, BA47-Ins. On
the other hand, the following connections appear only in some
subjects and their confidence metric varies around zero: Th-
BS, BA46-BA9, BA6-Ins. Some connections that appear in 1–2
subjects but have very low confidence are: Pc-BA24, BA11-BA24,
Ins-BA25, BA40-BA6.

DISCUSSION

Thomas et al. have recently shown that inferring long-range
anatomical connections between gray matter ROIs from DWI
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FIGURE 7 | False positive rate and false negative rate of MANIA as a function of µ1 and µ2 for sparse networks (ρG = 0.1), medium density networks

(ρG = 0.5) and dense networks (ρG = 0.9). Each square is the average of 1000 independent simulations.

FIGURE 8 | The Jaccard similarity difference ( ∆J = Jτopt − JMANIA ) between MANIA and the optimal threshold-based scheme as a function of µ1 and

µ2 for sparse networks (ρG = 0.1 ), medium density networks (ρG = 0.5) and dense networks (ρG = 0.9). Each square is the average of 1000 independent

simulations.

data can be significantly inaccurate (Thomas et al., 2014). The

authors also note that “(probabilistic tractography methods) are

less susceptive to changes in the composition of an ROI but

only if an optimized threshold can be derived and used.” More
recently Reveley et al. (2015) have investigated the key reasons

behind the negative results of Thomas et al. (2014). They
showed that the dense system of white matter fibers residing

just under the cortical sheet poses severe challenges for long-
range tractography, concluding that it is “extremely difficult to

determine precisely where small axonal tracts join and leave larger
white matter fasciculi.”

In light of the previous results, it is clear that there is a need
for new network inference methods. We believe that MANIA is
moving in the right direction for the following reasons:

(a) The results of Thomas et al. (2014) suggest that probabilistic
tractography can be more accurate than deterministic
tractography in terms of sensitivity and specificity as
long as its parameters are appropriately optimized.
MANIA is indeed mostly applicable to probabilistic
tractography, and its main focus is how to “self-
configure” its connectivity threshold τ in an optimized
manner, relying on what we expect to be true about the
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FIGURE 9 | The Jaccard similarity difference ( ∆J = JMANIA − Jτ0 )

between MANIA and five given threshold values. The accuracy

comparisons are made after post-symmetrization. Each box plot is generated

from 1000 experiments; in each experiment we generate a random network

with density between 0 and 1, while the noise parameters µ1 and µ2 are

uniformly distributed between 0 and 0.3. The red line corresponds to the

median, the box boundaries to the 25 and 75th percentiles, while the dashed

lines show the 10 and 90th percentiles. In all cases, ∆J > 0 (one-sided

Mann-Whitney U-test—p-values are shown next to each box plot) meaning

that MANIA is more accurate than inferring the network based on a fixed

threshold.

structure of the resulting solution (namely, a symmetric
network).

(b) The results of Reveley et al. (2015) suggest that it is risky to
dilate the given ROIs, which are typically mostly gray matter,
so that they also include some white matter voxels. Those
voxels may be part of the white matter fiber systems that
reside just under the cortical sheet. In other words, if our goal
is to understand the connectivity between gray matter ROIs,
we should not use tractography seeds that reside in white
matter; instead, we need to seed from gray matter even if the
diffusion signal is much weaker there. So, we need to expect
that some connections may appear as asymmetric, which is
what MANIA anticipates.

(c) The results of Reveley et al. (2015) can be interpreted as
follows: because it is hard for any tractography method
to accurately cross the WGB, especially in the case of
cortical ROIs, a network inference method should be able to
deal somehow with erroneous measurements about specific
connections. In other words, just because tractography failed
to cross the WGB going from seed X to target Y does
not mean that we should conclude that X and Y are not
connected. And so, given that the input data about individual
connections is quite noisy, we need to examine if there is any
additional “hidden structure” in the inference problem that
we can exploit. If this is case, we can then look for a solution

that satisfies the constraints of that additional structure. In
MANIA, this “hidden structure” in the inference problem
is that the resulting network should be as symmetric as
possible.

(d) Recently, Zalesky et al. (2016) argued that inferring brain
networks with both high specificity and sensitivity is beyond
the capabilities of current diffusion-weighted MRI, fiber
modeling and tractography methods. Further, they showed
that specificity is at least twice as important as sensitivity
when estimating certain topological properties of brain
networks (clustering, efficiency, modularity). As shown in
the Evaluation with Synthetic Data section, MANIA tends to
emphasize specificity instead of sensitivity (i.e., most errors
are false negatives) under sparse connectivity, such as the
network between distinct brain modules.

Of course, we do not claim that MANIA addresses every concern
about tractography-based network inference. On the contrary,
there are more open issues that need to be addressed. Two of
them are further discussed next.

Even if the thresholding problem is adequately addressed
with MANIA, there is another important problem in structural
network inference: the distance bias of the tractography process
(Donahue et al., 2016). It is harder to discover connections
between distal regions due to the accumulation of uncertainty
in long streamlines, causing false negatives for long-range
connections (Li et al., 2012a,b). Additionally, it is more likely
to incorrectly detect connections between proximal regions,
especially in the presence of crossing or turning fibers, causing
false positives. The FDT toolbox provides a “distance correction”
option by multiplying the number of streamlines that cross a
voxel by the average length of those streamlines4—there is no
evidence however that this simple form of distance correction
is able to improve significantly the accuracy of the network
inference process. More sophisticated methods exist however
(Morris et al., 2008; Donahue et al., 2016). The method by
Morris et al. compares the tractography-generated connectivity
probabilities with a null model that gives the corresponding
connectivity probabilities with a random tracking process that
is dominated by the same distance effects. The method by
Donahue et al. regresses out the distance bias from the inter-
ROIs connection weights using a log-linear model. We view
distance correction methods as an independent processing step
that can be applied prior to applying MANIA. For instance,
the method by Morris et al. first creates a “null frequency of
connection map,” it then filters the “experimental frequency of
connection map” that is produced by a probabilistic tractography
tool, resulting in the so-called “significance of connection map”
(which is supposed to have fewer false positives). MANIA can
be then applied on the latter, rather than on the experimental
frequency of connection map. It is still not clear if the Morris
distance correction method is sufficient to completely address
the distance correction bias (Taljan et al., 2011), or whether the
method of Donahue et al. is sufficient to completely address the
distance bias for cortico-subcortical connections (van denHeuvel
et al., 2015). Nevertheless, we anticipate that the combination

4http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide.
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FIGURE 10 | (Left) The rank-aggregated network, based on DTI data from 28 subjects, between the 18 ROIs in Table 1. Every edge in the connected component

has been detected in both directions, i.e., MANIA identifies a completely symmetric network (no post-symmetrization is needed). The density of the connected

component is 19%. The color of each edge represents the fraction of subjects that have the corresponding edge in their individual MANIA-based networks. (Right)

Several percentiles of the node-pair confidence metric for each node-pair that appears connected in at least one of the 28 subjects.

TABLE 2 | Top-three nodes in rank-aggregated network based on four

node-centrality metrics.

Centrality Top-three nodes

Degree BA32 BA10 BA25

Closeness BA25 BA32 Acb

Betweenness BA25 Acb Hp

PageRank BA10 BA32 BA11

of MANIA with a distance correction method will improve the
accuracy of the resulting networks.

MANIA does not produce a weighted network in which
a strength metric is associated with each edge. It provides
however a confidence metric for the presense or absense of
each possible connection. Interpreting streamline counts in
probabilistic tractography as an indication of connection strength
is debatable (Jones et al., 2013). It is not yet clear how to
differentiate between weak yet probable connections vs. strong
but unlikely connections (Zalesky et al., 2016). Nevertheless, a
weighted approach like that of Donahue et al. returns an almost
fully connected network with weights that span several order
of magnitudes (Donahue et al., 2016). In order to achieve good
sensitivity and specificity, there is again the need to threshold this
weighted connectome (see Figure 4D of the paper by Donahue
et al.). For example, in Azadbakht et al. (2015) the authors
achieve 74% accuracy but only if the optimum threshold is used.
MANIA can address this thresholding problem by first pruning

the tractography results to get a set of unweighted but likely
connections. Then, one can define the desired weighting scheme
for this set, e.g., through fractional scaling (see Donahue et al.,
2016).

A network representation consists of both nodes and edges.
The clinical and research value of representing a brain as a
network depends critically on the selected nodes and on the
exact boundaries of the corresponding ROIs (Zalesky et al.,
2010). MANIA assumes that the set of given nodes is sufficiently
specified, and that their spatial boundaries are accurately defined.
In practice, this step of the network inference process is always an
“inexact science” given that the functional role of any given ROI
is at best only partially understood and the anatomical boundary
of each ROI is subject-dependent (Tzourio-Mazoyer et al., 2002).

A voxel-level analysis (van den Heuvel et al., 2008) avoids
the selection of functionally specific ROIs but it makes it harder
to associate the topological properties of the observed network,
which now consists of many thousands of nodes, to any known
brain circuits and their function. Again, we view this important
issue as orthogonal to MANIA: improved brain parcellation
methods, such as data-driven parcellations (Power et al., 2011;
Yeo et al., 2011; Glasser et al., 2016b) and decreasing voxel
sizes can be used jointly with MANIA to identify structural
networks that are consistent, or that can explain well, the
observed spatio-temporal correlations in resting-state or task-
based fMRI analyses. This coupled exploitation of fMRI and
diffusion MRI data has provided valuable insights about the
underlying anatomy of the brain structures that result in the
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Default Mode Network (Honey et al., 2009), and they can
become more common now that the HCP project provides both
functional and diffusion data for hundreds of subjects (Van Essen
et al., 2013).

In our 18-ROI case-study, summarized in Figure 10, the
use of mostly large ROIs that do not necessarily correspond
to distinct functional units, together with the distance bias
of the tractography process, may account for the lack of
certain expected connections. Two such expected connections
are between Pc and BA40 (Greicius et al., 2009), and between
BA9 and BA40 (Petrides and Pandya, 2007); the latter is a long-
distance connection. Additionally, large cortical ROIs such as
BA9 and BA40 are only imprecisely defined, which may also
explain the absence of some of their connections. The limbic and
subcortical ROIs, on ther other hand, are more precisely defined
and their connections are mostly running over shorter distances.

These findings suggest thatMANIA should be evaluated in the
future jointly with, first, advanced distance correction methods,

and second, with either more precisely defined ROIs or on a
whole-brain parcellation template.

AUTHOR CONTRIBUTIONS

KS and CD designed research, KS, SB, DG, HM, and CD
performed research, KS and SB analyzed data, and KS, HM, and
CD wrote paper.

ACKNOWLEDGMENTS

CD and SB are grateful to Prof. Olaf Sporns and his group at
Indiana University for hosting SB at the Sporns lab during the
summer of 2011 and for discussions about early stages of this
work. The authors would like to thank Dr. Jim Rilling for his
contribution of the DTI and structural MRI data that served as
basis for the analysis presented in this paper, and Dr. Peter Neher
for providing us with the FiberCup phantom ROIs.

REFERENCES

Ailon, N., Charikar, M., and Newman, A. (2008). Aggregating inconsistent

information: ranking and clustering. J. ACM 55:23. doi: 10.1145/1411509.

1411513

Azadbakht, H., Parkes, L. M., Haroon, H. A., Augath, M., Logothetis, N. K., de

Crespigny, A., et al. (2015). Validation of high-resolution tractography against

in vivo tracing in the macaque visual cortex. Cereb. Cortex 25, 4299–4309. doi:

10.1093/cercor/bhu326

Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., and Grafton, S. T. (2011).

Conserved and variable architecture of human white matter connectivity.

Neuroimage 54, 1262–1279. doi: 10.1016/j.neuroimage.2010.09.006

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D.

R., and Meyer-Lindenberg, A. (2008). Hierarchical organization of human

cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248. doi:

10.1523/JNEUROSCI.1929-08.2008

Bastiani, M., Shah, N. J., Goebel, R., and Roebroeck, A. (2012). Human

cortical connectome reconstruction from diffusion weighted MRI:

the effect of tractography algorithm. Neuroimage 62, 1732–1749. doi:

10.1016/j.neuroimage.2012.06.002

Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M., and Woolrich, M. W. (2007).

Probabilistic diffusion tractography with multiple fibre orientations: what can

we gain? Neuroimage 34, 144–155. doi: 10.1016/j.neuroimage.2006.09.018

Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R.

G., Clare, S., et al. (2003). Characterization and propagation of uncertainty

in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088. doi:

10.1002/mrm.10609

Beucke, J. C., Sepulcre, J., Eldaief, M. C., Sebold, M., Kathmann, N.,

and Kaufmann, C. (2014). Default mode network subsystem alterations

in obsessive-compulsive disorder. Br. J. Psychiatry 205, 376–382. doi:

10.1192/bjp.bp.113.137380

Blumensath, T., Jbabdi, S., Glasser, M. F., Van Essen, D. C., Ugurbil, K.,

Behrens, T. E., et al. (2013). Spatially constrained hierarchical parcellation

of the brain with resting-state fMRI. Neuroimage 76, 313–324. doi:

10.1016/j.neuroimage.2013.03.024

Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R.,

Fotenos, A. F., et al. (2005). Molecular, structural, and functional

characterization of Alzheimer’s disease: evidence for a relationship between

default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717. doi:

10.1523/JNEUROSCI.2177-05.2005

Chen, X., Errangi, B., Li, L., Glasser, M. F., Westlye, L. T., Fjell, A. M.,

et al. (2013). Brain aging in humans, chimpanzees (Pan troglodytes), and

rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of

macro-and microstructural changes. Neurobiol. Aging 34, 2248–2260. doi:

10.1016/j.neurobiolaging.2013.03.028

Cheng, H., Wang, Y., Sheng, J., Sporns, O., Kronenberger, W. G., Mathews,

V. P., et al. (2012). Optimization of seed density in DTI tractography

for structural networks. J. Neurosci. Methods 203, 264–272. doi: 10.1016/

j.jneumeth.2011.09.021

Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., and Thompson, A. (2008).

Diffusion-based tractography in neurological disorders: concepts, applications,

and future developments. Lancet Neurol. 7, 715–727. doi: 10.1016/S1474-

4422(08)70163-7

Craddock, R. C., Holtzheimer, P. E. III, Hu, X. P., and Mayberg, H. S. (2009).

Disease state prediction from resting state functional connectivity. Magn.

Reson. Med. 62, 1619–1628. doi: 10.1002/mrm.22159

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg,

H. S. (2012). A whole brain fMRI atlas generated via spatially constrained

spectral clustering. Hum. Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.

21333

Daianu, M., Jahanshad, N., Nir, T. M., Toga, A. W., Jack C. R. Jr., Weiner, M.

W., et al. (2013). Breakdown of brain connectivity between normal aging and

Alzheimer’s disease: a structural k-core network analysis. Brain Connect. 3,

407–422. doi: 10.1089/brain.2012.0137

Damoiseaux, J. S., and Greicius, M. D. (2009). Greater than the sum of its parts: a

review of studies combining structural connectivity and resting-state functional

connectivity. Brain Struct. Funct. 213, 525–533. doi: 10.1007/s00429-009-

0208-6

de Reus, M. A., and van den Heuvel, M. P. (2013a). Estimating false

positives and negatives in brain networks. Neuroimage 70, 402–409. doi:

10.1016/j.neuroimage.2012.12.066

de Reus, M. A., and van den Heuvel, M. P. (2013b). The parcellation-

based connectome: limitations and extensions. Neuroimage 80, 397–404. doi:

10.1016/j.neuroimage.2013.03.053

Descoteaux, M., Deriche, R., Knösche, T. R., and Anwander, A. (2009).

Deterministic and probabilistic tractography based on complex fibre

orientation distributions. IEEE Trans. Med. Imaging 28, 269–286. doi:

10.1109/TMI.2008.2004424

Donahue, C. J., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Behrens,

T. E., Dyrby, T. B., et al. (2016). Using diffusion tractography to predict cortical

connection strength and distance: a quantitative comparison with tracers

in the monkey. J. Neurosci. 36, 6758–6770. doi: 10.1523/JNEUROSCI.0493-

16.2016

Duda, J. T., Cook, P. A., and Gee, J. C. (2014). Reproducibility of graph

metrics of human brain structural networks. Front. Neuroinform. 8:46. doi:

10.3389/fninf.2014.00046

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2016 | Volume 10 | Article 46

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Shadi et al. Symmetry-Based Structural Brain Network Inference

Elman, I., Borsook, D., and Volkow, N. D. (2013). Pain and suicidality: insights

from reward and addiction neuroscience. Prog. Neurobiol. 109, 1–27. doi:

10.1016/j.pneurobio.2013.06.003

Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm,

J., et al. (2011). Quantitative evaluation of 10 tractography algorithms

on a realistic diffusion MR phantom. Neuroimage 56, 220–234. doi:

10.1016/j.neuroimage.2011.01.032

Fornito, A., and Bullmore, E. T. (2015). Connectomics: a new paradigm for

understanding brain disease. Eur. Neuropsychopharmacol. 25, 733–748. doi:

10.1016/j.euroneuro.2014.02.011

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub,

E., et al. (2016a). A multi-modal parcellation of human cerebral cortex. Nature.

536, 171–178. doi: 10.1038/nature18933

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J.,

Behrens, T. E., et al. (2016b). The Human Connectome Project’s neuroimaging

approach. Nat. Neurosci. 19, 1175–1187. doi: 10.1038/nn.4361

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009).

Mapping anatomical connectivity patterns of human cerebral cortex using in

vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536. doi:

10.1093/cercor/bhn102

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009). Resting-

state functional connectivity reflects structural connectivity in the default mode

network. Cereb. Cortex 19, 72–78. doi: 10.1093/cercor/bhn059

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.pbio.0060159

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., et al.

(2007). Mapping human whole-brain structural networks with diffusion MRI.

PLoS ONE 2:e597. doi: 10.1371/journal.pone.0000597

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R.,

et al. (2009). Predicting human resting-state functional connectivity from

structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2204. doi:

10.1073/pnas.0811168106

James, G. A., Kelley, M. E., Craddock, R. C., Holtzheimer, P. E., Dunlop,

B. W., Nemeroff, C. B., et al. (2009). Exploratory structural equation

modeling of resting-state fMRI: applicability of group models to individual

subjects. Neuroimage 45, 778–787. doi: 10.1016/j.neuroimage.2008.

12.049

Jbabdi, S., and Johansen-Berg, H. (2011). Tractography: where do we go from here?

Brain Connect. 1, 169–183. doi: 10.1089/brain.2011.0033

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., and Behrens, T. E.

(2015). Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18,

1546–1555. doi: 10.1038/nn.4134

Jenkinson,M., and Smith, S. (2001). A global optimisationmethod for robust affine

registration of brain images.Med. Image Anal. 5, 143–156. doi: 10.1016/S1361-

8415(01)00036-6

Jones, D. K., Knösche, T. R., and Turner, R. (2013). White matter integrity, fiber

count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73,

239–254. doi: 10.1016/j.neuroimage.2012.06.081

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S.,

Rainey, L., et al. (2000). Automated Talairach atlas labels for functional

brain mapping. Hum. Brain Mapp. 10, 120–131. doi: 10.1002/1097-

0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8

Li, L., Rilling, J. K., Preuss, T. M., Glasser, M. F., Damen, F. W., and Hu,

X. (2012a). Quantitative assessment of a framework for creating anatomical

brain networks via global tractography. Neuroimage 61, 1017–1030. doi:

10.1016/j.neuroimage.2012.03.071

Li, L., Rilling, J. K., Preuss, T. M., Glasser, M. F., and Hu, X. (2012b). The effects of

connection reconstruction method on the interregional connectivity of brain

networks via diffusion tractography. Hum. Brain Mapp. 33, 1894–1913. doi:

10.1002/hbm.21332

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., et al. (2009). Brain

anatomical network and intelligence. PLoS Comput. Biol. 5:e1000395. doi:

10.1371/journal.pcbi.1000395

Mayberg, H. S. (1997). Limbic-cortical dysregulation: a proposed model

of depression. J. Neuropsychiatry Clin. Neurosci. 9, 471–481. doi:

10.1176/jnp.9.3.471

Mayberg, H. S., Lozano, A.M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani,

C., et al. (2005). Deep brain stimulation for treatment-resistant depression.

Neuron 45, 651–660. doi: 10.1016/j.neuron.2005.02.014

McIntosh, A. M., Maniega, S. M., Lymer, G. K. S., McKirdy, J., Hall, J.,

Sussmann, J. E., et al. (2008). White matter tractography in bipolar

disorder and schizophrenia. Biol. Psychiatry 64, 1088–1092. doi:

10.1016/j.biopsych.2008.07.026

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T.-P., Kindermann, S. S., Bell,

A. J., et al. (1997). Analysis of fMRI Data by Blind Separation into Independent

Spatial Components. DTIC Document.

Mori, S., Crain, B. J., Chacko, V. P., and Van Zijl, P. C. (1999). Three-dimensional

tracking of axonal projections in the brain by magnetic resonance imaging.

Ann. Neurol. 45, 265–269.

Morris, D. M., Embleton, K. V., and Parker, G. J. (2008). Probabilistic fibre

tracking: differentiation of connections from chance events. Neuroimage 42,

1329–1339. doi: 10.1016/j.neuroimage.2008.06.012

Neher, P. F., Laun, F. B., Stieltjes, B., and Maier-Hein, K. H. (2014). Fiberfox:

facilitating the creation of realistic white matter software phantoms. Magn.

Reson. Med. 72, 1460–1470. doi: 10.1002/mrm.25045

Newman,M. (2010).Networks: An Introduction. New York, NY: Oxford University

Press. doi: 10.1093/acprof:oso/9780199206650.001.0001

Parker, G. J., Haroon, H. A., andWheeler-Kingshott, C. A. (2003). A framework for

a streamline-based probabilistic index of connectivity (PICo) using a structural

interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18,

242–254. doi: 10.1002/jmri.10350

Peterson, A., Thome, J., Frewen, P., and Lanius, R. A. (2014). Resting-state

neuroimaging studies: a new way of identifying differences and similarities

among the anxiety disorders? Can. J. Psychiatry 59:294.

Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional

organization. Philos. Trans. R. Soc. B Biol. Sci. 360, 781–795. doi: 10.1098/rst

b.2005.1631

Petrides, M., and Pandya, D. N. (2007). Efferent association pathways from the

rostral prefrontal cortex in the macaque monkey. J. Neurosci. 27, 11573–11586.

doi: 10.1523/JNEUROSCI.2419-07.2007

Poupon, C., Laribiere, L., Tournier, G., Bernard, J., Fournier, D., Fillard, P., et al.

(2010). “A diffusion hardware phantom looking like a coronal brain slice,” in

Proceedings of the International Society for Magnetic Resonance in Medicine

(Stockholm).

Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., and Mangin, J. F.

(2008). New diffusion phantoms dedicated to the study and validation of high-

angular-resolution diffusion imaging (HARDI) models.Magn. Reson. Med. 60,

1276–1283. doi: 10.1002/mrm.21789

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

Reveley, C., Seth, A. K., Pierpaoli, C., Silva, A. C., Yu, D., Saunders, R. C., et al.

(2015). Superficial white matter fiber systems impede detection of long-range

cortical connections in diffusion MR tractography. Proc. Natl. Acad. Sci. U.S.A.

112, E2820–E2828. doi: 10.1073/pnas.1418198112

Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B., and Breakspear, M. (2016).

Consistency-based thresholding of the human connectome. Neuroimage. doi:

10.1016/j.neuroimage.2016.09.053. [Epub ahead of print].

Robinson, E. C., Hammers, A., Ericsson, A., Edwards, A. D., and Rueckert,

D. (2010). Identifying population differences in whole-brain structural

networks: a machine learning approach. Neuroimage 50, 910–919. doi:

10.1016/j.neuroimage.2010.01.019

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Schalekamp, F., and van Zuylen, A. (2009). “Rank aggregation: together we’re

strong,” in ALENEX (New York, NY), 38–51. doi: 10.1137/1.9781611972894.4

Seminowicz, D. A., Mayberg, H. S., McIntosh, A. R., Goldapple, K.,

Kennedy, S., Segal, Z., et al. (2004). Limbic-frontal circuitry in major

depression: a path modeling metanalysis. Neuroimage 22, 409–418. doi:

10.1016/j.neuroimage.2004.01.015

Sporns, O. (2012). Discovering the Human Connectome. Cambridge, MA: MIT

Press.

Frontiers in Neuroinformatics | www.frontiersin.org 15 November 2016 | Volume 10 | Article 46

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Shadi et al. Symmetry-Based Structural Brain Network Inference

Sporns, O. (2013). Making sense of brain network data. Nat. Methods 10, 491–493.

doi: 10.1038/nmeth.2485

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a

structural description of the human brain. PLoS Comput. Biol. 1:e42. doi:

10.1371/journal.pcbi.0010042

Taljan, K., McIntyre, C., and Sakaie, K. (2011). Anatomical connectivity between

subcortical structures. Brain Connect. 1, 111–118. doi: 10.1089/brain.2011.0011

Thirion, B., Varoquaux, G., Dohmatob, E., and Poline, J.-B. (2014). Which

fMRI clustering gives good brain parcellations? Front. Neurosci. 8:167. doi:

10.3389/fnins.2014.00167

Thomas, C., Frank, Q. Y., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold,

D. A., et al. (2014). Anatomical accuracy of brain connections derived from

diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. U.S.A.

111, 16574–16579. doi: 10.1073/pnas.1405672111

Tzourio, N., Petit, L., Mellet, E., Orssaud, C., Crivello, F., Benali, K., et al.

(1997). Use of anatomical parcellation to catalog and study structure-function

relationships in the human brain. Hum. Brain Mapp. 5, 228–232.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

van den Heuvel, M. P., de Reus, M. A., Feldman Barrett, L., Scholtens,

L. H., Coopmans, F. M., Schmidt, R., et al. (2015). Comparison of

diffusion tractography and tract-tracing measures of connectivity strength

in rhesus macaque connectome. Hum. Brain Mapp. 36, 3064–3075. doi:

10.1002/hbm.22828

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol H. E.

(2008). Small-world and scale-free organization of voxel-based resting-state

functional connectivity in the human brain. Neuroimage 43, 528–539. doi:

10.1016/j.neuroimage.2008.08.010

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,

Ugurbil, K., et al. (2013). The WU-Minn human connectome project:

an overview. Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.

05.041

Van Wijk, B. C., Stam, C. J., and Daffertshofer, A. (2010). Comparing brain

networks of different size and connectivity density using graph theory. PLoS

ONE 5:e13701. doi: 10.1371/journal.pone.0013701

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,

M., et al. (2011). The organization of the human cerebral cortex estimated

by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi:

10.1152/jn.00338.2011

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., and

Breakspear, M. (2016). Connectome sensitivity or specificity: which is more

important? Neuroimage. doi: 10.1016/j.neuroimage.2016.06.035. [Epub ahead

of print].

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., et al.

(2010). Whole-brain anatomical networks: does the choice of nodes matter?

Neuroimage 50, 970–983. doi: 10.1016/j.neuroimage.2009.12.027

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Shadi, Bakhshi, Gutman, Mayberg and Dovrolis. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2016 | Volume 10 | Article 46

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data
	Introduction
	Materials and Methods
	MANIA Inputs
	Connectivity Threshold τ
	Network Inference As an Optimization Problem
	Threshold-Based Network Inference with Post-Symmetrization
	Performance Metrics
	Optimal Threshold-Based Network Inference
	Edge Ranking and Confidence Metric in MANIA
	Group Analysis Using MANIA
	FiberCup Phantom Dataset
	Synthetically Generated Networks
	DTI Data, Tractography Parameters, and Selected ROIs

	Results
	Evaluation with the FiberCup Dataset
	Evaluation with Synthetic Data
	Case-Study: A Rank-Aggregated Network between 18 ROIs

	Discussion
	Author Contributions
	Acknowledgments
	References


