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Abstract

Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years

and widely used for phenotype prediction and pathway design. However, GSMNs for a spe-

cific organism reconstructed by different research groups usually produce inconsistent sim-

ulation results, which makes it difficult to use the GSMNs for precise optimal pathway

design. Therefore, it is necessary to compare and identify the discrepancies among net-

works and build a consensus metabolic network for an organism. Here we proposed a pro-

cess for systematic comparison of metabolic networks at pathway level. We compared four

published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading

to inconsistent pathway calculation results. The mistakes in the models were corrected

based on information from literature so that all the calculated synthesis and uptake path-

ways were the same. Subsequently we built a pathway-consensus model and then further

updated it with the latest genome annotation information to obtain modelPpuQY1140 for P.

putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We

found that even small errors in a GSMN could have great impacts on the calculated optimal

pathways and thus may lead to incorrect pathway design strategies. Careful investigation of

the calculated pathways during the metabolic network reconstruction process is essential

for building proper GSMNs for pathway design.

Introduction

Since the first GSMN was published in 1999 [1], more than 100 GSMNs have been recon-

structed and an increasing number of GSMNs will be available with the development of semi-
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automated technologies for high-throughput generation of GSMNs [2–4]. GSMNs have been

applied to the estimation of the growth rate, prediction of gene essentiality and computation of

the optimal pathways from a specific substrate to a target metabolite [5–7]. However, GSMNs

for a specific organism reconstructed by different research groups usually generate inconsis-

tent simulation results. For example, the optimal growth rates from two yeast models (Yeast 5

and Yeast 4) were calculated to be 0.09 h-1 and 0.17 h-1 respectively with the same glucose

input flux [8]. It is difficult to compare metabolic networks reconstructed by different groups

directly as they often tend to use different compound names for the same metabolite without

cross-links to standard chemical databases such as KEGG.

To address this problem, efforts have been made to create a consensus metabolic network

by merging GSMNs for the same organism. The first consensus metabolic network, Yeast 1,

was created from available yeast networks iMM904 and iLl672 by using a jamboree approach

[9]. The jamboree approach provided the opportunity to establish common standards for the

consensus reconstruction by using the same terminologies to describe the same chemical enti-

ties. With the successful achievement of the first consensus network, such a jamboree method

has been used to build consensus reconstruction of Salmonella Typhimurium LT2 [10] and

Human metabolic network Recon2 [11] which has been updated to Recon2.2 [12]. A drawback

of such community driven reconstruction of consensus GSMN is that it is very time consum-

ing and labor intensive, requiring many researchers (including those who reconstructed the

original models) to work together to determine the standard terms and processes. The lack of

strict quality control in the merging process could generate new problems in the network,

sometimes even making the network infeasible for constraint-based analysis due to the insuffi-

cient pathway connectivity such as in Yeast 1.0 [13].

One of the important applications of GSMNs is to design optimal pathways for the produc-

tion of biochemicals. Using methods like flux-balance analysis (FBA) [14,15], researchers can

calculate pathways with the maximal yield for a specific product in a metabolic network and

thus provide guidances for engineering the network to divert metabolic flows toward the opti-

mal pathway. Considering this application, we propose a new approach to compare recon-

structed GSMNs of a certain organism at pathway level and build a pathway-consensus

metabolic network. With this method, it is possible to identify and correct the errors leading to

discrepancies between different networks and subsequentely obtain consistent pathway analy-

sis results. We applied this method to build a pathway consensus metabolic network for Pseu-
domonas putida KT2440 based on four previously published metabolic network models,

iJN746 [16], iJP815 [17], PpuMBEL1071 [18] and iJP962 [19]. Actually iJP962 was recon-

structed using a so called “metabolic network reconciliation” process which compared the net-

works of closely related organisms to eliminate errors in a network. The “network

reconciliation” process is mainly based on genome level comparson and does not often include

the systematic pathway comparison step. Whereas our “pathway-consensus” approach is

focused on the pathway level comparison of different networks for the same organism and

thus is more suitable for building a high quality network useful for reliable pathway design.

The original analysis results from the four P. putida models were quite different. iJP815 and

iJP962 were reconstructed by the same research group and had smaller differences in the

growth yield (92.4 gDCW�molGlc-1 vs 101.1 gDCW�molGlc-1) [19]. By comparing a series of

calculated pathways from the four models, errors causing discrepancies were found out and

then corrected based on information from literature and databases [20,21]. As the result of

pathway comparison, a pathway consensus metabolic model was developed for P. putida
KT2440 and further improved with updated genome annotation information to obtain model

PpuQY1140 for P. putida KT2440. Compared with previous models, the simulation results

from the new model are in better agreement with published experimental data.

Pathway-Consensus Network of Pseudomonas putida KT2440
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Results

Workflow of the reconstruction process

The pathway-consensus metabolic network reconstruction was bulit by taking the systematic

comparison of published Pseudomonas putida KT2440 models through a process summarized

in Fig 1. The process includes: (1) processing the models to make simulated conditions and

respiratory chain efficiency consistent in the four models; (2) consolidating the biomass reac-

tion equation according to the measured biomass elemental composition and the mass balance

Fig 1. The workflow of the pathway-consensus metabolic network reconstruction of Pseudomonas

putida KT2440.

doi:10.1371/journal.pone.0169437.g001
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constraints; (3) comparing the biosynthesis pathways and substrate utilization pathways from

the models and obtaining consensus pathways by correcting errors; (4) model improvement

through genome reannotation. The result of this process is a pathway-consensus model Ppu-

QY1140for P. putida KT2440.

Simulation results for the four GSMNs of P. putida KT2440

Four metabolic networks of P. putida KT2440, iJN746, iJP815, PpuMBEL1071 and iJP962,

have been reconstructed by three research groups. The optimal growth rate can be calculated

by performing FBA with the biomass production reaction as objective function. The optimal

ATP production rate can be calculated by using the ATP maintenance reaction as objective

function [14]. The simulated conditions containing exchange reaction boundaries and mainte-

nance parameters (growth and non-growth related maintenance requirement for ATP) were

set the same before calculation (see Materials and Methods for further details). The calculated

optimal growth rates and ATP production rates of the four models were shown in Table 1.

It can be seen that there was nearly a two-fold difference between the highest and lowest

growth rates (0.909 h-1 compared to 0.46 h-1). More surprisingly, the obtained ATP produc-

tion rate from PpuMBEL1071 was 999999 mmol�gDCW-1�h-1 which was actually the upper

boundary of the reactions in that model. The ATP production rate remained constant at the

value of the upper boundary even when we set glucose uptake rate to zero. This indicated

that ATP was generated infinitely in PpuMBEL1071 without substrate consumption, which

was obviously unreasonable for a biological network model. ATP plays an important role in

cell metabolism as energy carrier. The generation and consumption of most metabolites are

linked with energy metabolism, and thus mistakes in ATP production may also lead to incor-

rect calculation results for pathways to other metabolites. Therefore, we first analyzed the

optimal ATP production pathways from the four models to identify the mistakes and correct

them.

From the calculated optimal ATP generation pathways in PpuMBEL1071 we found that

there were two incorrect NAD(P)H generation loops as shown in Fig 2. NADH can be gener-

ated unlimitedly from these two loops without consuming any substrate and eventually pro-

duced unlimited ATP through respiratory chain reactions. By checking the corresponding

reactions in KEGG [20] and MetaCyc [21] databases we found that the reaction equations for

reactions R0500 (Eq 1) and R0132 (Eq 2) in the model were wrong. The NAD(P)/NAD(P)H

pair were placed on the wrong sides of the reaction equations. These reactions should be

Table 1. The optimal growth rates and ATP production rates calculated for the four published models of P. putida KT2440.

iJN746 iJP815 PpuMBEL1071 iJP962

Growth rate (h-1) 0.909a 0.703a 0.460a 0.742a

0.988b 0.783b 0.382b 0.748b

0.850c 0.781c 0.783c 0.812c

0.814d 0.814d 0.814d 0.814d

ATP production rate (mmol�gDW-1�h-1) 217.5a 192.5a 999999a 237.5a

237.5b 237.5b 237.5b 237.5b

a Results from the four original models. The maximal glucose uptake rates were set the same at 10 mmol�gDCW-1�h-1.
b Using the same set of respiratory chain reactions.
c Using the same biomass growth reaction equation.
d Values calculated from the updated models where the precursor synthetic pathways were in consistence.

doi:10.1371/journal.pone.0169437.t001
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corrected as Eqs 3 and 4, respectively.

L� erthro� 4� hydroxyglutamateþ NADþ $

L� 4� hydroxyglutamate semialdehydeþNADH þHþ
ð1Þ

3� Oxopropionyl� CoAþ O2 þNADPH $ Malonyl� CoAþ NADP
þ ð2Þ

L� erthro� 4� hydroxyglutamateþNADH þHþ $

L� 4� hydroxyglutamate semialdehydeþ NADþ þH2O
ð3Þ

3� Oxopropionyl� CoAþNADPþ þH2O$ Malonyl� CoAþNADPHþH
þ ð4Þ

After correcting the two reactions, there was no NAD(P)H production from the two loops and

the optimal ATP production rate of PpuMBEL1071 was changed to a more reasonable value of

225 mmol�gDCW-1�h-1.

In view of the incorrect reaction loops caused by incorrect reaction equations, we further

investigated if this kind of loops can be detected by using the method proposed by Gevorgyan

et al [22] for checking stoichiometric inconsistencies in a network. By using their algorithm we

detected 668 unconserved metabolites and the corresponding reaction sets causing the incon-

sistencies in PpuMBEL1071. For example, CoA was identified as an unconserved metabolite

caused by the inconsistent reaction set shown in Fig 3. The overall reaction for this reaction set

is “CoA!Ø”, a net consumption of CoA. The error was caused by the wrong reaction equation

for R0156 where CoA should also be produced. Both the stoichiometric inconsistencies and

the incorrect NAD(P)H generation loops were caused by the non-balanced reaction equations.

However, we found that the incorrect reaction loops could not be discovered by the algorithms

for checking stoichiometric inconsistencies. The overall reaction for a stoichiometric inconsis-

tent reaction set is always the net production or consumption of a metabolite (defined as

unconserved). Whereas the overall reaction for an incorrect reaction loop is the net conversion

Fig 2. Incorrect reaction loops for unlimited NAD(P)H generation in PpuMBEL1071. (A) Incorrect reaction R0500 led to a loop

to produce NADH without consuming any substrates. (B) Incorrect reaction R0132 led to a loop to produce NADPH and O2. P3H5C,

L-1-Pyrroline-3-hydroxy-5-carboxylate; E4HGLU, L-erythro-4-Hydroxyglutamate; HGLUSA, L-4-Hydroxyglutamate semialdehyde;

MALCOA, Malonyl-CoA; OPCOA, 3-Oxopropionyl-CoA; HPCOA, 3-Hydroxypropionyl-CoA; PPCOA, Propanoyl-CoA; MCIT,

2-Methylcitrate; MICIT, cis-2-Methylaconitate; PYR, Pyruvate; AcCOA, Acetyl-CoA; SUCC, Succinate; FUM, Fumarate; MAL, (S)-

Malate; OA, Oxaloacetate.

doi:10.1371/journal.pone.0169437.g002
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of NAD(P) to NAD(P)H. Both NAD(P) and NAD(P)H were not identified as unconserved.

Therefore the incorrect reaction loops and the stoichiometric inconsistencies are two different

kinds of errors in the network and both need to be corrected. We also investigated the stoichio-

metric inconsistencies in other models and found that only iJP962 did not contain such errors.

Therefore we chose iJP962 as the reference to build a pathway-consensus model.

Consistency of respiratory chain efficiency

Correcting the wrong reaction equations solved the problem of unlimited ATP production.

However, the optimal ATP production rates from the four models were still different. ATP is

mainly produced through the oxidative phosphorylation process in P. putida KT2440 [23].

Therefore we further investigated the electron transport chain reactions in the four models

(Fig 4 and Table 2). Differences existed in the completeness of respiratory chain and the num-

ber of protons pumped out from an electron transfer reaction in the four models. For instance,

the ferricytochrome mediated electron transfer reactions were missing in iJP815. Whereas in

iJN746 and PpuMBEL1071, only NADH but not FADH2 could be oxidized through the respi-

ratory chain (Fig 4).

In order to clearly recognize the efficiency of the respiratory chains, we combined a series

of respiratory chain reactions into one overall reaction for each model to get the P/O ratio. It

can be seen from Table 3 that the ATP production efficiencies (represented by P/O ratios) are

quite different in the four models and this may explain the differences in the optimal ATP pro-

duction rates. The respiratory chains from iJP962 are the most complete with the highest effi-

ciency and agree well with the actual respiratory chain in P. putida KT2440 [23]. By replacing

the respiratory chain reactions in other models by those in iJP962 we obtained the same opti-

mal ATP production rates of 237.5 mmol�gDCW-1�h-1 for the four models.

Consolidate the biomass reaction equation

After revising the models to obtain consistent ATP production rates, we further calculated the

optimal growth rates of the four models (values marked with ‘b’ in Table 1) and found that

Fig 3. An unconserved reaction sets leading to a net consumption of CoA (defined as an

unconserved metabolite) in PpuMBEL1071.

doi:10.1371/journal.pone.0169437.g003
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they were still quite different. To find the reasons, we investigated the biomass production

equations in the four models (S1 Table). The biomass reaction can normally be written in a

format as Eq 5

X

i

SRi Ri ¼ Biomassþ
X

j

SBj Bj ð5Þ

Where SRi is the stoichiometric coefficient of metabolite Ri, that is, the growth requirement of

Fig 4. The respiratory chain reactions in the four models. ‘+’ shows that the complex exists in the model. The numbers of protons

pumped from each complex (the value of X and Y) were summarized in Table 2.

doi:10.1371/journal.pone.0169437.g004

Table 2. The respiratory chain reactions in the four models.

Complexes Respiration reactions iJN746 iJP815 1071 iJP962

Complex I NADH+Q+X1H_c!NAD+Y1H_e

+ QH2

X1 = 4,Y1 = 3 (X1 = 1,

Y1 = 0)

X1 = 4.5, Y1 = 3.5 (X1 =

1, Y1 = 0)

X1 = 0, Y1 = 3 (X1 = 0,

Y1 = 0)

X1 = 4.5, Y1 = 3.5

Complex II FADH2+Q+XH_c!FAD

+ QH2+YH_e

- - X = 0,Y = 0 - - X = 0,Y = 0

Alternative

Oxidase

0.5O2+X2H_c+QH2!Q+Y2H_e

+H2O

X2 = 4, Y2 = 4 (X2 = 2,

Y2 = 2)

X2 = 2.5, Y2 = 2.5 X2 = 0, Y2 = 4 (X2 = 0,

Y2 = 2)

X2 = 2.5, Y2 = 2.5 (X2 =

2, Y2 = 2)

Complex III QH2+2Fic+X3H_c!Q+Y3H_e

+2Foc

X3 = 2, Y3 = 2 - - X3 = 0, Y3 = 0 X3 = 0, Y3 = 2

Complex IV 0.5O2+X4H_c+2Foc!2Fic

+Y4H_e+H2O

X4 = 0, Y4 = 0 - - X4 = 0, Y4 = 0 X4 = 4, Y4 = 2 (X4 = 3, Y4

= 1)

Complex V PI+Y5H_e+ATP!ATP+X5H_c

+H2O

X5 = 3, Y5 = 4 X5 = 3, Y5 = 4 X5 = 3, Y5 = 4 X5 = 3, Y5 = 4

Q: Ubiquinone-8, QH2: Ubiquinol-8, Fic: Ferricytochrome c, Foc: Ferrocytochrome c

‘- -’: the complex and reaction did not appear in the model

‘()’: if there are more than one respiration chain reactions for the same complex, the one with smaller coefficients is placed in parenthesis.

doi:10.1371/journal.pone.0169437.t002
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metabolite Ri (often in mmol) for the production of 1 gram dry cell weight. SBi is the stoichio-

metric coefficient of by-product Bj.

As all coefficients are determined based on 1 gram dry cell weight, the biomass reaction

should satisfy the mass balance constraint that can be written as Eq 6

ð
X

i

SRi M
R
i �

X

j

SBj M
B
j Þ=1000 ¼ 1 ðg DCWÞ ð6Þ

Where MRi , M
B
j are the molecular mass of Ri and Bj, respectively. However, none of the

growth reactions in the four models satisfied this constraint (S1 Table). Especially for

PpuMBEL1071, the coefficient values in the biomass production reaction are so high that

2.78 g instead of 1 g dry cell weight should be produced to satisfy mass balance. This may

explain why the optimal growth rate of PpuMBEL1071 was far less than those of the other

three models (Table 1).

In addition to the mass balance constraint, the coefficients should also satisfy the elemental

balance, namely to match the experimentally measured C, H, O, N, P contents in the biomass.

According to the experiment conducted by Passman and Jones, the biomass element composi-

tion of P. putida was determined to be CH1.69O0.344N0.235P0.0133 [24]. Therefore the elemental

balance equations can be mathematically depicted as Eqs 7–10.

ð
X

i

SRi H
R
i �

X

j

SBj H
B
j Þ=A ¼ 1:69 ð7Þ

ð
X

i

SRi O
R
i �

X

j

SBj O
B
j Þ=A ¼ 0:344 ð8Þ

ð
X

i

SRi N
R
i �

X

j

SBj N
B
j Þ=A ¼ 0:235 ð9Þ

ð
X

i

SRi P
R
i �

X

j

SBj P
B
j Þ=A ¼ 0:0133 ð10Þ

A ¼
X

i

SRi C
R
i �

X

j

SBj C
B
j

where CRi and CBj (or HRi and HBj , O
R
i and OBj , N

R
i and NBj , P

R
i and PBj ) are the number of C (or

H, O, N, P) atoms in Ri, Bj. However, the biomass reactions of the four models were not in

conformity with the elemental balance. To address this problem, we manually adjusted the

precursors’ coefficients mainly based on the values in the biomass reaction equation of iJP962

to satisfy the mass balance and elemental balance (Eqs 6–10) and obtained a new biomass

Table 3. The overall respiratory chain reactions of the four models.

Model Combined overall reaction P/O ratio

iJN746 4NADH+11H+2O2+7ADP+7PI!7ATP+4NAD+11H2O 1.75

iJP815 2NADH+5H+O2+3ADP+3PI!3ATP+2NAD+5H2O 1.5

8FADH2+5H+4O2+5ADP+5PI!5ATP+8FAD+13H2O 0.625

iJP962 8NADH+23H+4O2+15ADP+15PI!15ATP+8NAD+23H2O 1.85

FADH2+H+0.5O2+ADP+PI!ATP+FAD+H2O 1.0

PpuMBEL1071 4NADH+2O2+7ADP+7PI!7ATP+4NAD 1.75

doi:10.1371/journal.pone.0169437.t003
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reaction (S2 Table) to replace those in the original models. The missing synthesis pathways of

precursors and corresponding genes which existed in iJP962 but not in the others were also

added to the corresponding models. For example, the glycogen synthetic pathway and related

genes which were missing in iJN746 were added into the model. However, even after using the

same biomass reaction the calculated optimal growth rates from the four models were still dif-

ferent (values marked ‘c’ in Table 1), implying other inconsistencies in the synthesis pathways

for the biomass building blocks.

Compare pathways for biomass precursors production

We calculated the optimal production rates for all 47 biomass precursors by adding a demand

reaction [25,26] for each biomass precursor and found that many of them were different in the

four models (S3 Table, results for 20 amino acids were also shown in Table 4). Actually only

for 2 precursors, L-valine and L-alanine, the optimal rates were the same in all four models.

We carefully examined the optimal precursor synthesis pathways one by one in the four mod-

els. This cross examination enables us to find the causes for the differences which were

described in detail below.

1. Errors in reaction direction and reaction reversibility. For example, the optimal cys-

teine production rates in iJN746, iJP815, PpuMBEL1071 and iJP962 is 13.33, 11.07, 10.547

and 11.07 mmol�gDCW-1�h-1, respectively and the optimal pathways were shown in Fig 5.

Only the pathway in PpuMBEL1071 was the same with the widely recognized cysteine syn-

thesis pathway in bacteria where cysteine is synthesized from serine through acetylation

and sulfide incorporation [27]. The pathways in iJP815 and iJP962 were the same where

cysteine was produced directly from pyruvate by the reaction IR04850 (Eq 11). However,

reaction IR04850 should be irreversible and can only be carried out on the direction toward

desulphonation [28]. A similar problem existed for R_SER_AL (Eq 12) in iJN746 where

Table 4. The calculated optimal rates of 20 amino acids from the models.

iJN746 iJP815 PpuMBEL1071 iJP962 Pathway-consensus model

L-Valine 10 10 10 10 10

L-Asparagine 17.39 15 13.33 15 15.12

L-Tryptophan 4.612 4.278 4.289 4.278 4.279

L-Alanine 20 20 20 20 20

L-Methionine 10 6.316 6.764 6.493 6.679

Glycine 40 30 31.62 30 28.24

L-Histidine 9.902 8.297 7.5 8.297 8.297

L-Arginine 9.739 8.986 8 8.342 8.986

L-Lysine 8.404 7.882 7.735 7.882 7.882

L-Phenylalanine 5.295 5.279 5.506 5.279 5.283

L-Cysteine 13.33 11.07 10.55 11.07 10.55

L-Proline 10.15 10.09 10 10.09 10.10

L-Aspartate 18.79 15 13.33 15 18.79

L-Glutamine 11.98 11.06 10 11.06 11.18

L-Serine 24 20 20 20 20

L-Leucine 8 7.398 6.667 7.398 7.482

D-Glutamate 12.58 11.35 10 11.35 11.51

L-Tyrosine 5.523 5.504 5.506 5.504 5.506

L-Threonine 15 12.83 13.33 12.83 12.83

L-Isoleucine 8 7.411 7.767 7.411 7.411

doi:10.1371/journal.pone.0169437.t004
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serine was produced directly from pyruvate. Actually serine is mainly synthesized from

3-phosphoglycerate in bacteria [29] and R_SER_AL can only be carried out toward

pyruvate production under physiological conditions. Another reversibility problem in

reaction R_ACSr (Eq 13) in iJN746 led to a cycle for ATP net generation without consum-

ing any substrates. This thermodynamically infeasible pathway may explain the higher

Fig 5. Cysteine synthesis pathway in the four models. Only the pathway in PpuMBEL1071 was right. Green, blue and purple

arrows depict reactions in iJN746, iJP815 (iJP962) and PpuMBEL1071 respectively. Wrong directions of R_SER_AL and R_ACSr

(in iJN746), IR04850 (in iJP815 and iJP962) led to wrong cysteine synthesis pathways. KDPG: 2-Dehydro-3-deoxy-6-phospho-D-

gluconate.

doi:10.1371/journal.pone.0169437.g005

Table 5. Summary of the number of errors corrected for the pathway-consensus processa.

iJN746 iJP815 PpuMBEL1071 iJP962

Errors in reaction direction 12 (1) 11 (2) 8 (3) 7 (2)

Errors in reaction equation 6 (3) 7 (0) 15 (0) 5 (0)

Missing reactions 17 (6) 20 (20) 30 (18) 16 (20)

a: the numbers shown in parentheses indicate the number of errors corrected in the substrate utilization pathway consensus step.

doi:10.1371/journal.pone.0169437.t005
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production rates of cysteine and many other precursors calculated for iJN746.

PyruvateþHydrogen sulfideþNH4 ! CysteineþH2O ð11Þ

Serine$ Hþ þNH3 þ Pyruvate ð12Þ

Acetateþ ATPþ CoA$ Acetyl� CoAþ AMPþ PPi ð13Þ

2. Missing reactions. In above-mentioned example, the energy consumption for sulfate

transport and metabolism was different in the four models (Fig 5). Two sulfate-activating

enzymes (ATP-sulfurylase and APS kinase) exist in P. putida to catalyze the activation of inor-

ganic sulfate to APS (Adenylyl sulfate) and then to PAPS (adenosine-5-phosphosulfate) [30].

PAPS is converted into sulfite with NADPH consumption. In iJN746, APS could be converted

to sulfite directly without PAPS generation and ATP consumption. Therefore the production

rates of sulfur-containing metabolites such as L-cysteine and L-methionine in iJN746 were

higher than the other three models. The reaction from APS to PAPS and corresponding genes

should be added into the model.

3. Errors in reaction equations. As described in the ATP production pathway analysis

section, incorrect reaction equation led to unlimited ATP production. Here by investigating

the precursor synthesis pathways, we found more mistakes in reaction equations in all four

models. For example in PpuMBEL1071 the reaction equation of R0749 was Folate + NADPH

! Tetrahydrofolate + NADP+. The numbers of reactions corrected for all the three types of

errors in the four models were shown in Table 5 and the detailed information of model correc-

tion were shown in S1 File. With model revision based on pathway level comparison, the opti-

mal production rates for all 47 biomass precursors were the same in the four models (Table 4

shows the consensus values for 20 amino acids and the complete list can be seen in S3 Table)

and the optimal growth rates were also exactly the same as 0.814 h-1. The calculated sum of

squared errors indicated that the results from iJP815 and iJP962 were close to those from the

consensus network while iJN746 and PpuMBEL1071 had more errors in the model.

Analysis of substrate utilization pathways

In all the above analysis glucose was used as the sole carbon source. Whereas P. putida KT2440

is well known for its ability to grow on many amino acids and organics acids as carbon source

[31,32]. Correspondingly in the existing metabolic network models a large number of reac-

tions were dedicated for the utilization of various substrates. Therefore it is also important to

compare the calculated pathways for substrate utilization in the four models. We compared

the calculated aerobic growth capabilities of the four models using 48 different carbon sources

known to be used by P. putida [17,31,33–36] (S4 Table). We found that 11 out of the 48 sub-

strates could not be utilized in at least one model (Fig 6). For these substrates, we took the

uptake pathways in other models as references to add new reactions and thus enable their utili-

zation in the corresponding models. For example, as already mentioned in the original publi-

cation, alanine could not be used as a carbon source in iJN746 [16]. By comparing with the

alanine uptake pathways in other models we found that this was due to the lack of transport

reaction (L-alanine_p$ L-alanine_c) which transfer alanine from periplasm to cytoplasm.

After adding this reaction, alanine could be used as a carbon source in iJN746. In a similar way

we added 30 reactions and their corresponding genes to the four models (S2 File) and finally

all 48 substrates could be used in four models.

Pathway-Consensus Network of Pseudomonas putida KT2440
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However, there are still quantitative differences on the optimal growth rates calculated

from different models. Actually we found that for 36 substrates the growth rate calculated with

PpuMBEL1071 was higher than those obtained with other models. By investigating the path-

ways we revealed that the main reason was the incorrect reversibilty information of the reac-

tion ED_edd (Eq 14) catalyzed by phosphogluconate dehydratase and reaction ED_eda (Eq

15) catalyzed by 2-dehydro-3-deoxy-phosphogluconate aldolase.

6� Phospho� D� gluconate$ KDPGþH2O

ðKDPG : 2� Dehydro� 3� deoxy� D� gluconate� 6� phosphateÞ
ð14Þ

KDPG$ D� glyceraldehyde 3� phosphateþ Pyruvate ð15Þ

The two reactions were mistakenly set to be reversible and thus enabled the formation of

D-Ribulose 5-phosphate by the opposite direction of Entner-Doudoroff (ED) pathway (G3P

+ Pyr! 6-Phospho-D-gluconate!D-ribulose 5-phosphate) which consumed less energy

for some substrates rather than pentose phosphate (PP) pathway. We corrected this error

and recalculated the growth rates in PpuMBEL1071 for further comparison. The process

was repeated untill the growth rates from all 48 substrates were the same in all four models.

The number of added and modified reactions during this process were also shown in

Table 5. The detailed information about corrected reactions for the four models can be seen

in S2 File.

Fig 6. Utilization of 48 substrates in the four models for P. putida KT2440. 36 substrates could be utilized

in the four original models. Phenylacetate, toluene, gallate and choline could only be utilized in iJN746.

Putrescine could be utilized in iJP815 and iJP962. 2dhglcn: 2-Dehydro-D-gluconate, 4abut:

4-Aminobutanoate, Confrl:Conifery-alcohol.

doi:10.1371/journal.pone.0169437.g006
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Four updated models of iJN746, iJP815, PpuMBEL1071 and iJP962 with more reactions

and genes were obtained (S3–S6 Files). The basic information about the four original and

updated pathway-consensus models were shown in Table 6. The updated version of iJP962was

chosen for further improvement because of the following reasons: (1) it had the highest num-

ber of genes; (2) iJP962 was the original model with the best quality compared with the other

three models.

Model improvement through genome reannotation

The updated iJP962 model contains more genes than the original model but there are still

around 80 metabolic genes existing in other models but not in the new model. Furthermore,

many new enzyme genes have been found since the publication of the genome of P. putida
KT2440 in 2002 [37]. To make the network more complete, we further extended the updated

network by integrating the latest genome annotation information. We downloaded the genome

of P. putida KT2440 from NCBI and submitted it to the RAST annotation server [38] for rean-

notation. We then carefully investigated the newly annotated enzyme genes (with an EC num-

ber) and found the proper reactions from databases like KEGG and MetaCyc to be added to the

network (S7 File). We also compared the new reactions with the existing reactions in the model

to avoid repeat reaction with different metabolite names. For example, PP_1806 was a new gene

annotated as arabinose 5-phosphate isomerase. This enzymatic function was also encoded by

gene PP_0957 which was already in the network. In this case we just added a new gene-reaction

relationship between PP_1806 and the arabinose 5-phosphate isomerase catalyzed reaction

RR03692 rather than added a new reaction. The reaction equations of the new reactions from

KEGG/MetaCyc might also need to be changed so that the metabolite names are in consistent

with those already in the network. Otherwise the new reactions could be disconnected from the

main network. We also found some wrong gene-reaction relationships in the model during the

re-annotation process. For example, the pyruvate carboxylation reaction RR00181 (ATP+-

Pyruvate+HCO3
-1!H+ + Pi + ADP + Oxaloacetate) was linked with an nonexist gene

PP_5437 in the updated iJP962 model. From the annotation information we found the right

gene should be PP_5347 annotated as pyruvate carboxyl transferase subunit A (EC 6.4.1.1).

Altogether we added 155 genes and 74 reactions. The final pathway-consensus metabolic model

PpuQY1140 contains 1140 genes, 1171 reactions and 1104 metabolites (Table 7). PpuQY1140

in SBML file format is available in S8 File.

Table 7. Summary of PpuQY1140 model.

Total reactions (Gene associated) 1171 (979)

Biochemical reactions 942

Transport reactions 118

Exchange reactions 111

Metabolites 1104

doi:10.1371/journal.pone.0169437.t007

Table 6. Summary statistics of the updated pathway-consensus models and the original models (in parentheses).

iJN746 iJP815 PpuMBEL1071 iJP962

Genes 772 (746) 859 (815) 924 (900) 985 (962)

Reactions 1005 (950) 927 (877) 1117 (1071) 993 (973)

Metabolites 956 (911) 918 (886) 1062 (1044) 1008 (990)

doi:10.1371/journal.pone.0169437.t006
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Model validation

To test the accuracy of the updated model PpuQY1140, we compared the simulated growth

rates from different models with the experimentally measured values reported by del Castillo T

et al [39]. They measured growth rates on M9 minimal medium with glucose of the wild type

strain and four mutant stains (deletion of four genes gcd, glk, gnuK, kguD in 6-phosphogluco-

nate synthesis pathway). The results shown in Fig 7A (detailed values in S5 Table) indicated

that the simulated growth rates from the consensus model were very close to the experimental

results except for the gnuK deletion strain which grew even faster than the wild type strain.

This phenomenon might be caused by complex regulatory mechanisms and thus can not be

explained by metabolic network analysis alone. Generally the simulation results from the con-

sensus model are also better than those from other models, especially iJN746 and PpuM-

BEL1071. This is in agreement with the biomass precusor synthesis pathway simulation results

as shown in Table 4. Actually the simulated growth rates from the consensus model are quite

similar to those from iJN815 even though the calculated optimal pathways for many metabo-

lites are different (e.g. 9 of 20 amino acids have different optimal synthesis rates in Table 4).

Fig 7. Experimentally measured and in silico predicted growth rates of P. putida KT2440 and the mutant

strains. (A) Growth rates on glucose M9 medium. (B) Growth rates on toluene M9 medium.

doi:10.1371/journal.pone.0169437.g007
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This reflects the fact that accurate prediction of growth rates can not gurantee a correct meta-

bolic model. Careful investigation at pathway level are necessary for high quality network

reconstruction, especially when the model will be used for the design of optimal pathways for

the production of biochemicals. In addition to growth characteristics of P. putida KT2440 and

its deficient mutants growing on glucose minimal medium, the growth rates of wild type P.

putida KT2440 and two deficient mutants (gcd and glk) growing on toluene M9 minimal

medium were also tested by del Castillo T et al [40]. Only PpuQY1028 and iJN746 can use tolu-

ene as a single carbon source for growth (S4 Table) and thus we only calculated the growth

rates of the two deficient mutants for these two models (Fig 7B and S5 Table). The results

shown in Fig 7B indicated that the simulated growth rates of PpuMBEL1071 were in better

agreement with the experimental results than those of iJN746.

Discussion

We proposed a novel pathway-consensus process for identifying and solving the discrepancies

between metabolic network reconstructions for the same organism by pathway level compari-

son. By applying this approach to four GSMNs of P. putida KT2440, all synthesis pathways for

biomass building blocks and substrate uptake pathways were made consensus. Comparative

analysis of the models revealed that small errors in reaction equations and reaction reversibil-

ity could greatly affect the pathway calculation results, sometimes even led to infeasible path-

ways such as the unlimited NADH generation loops. Therefore the pathway examination step

should be included in the metabolic network reconstruction process to make sure that the

quality of network is high enough for reliable pathway design.

This pathway-consensus approach should be regarded as complementary to the network

reconciliation approach proposed by Oberhardt et al [19]. The network reconciliation

approach mainly use the networks of closely related organisms as references for the recon-

struction and consolidation of new networks. It improves the network quality by cross-organ-

ism comparison but the comparison is mainly at gene/reaction level rather than at pathway

level. Therefore even though the network quality was improved by the network reconciliation

process (e.g. iJP962), the calculated pathways from it may still be wrong as described in the

paper (Table 4, Fig 5 etc). The pathway-consensus approach adds another level of quality

improvement to the network reconciliation process to make sure all the calculated pathways

are biologically reasonable and thermodynamically feasible. The pathway-consensus approach

is time-consuming due to the requirement of manual comparison and examination of many

calculated pathways. Whereas the network reconciliation can somehow be automated (e.g.

transfer the reaction information from one organism to another based on sequence similarity).

Therefore, for high quality network reconstruction, one may first use the reconciliation

approach to add more reactions and then apply the pathway-consensus approach for reliable

pathway design. It should be noted that though the pathway-consensus approach is mainly

used for comparing networks of the same organism, it can also be extended for comparing net-

works of different organisms for pathway level consolidation and uncovering the true pathway

differences between networks.

Materials and Methods

Model preprocessing

Four P. putida GSMNs in SBML format were obtained from supplementary materials of the

publications [16–19]. The exchange reactions that used to define in silico medium conditions

and their boundary values were shown in S6 Table. Here the growth was simulated in M9 min-

imal medium with glucose as the carbon source and the maximal glucose uptake rates was set
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at 10 mmol�gDCW-1�h-1. The uptake rates of nitrogen source, oxygen, phosphate and sulfur

were not constrained. Exchange reactions were added to PpuMBEL1071 because there were

no reactions for the utilization of different substrates and nutritions in this model. The

growth-associated and non-growth-associated energy maintenance (GAM) and (NGAM) [41]

parameters will affect the calculated optimal growth rate and they were different in four mod-

els (S7 Table). We preset them to the same values as those in iJP962.

Flux balance analysis

Flux-balance analysis (FBA) [13] is a widely used approach for analysis of genome-scale meta-

bolic networks. The COBRA Toolbox 2.0 [42], a MATLAB package, was used for FBA analysis.

Linear optimizations (LP) were performed utilizing the free CPLEX (IBM, Armonk, NY, USA)

solver. Loopless-FBA option was selected to obtain optimal metabolic pathways without loops

that have no net consumption or production of any metabolite.

Overall respiratory chain reaction and P/O ratio

The P/O ration represents the number of ATP molecules (P) formed from per oxygen atom

(O) [27]. Here the P/O was obtained by combining a series of respiratory chain reactions into

one overall reaction for each model. In this process, the most efficient respiratory chain was

chosen, namely, the reactions in Table 2 which can produce more H_e were used to get the

overall reaction. For example, in iJP962, the respiratory chain Eqs 16–19 was the most efficient

respiratory chain for NADH oxidation.

NADHþQþ 4:5H c ! NAD þ 3:5H eþ QH2 ð16Þ

QH2 þ 2Fic! Qþ 2H eþ 2Foc ð17Þ

0:5O2 þ 4H cþ 2Foc! 2Ficþ 2H eþH2O ð18Þ

PIþ 4H eþ ADP! ATP þ 3H cþH2O ð19Þ

The four reactions were combined to get the overall reaction (Eq 20) by eliminating the

intermediates. From this overall reaction we can see that the P/O is 15/8 (15 ATP produced

from 8 oxygen atoms).

8NADH þ 4O2 þ 23H cþ 15ADPþ 15PI! 8NAD þ 15ATP þ 23H2O ð20Þ
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