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Abstract: The gastrointestinal (GI) microbiota plays an important role in health and disease, including
brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes
in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on
treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota
composition in humans and other vertebrates, whether probiotics influence postoperative health,
and whether microbiota and psychological and behavioral factors interact. A search was conducted
using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and
probiotics after BS, and later screened for psychological and behavioral parameters. Studies were
classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes
were further assessed for whether they were specific to BS in humans through the comparison to sham
operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific,
whereas dissimilarity in overall microbial community structure, and increases in the abundance of
the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery
were observed in both human and other vertebrates studies and may be specific to BS in humans.
Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that
probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS.
The relationship between GI microbiota and psychological diseases in this context is unclear due to
insufficient available data.

Keywords: gastrointestinal microbiota; probiotics; bariatric surgery; psychological

1. Introduction

Obesity and its associated comorbidities are a severe public health problem, with limited success
achieved by conservative treatment approaches (lifestyle interventions) [1,2]. Bariatric surgery (BS) is
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currently the most effective method for patients with morbid obesity, with the most frequently performed
procedures being the Roux-en-Y Gastric Bypass (RYGB) and Laparoscopic Sleeve Gastrectomy (LSG) [3].
Seeing as BS changes the anatomy and physiology of the gastrointestinal (GI) tract, it therefore may
also affect the GI microbiota [2].

The GI microbiota is defined as the total amount of living microorganisms that colonize the GI
tract of a host organism [4]. The GI microbiota live with the host in a complex and mutually beneficial
relationship, playing a crucial role in the defense against external microorganisms, maintaining the
physiology of the intestine, weight regulation and energy metabolism, nutrient/drug metabolism,
and the production of metabolites, such as short-chain fatty acids (SCFA) which are involved in
appetite regulation of the host [5]. SCFA may be involved in appetite regulation as they contribute
to 5% to 10% of energy requirements of the host, and to influence satiety hormones such as Peptide
YY via enteroendocrine cells and the gut–brain axis [1,6,7]. Dysbiosis of the GI microbiota was found
to be associated with several pathologic conditions such as immune disorders, inflammatory bowel
diseases, susceptibility to infections, type 2 diabetes mellitus, obesity, and hepatic and neurological
states, among others [8].

The introduction of next-generation sequencing has instigated our insight into the microbiota
with 16S rRNA gene amplicon sequencing being the predominant analysis technique for gut microbial
composition (phylogenetic analysis) and allowing for a comprehensive description of these complex
microbial communities [9,10]. In order to be able to compare the highly complex microbiota data of
individuals, different ecological measures and indices are used. Alpha diversity describes the number
of different species and their distribution in a microbial habitat and is thereby separated into richness
and biodiversity [11]. Beta diversity describes the microbial community structure by the degree of
similarity/dissimilarity of the microbial communities between different microbial habitats [12].

Although an “ideal” or “normal” gut microbiome is still unclear, many potential features have been
identified, and conversely deviations from this have been associated with different pathophysiological
conditions, such as obesity [1,13]. Seganfredo et al. reported that changes in the microbial composition
occurred following weight loss after both restrictive diets and BS [1]. The microbiota is also affected by
diet, with Western Diets (high in animal protein, fat and total energy, low in dietary fibers) being linked
to reduced microbial diversity, beneficial bacteria and SCFA production. Current literature supports
favorable changes in intestinal microbiota after BS with increases in alpha diversity, community
structure and relative increases in the phyla Bacteroidetes and Proteobacteria, with a concomitant
reduction in Firmicutes [14–18].

Similar to obesity, psychological conditions have been associated with inflammatory processes
and dysbiosis in the GI microbiota [19,20]. Communication via the gut–brain axis is bidirectional and
conducted through a complex network including the central nervous system (CNS), enteric nervous
system and endocrine and immune systems [21]. The effects of the microbiota on brain development,
psychological conditions and host behavior have attracted the attention of researchers over the last
decade [19,22]. Therefore, changes in the GI microbiota may play an important role as diagnostic
biomarkers for psychological conditions and individualized treatment pathways, or as targets to
support or replace psychological therapies [23].

The GI microbiota may be influenced through the use of probiotics [24]. Preclinical studies
addressing the benefit of probiotics for psychological states show a widely uniform picture, with
improvements for stress, anxiety, and depression-associated behaviors reported [25–29], whereas the
results in human trials are less clear, with mainly improvements concerning stress-related psychological
problems currently observed in human volunteers [30–32]. Probiotic induced manipulation of the
GI microbiota, through particular strains of Lactobacillus and Bifidobacterium, have been reported to
have potential effects on CNS function via the gut–brain axis and may offer treatment options for the
challenge of long-term obesity treatment and weight regulation; however, the efficacy of probiotic use
in humans for obesity is controversial [33].



Nutrients 2020, 12, 2396 3 of 22

To date, no review has been conducted involving all of the following factors: GI microbiota
changes in humans and other vertebrates following BS, the influence of probiotics on BS outcomes,
and whether these influence patient psychology and behavior. This provokes the question, to what
extent do GI microbiota change after BS influences psychological states and behavior? We therefore
developed the following hypotheses:

• The GI microbial diversity will remain stable for richness and biodiversity (alpha diversity),
but community structure will be dissimilar after BS compared to pre-surgery.

• Shifts in the abundance of specific microbial taxa will occur after BS, and the specificity of these
changes in humans will be identified via comparison of different BS techniques to sham operations
in vertebrate studies.

• The abundance of specific GI microbial taxa will shift after BS, and these changes will be associated
with psychological and behavioral factors.

• The use of probiotics will influence outcomes after BS, including quality of life and
psychological states.

2. Materials and Methods

2.1. Literature Information Sources and Search Strategy

This review was developed and executed according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [34] to identify all relevant studies examining the
GI microbiota and/or probiotic intervention in the context of BS in the databases PubMed and Web of
Science as of 05.11.2018 and updated 18.11.2019. The protocol of this systematic review is registered
at the PROSPERO platform with the registration number CRD42019119372. The full search strategy
is documented in the Supporting Text S1 and consisted of three modules: type of BS, probiotics,
and GI microbiota. Articles were screened for psychological or behavioral parameters during data
organization. This was carried out as a secondary step to limit the risk of excluding relevant articles on
BS and GI microbiota where psychological factors are not mentioned in the title, abstract, or keywords.

2.2. Eligibility Criteria

Eligibility criteria were based on the five PICOS dimensions, i.e., participants (P), interventions (I),
comparators (C), outcome (O) and study design (S) [35].

Participants: adult patients with obesity and other vertebrates with obesity. No further restrictions
regarding ethnicity, sex, or type of vertebrate were made.

Intervention: BS and/or the use of probiotics after BS. Exclusion criteria included the additional
use of antibiotics, prebiotics/symbiotics or other systemic interventions (e.g., proton pump inhibitors).

Control: studies with or without control groups met eligibility criteria.
Outcome measures: GI microbiota, and (secondary to this) assessment of psychological and

behavioral factors. Studies were excluded if outcomes solely focused on pathogens (e.g., small intestinal
bacterial overgrowth measured with H2-breath-test but not via GI microbiota).

Study design: prospective longitudinal, cross-sectional and retrospective studies, which were
randomized and non-randomized, with any publication date and written in English and German.
Only peer-reviewed, original articles were included.

Eligibility for studies of Subgroup analysis: The eligibility criteria were kept broad to encapsulate
the extent of the literature currently in this area. Subgroup analyses were then conducted to reduce
heterogeneity of study designs and microbiota analysis techniques across studies. Eligibility criteria
for the Subgroup 1 was studies from Group 1 (BS and microbiota in humans) with pre-post study
design and 16S rRNA gene sequencing (n = 20); Subgroup 2 criteria was studies from Group 2 (BS and
microbiota in other vertebrates) with sham operation/s as comparison and 16S rRNA gene sequencing
(n = 21).
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2.3. Study Selection, Data Collection and Organisation

The search results of the two databases were manually combined. Duplicates were removed
and the titles and abstracts were screened to identify appropriate studies. Full-text articles were
evaluated regarding their eligibility (CL and KB), with uncertainties being discussed between the
authors (<3% cases).

The studies were classified into three groups:

Group 1—BS and microbiota in humans
Group 2—BS and microbiota in other vertebrates
Group 3—BS and probiotics

Subgroups were developed to provide a more homogenous summary of findings.

Subgroup 1—Pre-post BS comparisons in human
Subgroup 2—BS to sham operation comparisons in other vertebrates

2.4. Data Items and Statistics

The following information was extracted from each included article for Groups 1, 2, and 3: study
characteristics, BS type and probiotic intervention where appropriate, methods of gut microbiota
analysis and outcomes, and all data available on psychological factors. The main outcomes concerning
the GI microbiota were alpha diversity (richness and biodiversity), community structure/beta diversity,
and microbial composition. For microbial abundance outcomes which were tested and not specifically
referred to in text, no effect was presumed and written as not significant. Secondary outcomes
including anthropometric, clinical, and behavioral changes were also retrieved. Authors were
contacted if parameters for data extraction were missing. A total of 46% (13 out of 28) of authors
provided the requested data.

Significant differences for alpha diversity, community structure, and taxonomy abundances were
summarized in the two subgroups.

2.5. Risk of Bias

For all included studies a risk of bias assessment was performed using The Office of Health
Assessment and Translation (OHAT) Risk of Bias rating tool for Human and Animal Studies [36].
This method was chosen because the same rating system can be applied to human and other vertebrate
studies with different study designs. Depending on the study type, different (applicable) items
are evaluated as described in the OHAT checklist. The items focus on the possible risk areas of
adequate randomization, allocation to appropriate comparison groups, accounting for confounding
and modifying variables, and confidence in the exposure and outcome assessment, among others.
The rating ranged between: definitely low (“++”), probably low (“+”), probably high (“−” or “NR”:
not reported), definitely high risk of bias (“−−”), or “NA”: not applicable. In addition, the 16S
rRNA sequencing platforms and targeted hypervariable regions were assessed to address the bias of
laboratory methods.

3. Results

The literature search process used to identify eligible studies is shown in Figure 1. Out of 988
identified studies from the electronic databases, 59 studies remained for qualitative analysis. Thirty articles
were categorized into group 1 (BS and microbiota in humans). The work by Campisciano et al. [37,38] is
included as two original articles, but discussed and summarized as one due to presenting identical results.
Twenty-five articles were categorized into group 2 (BS and microbiota in other vertebrates) and four
articles were categorized into group 3 (BS and probiotics). All identified probiotic studies were conducted
in humans.
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retrospective studies (Group 1: n = 1). Studies in humans included either both sexes (n = 26) or only 
females (n = 7). Studies conducted in other vertebrates were exclusively conducted in male animals 
(n = 22), except two. The surgical intervention type was highly diverse among the human and other 
vertebrate trials, however the most common were RYGB (n = 31) and LSG (n = 20). In 19 studies more 
than one surgical procedure was performed.  

Out of the 59 studies, 36 studies applied a pre-post design (baseline measurements provided) 
(Group 1: n = 23 [37–59]; Group 2: n = 10 [60–69]; Group 3: n = 4 [70–73]). Sixteen studies used a cross-
sectional design (Group 1: n = 6 [74–79]; Group 2: n = 10 [80–89]), whereas four studies applied a 
longitudinal study design with multiple measurement points postoperatively but without baseline 
measurements (Group 2 [90–93]). Two studies did not report the study time points of sampling 
adequately [94,95].  

Figure 1. Flow chart of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
systematic search. * 2 of the identified studies presented the same data and are discussed as a single study.

3.1. Summary of Study Characteristics

Study characteristics across are summarized in Tables 1 and 2, with additional information in
single-study breakdown detailed in Supporting Table S1. The included studies consisted of randomized
controlled trials (Group 1: n = 6; Group 2: n = 15; Group 3: n = 3), non-randomized controlled trials
(Group 1: n = 11; Group 2: n = 9; Group), experimental designs (Group 1: n = 9; Group 2: n = 1),
randomized (with no control) designs (Group 1: n = 2; Group 2: n = 1; Group 3: n = 1) and retrospective
studies (Group 1: n = 1). Studies in humans included either both sexes (n = 26) or only females
(n = 7). Studies conducted in other vertebrates were exclusively conducted in male animals (n = 22),
except two. The surgical intervention type was highly diverse among the human and other vertebrate
trials, however the most common were RYGB (n = 31) and LSG (n = 20). In 19 studies more than one
surgical procedure was performed.

Out of the 59 studies, 36 studies applied a pre-post design (baseline measurements provided)
(Group 1: n = 23 [37–59]; Group 2: n = 10 [60–69]; Group 3: n = 4 [70–73]). Sixteen studies used a
cross-sectional design (Group 1: n = 6 [74–79]; Group 2: n = 10 [80–89]), whereas four studies applied a
longitudinal study design with multiple measurement points postoperatively but without baseline
measurements (Group 2 [90–93]). Two studies did not report the study time points of sampling
adequately [94,95].
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Table 1. Characteristics across human studies—Groups 1 and 3.

Follow up after Surgery 1

(Months)
Median IQR Minimum Maximum

All (n = 30) 6.0 [0.5–24.0] 0.5 112.8
BS and microbiota in humans

(n = 26) 6.0 [5.3–12.0] 1.0 112.8

BS and probiotics in humans
(n = 4) 4.5 [2.4–6.0] 0.5 6.0

Sample size

All (n = 33) 24.0 [14.0–45.0] 6.0 267.0
BS and microbiota in humans

(n = 29) 21.0 [13.0–43.0] 6.0 267.0

BS and probiotics in humans
(n = 4) 52.0 [43.0–70.0] 40.0 100.0

Age of Study Population 2

(Years)

All (n = 27) 43.5 [39.0–47.8] 23.5 51.5
BS and microbiota in humans

(n = 23) 43.5 [39.0–47.8] 23.5 51.5

BS and probiotics in humans
(n = 4) 43.4 [40.2–45.7] 35.1 48.0

Sexes of Study Population 3 Both Sexes Only Females Only Males

All (n = 33) n = 26 n = 7 n = 0
BS and microbiota in humans

(n = 29) n = 22 n = 7 n = 0

BS and probiotics in humans
(n = 4) n = 4 n = 0 n = 0

BMI: Categorization 4,5 Overweight
(25–< 29.9)

Obesity Class 1
(30–< 34.9)

Obesity Class 2
(35–< 39.9)

Obesity Class 3
(≥ 40)

All (n = 30) n = 6 n = 9 n = 13 n = 23
BS and microbiota in humans

(n = 26) n = 6 n = 9 n = 13 n = 19

BS and probiotics in humans
(n = 4) n = 0 n = 0 n = 0 n = 4

Diabetes Status 6 Only Patients
with Diabetes

Patients with and
without Diabetes No Patients with Diabetes

All (n = 24) n = 4 n = 15 n = 5
BS and microbiota in humans

(n = 21) n = 4 n = 12 n = 5

BS and probiotics in humans
(n = 3) n = 0 n = 3 n = 0

Type of Surgery 7 RYGB LSG AGB Other 8

All (n = 33) n = 20 n = 12 n = 3 n = 8
BS and microbiota in humans

(n = 29) n = 18 n = 10 n = 3 n = 7

BS and probiotics in humans
(n = 4) n = 2 n = 2 n = 0 n = 1

1 Two studies did not report their exact study length; 2 Four studies did not report the exact age of study population;
3 Three studies did not appropriately specified the sexes; 4 Some studies included patients of different BMI
categorizations; 5 Two studies did only report the weight; 6 Seven studies did not appropriately specified the diabetes
status; 7 Some studies included different types of surgery; 8 BIB, DJB, LGB, Mini Gastric bypass, Jejunoileostomy.
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Table 2. Characteristics across other vertebrates’ studies—Group 2.

Study Length 1 (Weeks) Median IQR Minimum Maximum

BS and microbiota in other
vertebrates (n = 23) 9.0 [5.3–12.0] 2.0 24.0

Sample size 2

BS and microbiota in other
vertebrates (n = 21) 21.0 [17.5–30.5] 6.0 100.0

Ages of Animals 3 (Weeks)

BS and microbiota in other
vertebrates (n = 17) 8.0 [6.0–10.0] 4.0 80.0

Sexes of Animals 4 Both Sexes Only Females Only Males

BS and microbiota in other
vertebrates (n = 24) n = 1 n = 1 n = 22

Species of Animal Rats Mice Dogs

BS and microbiota in other
vertebrates (n = 25) n = 19 n = 5 n = 1

Diabetes Status Only Animals
with Diabetes

Animals with and
without Diabetes No Specific Information/Test

BS and microbiota in other
vertebrates (n = 25) n = 6 n = 4 n = 15

Type of Surgery 5 RYGB LSG DJB Other 6

BS and microbiota in other
vertebrates (n = 25) n = 11 n = 8 n = 6 n = 7

1 One study did not report its exact study length; 2 Three studies did not report their exact sample size; 3 Eight
studies did not report the exact ages; 4 One study did not report the sexes of the animals; 5 Some studies included
more than one surgery type; 6 IT, GG, BL, DES, BPD/DS.

3.2. Summary of Study Outcomes

Changes in GI microbiota was the primary outcome for 24 studies in Group 1 [37–42,44,45,47–49,
51–57,59,75–79,94] and 12 studies in Group 2 [61,62,64,65,68,82,85,86,88,90,92,95]. For the remaining
studies, primary outcomes surrounding clinical, anthropometric and metabolic parameters were
reported (Group 1: n = 5 [43,46,50,58,74]; Group 2: n = 13 [60,63,66,67,69,80,81,83,84,87,89,91,93]).
For Groups 1 and 2, outcome results including microbiota diversity and taxonomy changes are available
in detail in Supporting Table S2. The outcomes for Group 3 included clinical, anthropometric and/or
metabolic parameters [70,72,73] and Quality of Life (QoL) [71] and are detailed in Supporting Table S3.
Analysis of microbiota samples were completed predominantly via next generation sequencing of 16S
rRNA gene amplicons (Group 1: n = 23; Group 2: n = 22; Group 3: n = 1), with largely the hypervariable
regions V3 and V4 targeted (detailed across studies below in the risk of bias section and for individual
studies in Supporting Table S1).

3.3. Overview of Microbiota Changes Following BS in Humans (Group 1) and Other Vertebrates (Group 2)

Alpha diversity was reported to remain stable (richness: n = 6; biodiversity: n = 7) or increase
(richness: n = 10; biodiversity: n = 7) in humans after BS, and to not significantly differ in BS compared
to sham operated vertebrates in non-human studies (richness: n = 6; biodiversity: n = 5). Dissimilarity
in microbial community structure was reported by studies in both groups (Group 1: n = 16; Group 2:
n = 10). Changes in specific microbial taxa abundances were reported by studies in both groups;
however, changes reported at the genus and species level were not consistent across studies and at
phylum level abundances predominantly remained stable following BS.

Due to the heterogeneity in outcome comparisons and microbiota analysis techniques used, it was
not feasible to summarize these groups’ findings clearly in figures. This led to the breakdown into
Subgroup 1 and 2, as detailed in the Methods section. We noted the overall findings of the subgroup
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analyses aligned with the whole groups’ analyses, whilst being more practical for comparative
summaries and figures. Therefore, further detail will now be provided for Subgroup 1 and 2, with full
Group 1 and 2 Results discussed in the Supporting Text S2 and Supporting Table S2.

3.4. Subgroup Analysis

Frequency analyses for significant changes in alpha diversity, community structure and taxonomy
were conducted in 2 subgroups; Pre-post BS comparisons in humans (Subgroup 1) and BS to sham
operation comparisons in other vertebrates (Subgroup 2). This is summarized in Table 3 and shown in
Figure 2. Additional information is available in Supporting Table S4.

Table 3. Subgroup analysis outcomes for alpha diversity, community structure, and taxonomy changes
at the phylum level.

Subgroup 1: Pre-Post BS Comparisons in Humans

Author
(Year) Surgery Type Alpha D.

Richness
Alpha D.

Biodiversity
Community

Structure Firmic. Bactero. Actinob. Proteob. Verruco.

Campisciano
(2017/18) Bypass/LSG ↔ N.R. N.R. ↑ ↓ ↓ ↔ ↓ ↑ ↓ ↔

Chen (2017) RYGB N.R. N.R. N.R. ↔ ↑ ↔ ↔ ↔

Cortez (2018) DJB ↑ ↑ Dis ↓ ↑ ↔ ↔ ↑

Damms-Machado
(2014) LSG N.R. N.R. Dis ↓ ↑ ↔ ↔ ↔

Graessler
(2013) RYGB N.R. N.R. N.R. ↓ ↓ ↓ ↑ ↑

Kellerer (2019) LSG ↑ ↑ Sim ↔ ↔ ↔ ↔ ↔

Kong (2013) RYGB ↑ N.R. N.R. N.R. N.R. N.R. N.R. N.R.
Lee (2019) RYGB/AGB N.R. N.R. Sim ↔ ↔ ↑ ↔ ↑ ↔

Lin (2019) LSG ↑ N.R. N.R. ↔ ↔ ↔ ↔ ↔

Liu R.X (2017) LSG ↑ N.R. Dis N.R. N.R. N.R. N.R. N.R.
Medina (2017) RYGB/LSG N.R. N.R. Dis ↔ ↑ ↔ ↓ ↑ ↔ ↑ ↔

Murphy
(2017) RYGB/LSG ↑ ↔ ↑ ↔ N.R. ↑ ↔ ↓ ↑ ↑ ↔ ↔ ↔

Paganelli
(2019) RYGB/LSG N.R. ↔ Dis ↔ ↔ ↓ ↑ ↔

Pajecki (2019) RYGB ↔ ↔ Dis * ↔ ↔ ↔ ↓ ↔

Palleja (2016) RYGB ↑ ↑ Dis ↔ ↔ ↔ ↑ ↔

Palmisano
(2019) RYGB/LSG ↔ ↔ Dis ↔ ↔ ↔ ↑ ↔ ↔

Patrone (2016) BIB ↓ ↓ Dis ↔ ↔ ↔ ↑ ↔

Sanmiguel
(2017) LSG ↔ ↔ Dis ↓ ↔ ↔ ↔ ↔

Wang (2019) RYGB/LSG ↑ ↑ Dis ↔ ↔ ↔ ↔ ↔

Subgroup 2: BS to sham operation comparisons in other vertebrates

Author
(Year) Surgery Type Alpha D.

Richness
Alpha D.

Biodiversity
Community

Structure Firmic. Bactero. Actinob. Proteob. Verruco.

Alvarez (2018) LSG1/LSG2 ↔ ↔ N.R. ↔ ↔ ↔ ↑ ↔ ↔

Basso (2016) GG ↔ ↑ Dis ↔ ↔ ↔ ↔ ↔

Cummings
(2013) IT N.R. N.R. N.R. ↔ ↔ ↔ ↔ ↔

Duboc (2017) RYGB/LSG ↔ ↔ Dis ↔ ↔ ↔ ↔ ↔

Guo (2016) RYGB/LSG ↔ ↑ Dis ↑ ↓ ↔ ↑ ↔ ↑ ↑ ↔ ↔

Huang (2014) LSG N.R. N.R. N.R. ↔ ↔ ↔ ↔ ↔

Huh (2019) RYGB/LSG ↑ N.R. Dis ↓ ↔ ↔ ↑ ↔

Jahansouz
(2017) LSG (A/B) ↔ ↔ Sim ↓ ↑ ↔ ↓ ↔ ↔

Jiang (2016) DJB N.R. ↓ Dis ↑ ↓ ↓ ↓ ↑

Kashihara
(2015) DJB N.R. N.R. N.R. ↔ ↔ ↔ ↔ ↔

Kim (2017) DES N.R. N.R. Sim ↔ ↓ ↔ ↔ ↑

Li J.V. (2011) RYGB N.R. N.R. N.R. ↑ ↔ ↔ ↑ ↔

Li S. (2017) DJB/LSG N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R.
Liou (2013) RYGB N.R. N.R. Dis ↓ ↑ ↔ ↑ ↑

Liu (2018) RYGB N.R. ↔ Dis ↓ ↑ ↔ ↔ ↔

Miyachi
(2017) B-DJB/J-DJB N.R. N.R. N.R. ↔ ↔ ↔ ↔ ↔

Mukorako
(2019) BPD/DS/DS/LSG ↔ ↓ ↔ ↓ ↓ ↔ Dis ↔ ↔ ↔ ↔ ↔

Shao (2017) RYGB/LSG N.R. ↓ Dis Sim ↔ ↔ ↔ ↑ ↔ ↔

Shao (2018) LSG ↑ ↔ Dis ↓ ↑ ↔ ↔ ↑

Wang (2019) RYGB N.R. N.R. N.R. ↓ ↔ ↔ ↑ ↔

Zhang (2015) DJB ↔ N.R. N.R. ↑ ↓ ↔ ↑ ↔

* Dissimilarity in unweighted UniFrac (p = 0.029), trend to dissimilarity in weighted UniFrac (p = 0.08). A: Individually
housed mice, B: Cohoused mice. ↑: Increase/higher; ↓: Decrease/lower;↔: Stable/nil difference; N.R.: Not reported.
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↑: Increase/higher; ↓: Decrease/lower;↔: Stable/nil difference; N.R.: Not reported.

3.4.1. Subgroup 1 (Pre-Post BS Comparisons in Humans)

Data are summarized in Table 3 and Figure 2a,c. Eight studies reported an increase and five
found no significant change for microbial richness in patients after surgery. The microbial biodiversity
was also reported to predominantly increase (n = 5) or remain stable (n = 5). A decrease in alpha
diversity was only reported by Patrone et al. [57]. The impact of BS on microbial community structure
(beta-diversity) was examined in thirteen studies in Subgroup 1, with eleven studies observing
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significant dissimilarities between pre- and post-surgery microbial communities. It was found that
phyla largely remained stable after BS when compared to baseline (Firmicutes n = 12; Bacteroidetes
n = 12; Actinobacteria n = 14; Proteobacteria n = 9; Verrucomicrobia n = 15). However, Proteobacteria
phylum was found to significantly increase in eight studies (RYGB n = 7; LSG n = 2; AGB n = 1;
BIB n = 1). At the species level, Akkermansia muciniphila of the Verrucomicrobia phylum reported a
significant increase following BS (n = 6). It was not apparent why in most studies the increase of
Akkermansia spp. was not accompanied by an increase of Verrucomicrobia at phylum level, seeing as
there are hardly any species other than Akkermansia spp. within this phylum in the human gut. Finally,
Escherichia coli within Proteobacteria also increased in three studies after BS.

3.4.2. Subgroup 2 (BS to Sham Operation Comparisons in Other Vertebrates)

Data are summarized in Table 3 and Figure 2b,d. Alpha diversity (richness and biodiversity was
predominantly reported as comparable between BS and sham operation groups in animals (richness
n = 6; biodiversity n = 5). The microbial community structure between groups was classified as
dissimilar by ten of twelve reporting studies. Taxonomy abundances at the phylum level comparing
BS to sham operated controls were largely found to not significantly differ between groups. Further,
Firmicutes, Bacteroidetes, and Actinobacteria had mixed outcomes when a significant difference was
reported. Proteobacteria and Verrucomicrobia were both higher following BS than following sham
operations when a difference was reported (Proteobacteria n = 6; Verrucomicrobia n = 3). At class
level, Gammaproteobacteria was higher after BS compared to sham operated controls in five studies.
At genus level, Bifidobacterium within Actinobacteria (n = 3) and Akkermansia within Verrucomicrobia
(n = 3) were reported to be higher after BS compared to sham.

3.4.3. Similarities and Differences Identified between Subgroup 1 and Subgroup 2

Through the assessment of microbiota changes in other vertebrates comparing BS to sham
operations the potential specificity of microbiota changes can be discussed. Alpha diversity (richness
and biodiversity) was mostly found to not significantly differ after BS compared to sham operations in
vertebrates and was frequently reported as stable in human studies; therefore, changes in alpha diversity
may be not specific to BS in humans. Dissimilarity in community structure was consistently reported
in human and other vertebrate studies, supporting specificity after BS. The increased abundances
after BS reported in the human studies for the phylum Proteobacteria and Akkermansia spp. within
Verrucomicrobia may be specific to BS as they were also identified in greater abundance in the
BS operated groups than sham operated animals. With respect to commonly investigated phyla,
Firmicutes, and Bacteroidetes, specificity of BS cannot be stated.

3.5. Influence of GI Microbiota and BS on Psychological and Behavioural Outcomes

Of the included studies, no investigations or outcomes on psychological states were reported.
In Group 1 (BS and microbiota in humans), two studies reported outcomes at a behavioral

level [56,58]. Sanmiguel et al. reported a decrease in hedonic hunger and decreased preference for
energy-dense foods after LSG, which they were able to correlate to microbiota changes [58]. They found
preference for energy-dense food to be negatively associated with Akkermansia abundance, and hedonic
hunger to be negatively associated with Butyricimonas, Enterococcus, and Odoribacter and positively
associated with Anaerostipes abundances. Similarly, Palmisano et al. reported a decreased preference
for carbohydrate-dominant food items at after LSG; however, no correlations with microbiota were
assessed [56].

In Group 2 (BS and microbiota in other vertebrates), Jahansouz et al. investigated whether
social isolation in mice influences the GI microbiota and prevents successful weight loss compared
to co-housed mice and found no difference post LSG [61]. However, interestingly, they found GI
microbiota differences between sham operated co-housed and sham operated individually-housed mice.
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3.6. Influence of Probiotics on BS Outcomes (Group 3)

A total of four studies were included, of which three included a comparison group [70–73].
Probiotics were provided in capsule form [71–73], with three studies using single-strain probiotics
(Clostridium butyrium [70], Bifidobacterium longum BB536 [70], Bacillus coagulans [71], Lactobacillus [73])
and one study using the multi-strain probiotic Bio-25 (Supherb) [72]. The dosage ranged from containing
2.4 billion to >25 billion bacteria per capsule, and the duration of the treatments ranged from fourteen
days to six months. Due to these differences in probiotic strains and dosages used between the
studies, their findings cannot be directly compared as each probiotic strain has its own effect and
possible outcome. However, outcomes were similar across studies. QoL was measured and found
improvements, independent of type of surgery or control group treatments, across all studies, by all
participant groups, and at all time points. Therefore, probiotic supplementation provided no additional
benefit for QoL in these patients.

Two studies assessed clinical parameters, reporting that differences in percentage body weight
loss were not significant between probiotic and placebo groups after 6 months [72,73]. Sherf-Dagan
et al. also investigated the GI microbiota of patients by 16S rRNA gene sequencing, which found an
increased alpha diversity after LSG in both the probiotic and control groups [72]. Increases in the
Firmicutes/Bacteroidetes ratio and the phyla Proteobacteria, Actinobacteria, and Verrucomicrobia were
also shown in both probiotic and control groups. Therefore, this study concluded that probiotic use
was not superior over the placebo following LSG in the context of GI microbiota changes.

3.7. Risk of Bias

The risk of bias for the studies included in the review conducted via the OHAT checklist is
presented in Supporting Table S5. The randomization of trials was largely not applicable for studies
in Group 1 (83%) and was of definitely or probably low risk for Group 2 (60%) and Group 3 (75%).
There was definitely or probably a low risk of detection bias in 85% of studies (Group 1: 90%;
Group 2: 76%; Group 3: 100%) and of reporting bias in 92% of studies (Group 1: 97%; Group 2: 92%;
Group 3: 50%). Attrition bias was of definitely or probably low risk in human studies (Group 1: 50%;
Group 3; 75%); however, it was of definitely or probably high risk for 36% of animal studies (Group 2).
Furthermore, the adherence to study protocols was probably low risk of bias.

Additional bias considerations specific to the microbiota analysis techniques include the differing
methods for sampling, gene extraction, and sequencing used across the studies. The sequencing
platforms (next generation sequencing of 16S rRNA gene amplicons: n = 46; including Illumina MiSeq
n = 24; Thermofisher Ion Torrent n= 6; Illumina HiSeq n = 5; Roche GS-FLX n = 4; Sanger n = 2; SOLiD
n = 1; Qiagen Kit n = 1), and the 16S rRNA hypervariable regions targeted for sequencing (V1: n = 5;
V2: n = 7; V3: n = 14; V4: n = 27; V5: n = 3; V6: n = 5; V7-V9: n = 1) differed between studies.
The choice of specific hypervariable region/s targeted in 16S rRNA sequencing has been shown to alter
the microbiota taxa observed [96,97], and therefore multiple regions were targeted in some studies in
attempts to reduce amplification bias (Group 1: n = 10; Group 2: n = 7). The information regarding
microbiota samples/analysis for individual studies is presented in Supporting Table S1.

4. Discussion

This review included 59 articles and examined to what extent the GI microbiota changes after
BS and whether these changes influence psychological states and behaviors. Overall, changes in GI
microbiota were observed and reported following BS; however, the type and extent of the reported
changes varied between studies. No data were available for microbiota changes related to psychological
or behavioral factors after BS and probiotics had no additional benefit after BS.
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This review supports the first hypotheses that GI alpha diversity (richness and biodiversity) will
remain stable and that community structure will be dissimilar for patients who have undergone BS.
Microbial richness and biodiversity was not significantly different between BS and sham operation
groups in other vertebrates (subgroup 2), whereas human study outcomes reported a mix of an increase
or unchanged for both richness and biodiversity. This inconsistency in outcomes in human studies
has also been noted in a review by Seganfredo et al. looking at microbiota changes after weight loss,
where some studies found alpha diversity to increase and others to remain stable [1]. The results for
community structure provided a uniform picture in humans and other vertebrates, with dissimilarities
being seen both for comparisons between pre- and post-surgery in humans and between BS and sham
operated controls in animals.

The type of surgical intervention influences the type and intensity of GI microbiota changes
after BS and appears to be specific due to consistent findings for human and other vertebrate studies.
The results of the included studies indicate that bypass procedures have a stronger effect on the GI
microbiota than other techniques in both humans and other vertebrates. Due to the combination of
nutrient restriction and malabsorption, bypass procedures impact more strongly on digestion and
metabolism, and therefore may affect GI microbiota via multiple mechanisms, including accelerated
transit time, increased exposure to gastric acid remnant, and a possible shift in small intestine residing
microbiota to the large intestine [1,79,98]. Seeing as LSG and Adjustable Gastric Band (AGB) are
restrictive procedures, they may cause fewer GI microbiota changes [18,42]. This was also highlighted
in a recent review by Catoi et al. stating that microbiota changes following LSG may be the result of the
associated caloric restriction which occurs pre- and post-BS [2]. The included study by Paganelli et al.
additionally assessed the microbiota of patients after 2 weeks of recommended pre-surgery caloric
restriction and found significant changes to the GI microbiota, some of which returned to baseline
following surgery and the normalization of diet, supporting that some microbiota changes may be a
result of caloric restriction [53]. However, all studies showed that BS had an effect on the GI microbiota,
with RYGB inducing greater functional and taxonomic changes.

Changes in the abundance of a few specific microbiota taxa were reported, supporting the second
hypothesis; however, changes reported at the genus and species level were not consistent across studies
and at the phylum level abundances predominantly remained stable following BS. A notable change in
microbiota abundance observed by the included studies was the increase in the species Akkermansia
muciniphila after BS. Higher abundancies of Akkermansia spp. have been observed in lean or normal
weight versus humans/vertebrates with obesity [99,100]. In addition, weight loss is accompanied by an
increase in Akkermansia spp. [1,99,101] and high abundances have also been reported in patients with
anorexia nervosa [7,102], therefore, suggesting that Akkermansia spp. favour a habitat with decreased
food intake. This is also supported by the findings that weight gain is accompanied by a decrease in
Akkermansia spp. [102,103].

Although studies in humans and other vertebrates were included in this review, it is important to
acknowledge that their results are not directly comparable. This is due to the differing physiology
of species and differing comparison groups; however, through the inclusion of Subgroup 2 (BS to
sham operation comparisons in other vertebrates) the potential specificity of microbiota changes
can be discussed. Changes in alpha diversity (richness and biodiversity) appear not to be specific
to BS, whereas dissimilarity in community structure was consistently reported in human and other
vertebrate studies, supporting specificity after BS. The increase reported in human studies for the
phylum Proteobacteria and Akkermansia spp. within Verrucomicrobia may be specific to BS, rather
than a consequence of the trauma of surgery. Changes in microbiota taxa were observed at a greater
extent in other vertebrates following BS than sham operations. However, it is important to note that
changes in the GI microbiota were also observed in sham operated animals, supporting the thought
that surgery itself may have short-term impacts on the GI microbiota. For ethical reasons, only a
few studies worldwide have performed sham surgery in humans [104–106]. However, the reported
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microbial changes detailed in the studies of Subgroup 2 (BS to sham operation comparisons in other
vertebrates) demonstrate some specificity of changes following BS.

Our third hypothesis looked at potential correlations between microbial patterns and psychological
states and behavior, supported by the growing literature on the gut–brain axis’ contribution, especially
with respect to mental illnesses and disturbed GI microbiota [8,20]. In the included studies, there were
only outcomes relating to food preferences/hedonic desires [55,58]. Sanmiguel et al. observed
a significant relationship between decreased preference for energy-dense food and an increased
abundance of Akkermansia spp. [58]. This aligns with the suggestion that Akkermansia spp. favor
a habitat with decreased food intake; however, the direction of this relationship remains unclear.
No outcomes relating GI microbiota to anxiety, depression, or other mental conditions were reported.
BS has previously been linked with post-operative reduction in depressive and stress symptoms in
long-term follow-up studies [107,108]. However, an association of psychological states with the GI
microbiota remains unclear from the included studies. This also allows the conclusion that changes
in psychological state after BS may play an indirect role (such as via altered eating behavior) rather
than directly on the GI microbiota. Nevertheless, the potential remains for GI microbiota changes to
influence psychological states and behaviors in the context of BS, mediated by the gut–brain axis and
reflected in the higher prevalence of anxiety and depression in patients with obesity.

Against our final hypothesis, the use of probiotic supplementation after BS was not superior over
placebo in the included studies. The impact of probiotics following BS was hypothesized to influence
the outcomes of BS and psychological factors due to the fact that some probiotics have demonstrated
effects on the CNS [20,109,110]. Out of four studies, three used strains of Lactobacillus spp. and
two used strains of Bifidobacterium spp. for their investigations. Specific strains of Lactobacillus spp.
and Bifidobacterium spp. may be capable of effecting mood, anxiety and cognition via the gut–brain
axis [19,109,111,112]; however, this remains unclear. Further research is needed to assess the impact
of specific probiotic strains on mood, stress resilience, and psychological states such as anxiety and
depression, and for in the context of BS in potential psychologically unstable patients [110].

5. Strengths and Limitations

This review involved a broad search for aspects of the GI microbiota in the context of BS, including
probiotics, to ensure that all possible literature for the connection between psychological factors and
microbiota after BS would be found. The specific approach taken with the subgroup analyses is a
special strength of this review. The novel approach to summarize usually very heterogenetic data,
made it possible to better summarize the current literature on changes in GI microbiota after BS through
pre-post comparisons in humans (Subgroup 1). This additionally allowed for the comparison with
vertebrate studies involving sham operated controls (Subgroup 2), to discuss which changes in the
GI microbiota may be specific or non-specific to BS. A high response rate from study authors was
achieved (46%), minimizing missing information.

However, there are also limitations to this work. Specifically, the inability to control for potential
confounding variables which may result in microbiota changes such as dietary choices, eating behaviors,
and other environmental factors in human studies. Another important consideration for microbiota
changes in the context of BS is the various protocols involved with the surgery, specifically the surgical
guidelines’ recommendation for prophylactic antibiotics preoperatively in GI surgeries, including BS,
which would be expected to influence the GI microbiota [113,114]. Additionally, the specific strains of
probiotics tested in the included studies were inconsistent and have not been shown to act on the CNS
in humans.
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6. Conclusions

In this review, the GI microbiota in the context of BS were investigated. BS was found to
be associated with changes in the diversity and taxonomy of the GI microbiota. The observed
dissimilarity in community structure, increases in the phylum Proteobacteria and Akkermansia spp.
within Verrucomicrobia after BS may be specific to BS in humans. Human probiotic studies found
probiotic interventions not to be superior to placebo for QoL scores or body weight loss after BS. It was
also hoped to investigate whether outcomes relating to psychology and behaviors were correlated to
GI microbiota changes, due to the influence of the gut–brain axis and the typically higher prevalence
of anxiety and depression in patients with obesity. Further research is required in this area, and also to
decipher whether the link between changes in GI microbiota and changes in psychological states after
BS are related directly, or indirectly, via the changes in eating behavior and diet observed after BS.
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DES Duodenal endoluminal barrier sleeve
DJB Duodenal–jejunal bypass (B-DJB: with biliopancreatic limb, J-DJB: with jejunectomy)
DS Duodenal switch
GG Glandular gastrectomy
GI Gastrointestinal
IQR Interquartile range
IT Ileal interposition
LSG Laparoscopic sleeve gastrectomy
LGB Laparoscopic gastric bypass
N.R. Not reported
QoL Quality of life
RYGB Roux-en-Y gastric bypass
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VBG Vertical banded gastroplasty
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