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Abstract

Voltage-gated calcium channels are the principal conduits for depolarization-mediated Ca2þ entry into excitable cells.
In this review, the biophysical properties of the relevant members of this family of channels, those that are present in
presynaptic terminals, will be discussed in relation to their function in mediating neurotransmitter release. Voltage-gated
calcium channels have properties that ensure they are specialized for particular roles, for example, differences in their
activation voltage threshold, their various kinetic properties, and their voltage-dependence of inactivation. All these
attributes play into the ability of the various voltage-gated calcium channels to participate in different patterns of
presynaptic vesicular release. These include synaptic transmission resulting from single action potentials, and longer-term
changes mediated by bursts or trains of action potentials, as well as release resulting from graded changes in membrane
potential in specialized sensory synapses.

Key words: calcium channel; biophysical properties; molecular properties; auxiliary subunit; presynaptic terminal; synapse;
voltage-gated; second messenger

Introduction

Voltage-gated calcium (CaV) channels are well understood to
function as the route for Ca2þ entry into cells, particularly ex-
citable cells, in response to depolarization. However, they
represent a family of channels with a variety of biophysical
properties that are exploited differentially to perform partic-
ular functions in presynaptic terminals. These varied roles
will be explored in relation to different types of synaptic bou-
tons. It is important to understand how the membrane po-
tential of the presynaptic terminal, which is dictated in part
by other channels present, as well as the intracellular free
Ca2þ, affects the dynamics of the CaV channel activity. Their
properties, in addition to the positional anchoring of the par-
ticular channels, dictate their ability to trigger and sustain
vesicular release.

Molecular properties of CaV channels

Distinct voltage-dependent Ca2þ conductances were first char-
acterized by electrophysiological and pharmacological means,
involving both whole-cell and single-channel recording. A num-
ber of different currents were identified,1–3 and termed L-type,4

T-type, or low voltage-activated,2,4 N-type,4 P-type,5 and R-type6

(Table 1). Subsequent molecular cloning identified three sub-
families of mammalian CaV channels: CaV1 with four members
(all of them giving rise to L-type currents), CaV2 with three
members (forming P/Q-, N-, and R-type currents), and CaV3 with
three members, all producing T-type currents (Table 1).

The pore-forming CaV a1 subunits all have very similar struc-
tures with 24 transmembrane segments separated into four
domains, each with a voltage-sensing and a pore module.16,17

The domains are joined by intracellular loops, and a long
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C-terminal tail. The CaV1 and CaV2 channel a1 subunits are each
associated with an auxiliary ß and a2d subunit. There are four ß
and four a2d subunits, which have divergent cellular expression
patterns, and confer some differing properties on the channels
with which they associate (see below). The CaV2 channels, par-
ticularly CaV2.1 and CaV2.2 are the main channels involved in
presynaptic function.

How the Biophysical Properties of CaV

Channels Can Shape Their Function

CaV channels have a variety of characteristics that will be con-
sidered in this review, including voltage-dependent, kinetic and
Ca2þ-dependent properties (Table 1, Figure 1). The complex in-
terplay between these elements determines the amount and
timing of Ca2þ entry that occurs during depolarization, for ex-
ample, during an action potential.

Voltage-dependent activation dictates the range of voltages
over which the channels will activate when depolarized, which,
for presynaptic terminals, is key to their excitability. Although
CaV channels were originally divided into low (CaV3) and high
(CaV1 and CaV2) voltage-activated channels, it is clear that there
is actually a continuum of activation ranges between these
channels, when they are compared under more physiological
conditions (Table 1). Such comparisons are nevertheless

difficult to equate with physiological activation of these chan-
nels in neurons, and more specifically in presynaptic terminals.
This is in part because the specific mix of channel splice iso-
forms10,20 and the associated auxiliary subunits associated with
each channel, which can strongly affect their biophysical prop-
erties (Table 1), are rarely known. It is also the case that studies
of the biophysical properties of CaV channels necessarily use
non-physiological conditions to isolate the calcium currents, to-
gether with a variety of divalent cation concentrations (Table 1),
which affect membrane charge screening to differing extents,
and therefore influence the voltage drop across the membrane
experienced by the channels.

Since voltage-dependent inactivation also occurs for most
CaV channels over a range of physiological voltages, which are
for the most part more negative than their activation range, the
resting potential will determine the proportion of channels
available to open. This availability will be different for each
channel type; furthermore, in the resting membrane potential
range of most neurons, or during small subthreshold depolariza-
tions, only T-type currents will have the ability to exhibit any
significant Ca2þ entry, termed the window current (Figure 1A, B).

Some CaV channels exhibit full voltage-dependent inactiva-
tion (Figure 1A, B), whereas for others it is incomplete
(Figure 1C), meaning that a small proportion of the channels re-
main available for extended periods at depolarized potentials.
This is particularly relevant to the functioning of the slowly

Figure 1. Idealized Voltage-Dependence of Activation and Inactivation for Selected CaV Channels. (A, B) Voltage-dependence of normalized activation (solid line)

and inactivation (dotted line) of approximated T (CaV3.1/2, blue) and L-type (CaV1.2, red) currents, with window currents shaded in A, and replotted in B. Gray bar in

B shows range of resting membrane potentials. Adapted from Fig 1b in Rossier.18 (C) Data for CaV1.3 digitized and replotted from Fig 5a,9 in which 15 mM Ca2þwas used

as charge carrier, which shifts activation about þ14 mV, compared to 2 mM Ca2þ (see Supplementary Table 3 in Azizan et al.9). (D) Normalized tail current data digitized

and replotted from Fig. 2d in Carbone and Lux,19 showing the relative inactivation rate of L-type and T-type Ca2þ currents recorded from embryonic chick sensory

neurons on repolarization to �80 mV in 5 mM Ca2þ. The time constants of the tail currents, fitted by single exponentials (dotted lines) were �4 ms (T-type) and �0.6 ms

(L-type).
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inactivating L-type channels, CaV1.3 and CaV1.4, in specific
presynaptic terminals in the inner ear and retina, respectively
(see below). In addition to voltage-dependent inactivation, a
second Ca2þ-dependent inactivation process is important for
some channels, and this may be triggered by global Ca2þ levels
or local Ca2þ entry.21 The activation and inactivation of particu-
lar channels, as well as other properties, can be influenced by
differential splicing,10,22–24 by auxiliary subunit composi-
tion,22,25,26 and by Ca2þ-binding protein interaction.21,27–29

Although the inactivation processes may be too slow to affect
Ca2þ entry during most presynaptic single action potentials,
they can strongly influence Ca2þ entry over the course of action
potential trains or bursts, and at specialized retinal and auditory
synapses in which continuous Ca2þ entry occurs, which is mod-
ulated in a graded manner by membrane potential (see, for ex-
ample, Ohn et al.30).

An important point that is infrequently considered is the de-
activation rate of channels in response to repolarization of the
membrane potential, since, together with activation rate, this
can dictate the amount of Ca2þ entering a presynaptic terminal,
as the extent of Ca2þ entry, particularly during a brief action po-
tential, will be strongly affected by the rate of CaV channel clos-
ing. T-type channels have a slower deactivation rate, which is
also voltage-dependent, being longer at more depolarized
potentials,19 whereas for CaV1 and CaV2 channels, the deactiva-
tion rate is much more rapid (Figure 1D). Another key feature is
the driving force for Ca2þ entry, dictated both by the Ca2þ con-
centration gradient and the membrane potential of the
terminal.

Skeletal muscle calcium channels (CaV1.1 or a1S) are un-
usual in that they act primarily as voltage sensors via me-
chanical coupling to open ryanodine receptors on the
sarcoplasmic reticulum, a direct process not involving Ca2þ

entry.31,32 Activation of the CaV1.1 ionic conductance is very
slow, relative to movement of its voltage sensors,32 and
therefore Ca2þ entry is negligible during a single action po-
tential. However, there is no clear evidence for significant
functional expression of CaV1.1 in neuronal tissue or for any
presynaptic function.

Multiple Roles of CaV Auxiliary Subunits

The ß and a2d auxiliary subunits of calcium channels in-
crease the transport of CaV channels to the plasma mem-
brane, and this is particularly relevant to ß subunits, which
prevent endoplasmic reticulum-associated proteasomal deg-
radation of the CaV a1 subunits.33,34 Subsequently, there is an
additional trafficking effect of a2d subunits.35 The auxiliary
subunits also confer a variety of properties on CaV1 and CaV2
channels; for example, certain splice variants of ß2 (ß2a and
ß2e) slow the inactivation of CaV1 and CaV2 channels and are
themselves membrane-associated.36–38 The a2d subunits gen-
erally increase CaV channel activation and inactivation
rates,39,40 but also reduce long-closed states.40 Our work has
shown that proteolytic cleavage of the pro-form of a2d into
mature a2d acts as a permissive molecular switch for the
function of CaV1 and 2 channels.41 It should also be noted
that although a2d proteins increase the trafficking of CaV

channels, they may also be able to traffic to the plasma
membrane and to presynaptic terminals alone41 in the ab-
sence of calcium channels,42 and can have additional roles
on synapse morphology.43–45

Some Distinct Membrane Properties of
Presynaptic Terminals

Presynaptic terminals generally have lower membrane excit-
ability than axons, since voltage-gated Naþ channels are often
more sparse than at nodes of Ranvier.46 In the presynaptic calyx
of Held, Naþ channels are absent from the calyx terminal
region, but concentrated in the final unmyelinated segment of
axon (heminode) leading up to the calyx.47 The concentration of
specific voltage-gated Kþ channels, particularly inactivating Kþ

channels, controls presynaptic excitability,46–49 such that
presynaptic action potentials are generally either brief,47 or at-
tenuated.46 Other channels that may be present presynaptically,
such as hyperpolarization-activated HCN channels, also have
the ability to affect resting membrane potential.50 Although a
recent study has highlighted that rapid Ca2þ entry can occur
through tetrodotoxin-sensitive Naþ channels, which are highly
concentrated in the axon initial segment,51 the sparsity of pre-
synaptic Naþ channels means it is unlikely that this route con-
tributes significantly to presynaptic Ca2þ entry.

The presynaptic membrane potential has been directly mea-
sured in several types of accessible terminals. For example, in
the calyx of Held excitatory terminal, it was about �80 mV, and
in the same study the resting intracellular Ca2þ was estimated
to be about 50 nM.52 In hippocampal mossy fiber boutons, the
resting membrane potential was between �60 and �85 mV,48

and in inhibitory Purkinje cell terminals in culture, the mem-
brane potential was �69 mV.46 At these potentials even CaV3
channels, if present, would show little tonic activity (Figure 1A).

Implications of Different Presynaptic CaV

Channel Compositions for Neurotransmitter
Release

From the foregoing discussion, it is clear that the membrane po-
tential of most presynaptic terminals is sufficiently negative
that the vast majority of CaV2 channels are closed, rather than
inactivated in the absence of ongoing activity. Thus, CaV2 chan-
nels are available to open upon action potential arrival. CaV2.1
channels generally activate at similar potentials to CaV2.2 in cell
lines (Table 1), but activate more rapidly.13 However in calyx of
Held synapses, presynaptic N-type ICa was found to activate � 8
mV more depolarized than P/Q type current,53 and this was also
seen in chromaffin cells.54 The third subtype of CaV2 channel
(CaV2.3) also known as R-type has a somewhat more hyperpo-
larized membrane potential14 (Table 1), potentially pointing to
differences in function.

For most synapses, CaV2.1 (P/Q)- and CaV2.2 (N)-type
channels are involved in varying proportions in synaptic
transmission, depending on the synapse in question and the
developmental stage. Broadly, CaV2.1 channels become of in-
creasing importance in many synapses as they develop, such
that they predominate in some mature neurons,53,55 and are
also more tightly associated with the release machinery55 (see
below). At some synapses, CaV2.3 channels, activated by smaller
depolarizations, play an important role, rarely as the main
channel involved in vesicular release, although this is the case
in habenula cholinergic neuron terminals in the interpeduncu-
lar nucleus.56 More often CaV2.3 has been found to underlie
other processes such as delayed or asynchronous release, for
example from small hippocampal boutons,57 and it also plays a
role in long-term potentiation.58

4 | FUNCTION, 2021, Vol. 2, No. 1



A key factor to consider is action potential duration, relative
to the rate of deactivation of the calcium channels, as much of
the Ca2þ entry mediating synchronous release will occur on the
repolarization phase of each brief action potential-mediated
presynaptic depolarization, which has the effect of increasing
the driving force for Ca2þ. In contrast, asynchronous release is
the term for release resulting from stochastic opening of indi-
vidual channels near the membrane potential, often after a
burst of action potentials,57,59 resulting in long-duration presyn-
aptic Ca2þ transients. Although it has been suggested that spon-
taneous openings of CaV2.3 channels may be in part responsible
for asynchronous release occurring after action potentials at
some synapses,57 CaV2.1 and CaV2.2 channels, particularly
when associated with the ß2a subunit which reduces their inac-
tivation, may also play a role.59 For example, at synapses
formed by different subtypes of hippocampal GABA-ergic inter-
neuron, CaV2.1 is involved in the mainly synchronous release
from fast-spiking parvalbumin interneurons, whereas CaV2.2
channels predominantly mediate GABA release from
cholecystokinin-containing interneurons, of which a much
greater fraction is asynchronous release.60

At some specialized sensory synapses, L-type channels,
particularly CaV1.3 and CaV1.4, are critical for function.
These mainly concern the auditory inner hair cells
(CaV1.3)61,62 and retinal photoreceptors and bipolar neurons
(CaV1.4),11,63,64 in which the presynaptic responses are
graded. These particular CaV1 channels have properties
suited to this function, in that they remain available at
depolarized potentials (Figure 1C).

Concerted Calcium Channel Involvement in
Release from Individual Synapses

As described above, both CaV2.1 and CaV2.2 calcium channels
are involved, to varying extents, in vesicular release at most in-
dividual central nervous system terminals, as judged by x-aga-
toxin IVA and x-conotoxin GVIA inhibition, respectively.65–67

However, the relative amount of block by each toxin cannot be
used directly to determine the prevalence of these channels, be-
cause of the nonlinear, approximately fourth power, relation-
ship between intracellular Ca2þ levels and neurotransmitter
release.68–72 There are several related forms of Ca2þ cooperativ-
ity that have been described, that between multiple CaV chan-
nels required to release a single vesicle73 and the number of
Ca2þ ions that must bind cooperatively to Ca2þ sensors, and the
cooperative action of those sensors, to trigger release of a
vesicle.74

Thus, there is generally found to be synergy between the
opening of multiple channels to reach the mM levels of Ca2þ at
the Ca2þ sensors whose occupancy mediates release of each
vesicle in an active zone. The numbers of channels involved
have been estimated to be very small in some synapses67,75–77,
to over 60 in immature calyx of Held synapses.78 In a few cases
a single channel has been found to be sufficient,75,76 although
the probability of release will be low.77 The number of channels
present in each active zone is much greater than those that
open in response to each action potential, because of the low
probability of opening of each channel and the stochastic na-
ture of channel openings, meaning they occur with a variable
delay following a depolarizing stimulus, which can also lead to
failure of exocytosis.

Anchoring of Calcium Channels in Presynaptic
Active Zones is Key to Their Differing Roles in
Synaptic Transmission

The proximity of the presynaptic CaV channels to the vesicular
release site is an extremely important factor in determining the
properties and speed of neurotransmitter release. In order to
study this, knowledge of the relative locations of the channel
subtypes, as well as modeling studies are required, in addition
to an understanding of the biophysical and biochemical dis-
tinctions between CaV2.1 and CaV2.2 channels.77,79 There are
well-studied differences in the anchoring of the two main CaV2
channels in presynaptic active zones. Both CaV2.1 and CaV2.2
channels are tethered in active zones by the RAB3A-interacting
molecule (RIM),80 and CaV2.3 channels may also associate with
RIM proteins.80 Furthermore, RIM-binding protein interacts
with CaV2.1, CaV2.2 and CaV1.2 channels, but recruits only the
former two channels via interaction with RIM specifically to
the active zone.80 However, CaV2.1 is selectively associated
with certain Munc13 isoforms potentially leading it to be local-
ized closer to docked vesicles than CaV2.255 (Figure 2). In con-
trast to the obvious central phenotype of CaV2.1 knockout
mice,82 the lack of marked phenotype in CaV2.2 knockout mice
suggests that their role is less crucial, and other types of CaV

channel (particularly CaV2.1) are able to compensate for the
loss of CaV2.2 at most synapses. However, CaV2.2 channels
have a predominant role at primary afferent synapses in the
pain pathway,83,84 and this pathway is indeed disrupted in
CaV2.2 knockout mice.85

Thus, both the properties and distribution of CaV2.1 chan-
nels result in greater activation and Ca2þ entry for a brief action
potential through these channels than for CaV2.2.13 This has
been observed, for example, in mossy fiber boutons, where a
single terminal was estimated to contain about 2000 channels,
and brief presynaptic action potentials activated a presynaptic
Ca2þ current that was found with pharmacological blockers to
be dependent on P/Q (�66%), N (�26%), and R (�8%)-type
channels.86

Other proteins have also been found to interact with CaV2
channels,87 and some of these proteins affect the properties of
the channels, such as the CRMP-2 interaction with CaV2.2.88

Another presynaptic protein, Syntaxin 1A has been found to in-
teract with part of the II-III linker of CaV2.2 channels (synprint
site), increasing both slow inactivation and steady-state inacti-
vation, and thus reducing channel availability.89,90 By contrast,
an analogous effect on CaV2.1 channels may depend on channel
splice variant.91 In presynaptic terminals, this could affect the
relative availability of CaV2.1 and CaV2.2 channels. However,
this synprint site is not essential for presynaptic targeting92 or
neurotransmission.93

CaV2 Channel Modulation Dramatically Affects
Their Presynaptic Function

Since CaV2 channels are subject to inhibition by several second
messenger pathways, this will affect their availability. Thus,
the integral of Ca2þ entry at any synapse depends on a multi-
tude of factors that are unique to each condition and to the pat-
tern of action potentials arriving at the terminal. In particular,
G-protein-mediated inhibition is an important property of CaV2
channels. This can result from stimulation of many presynap-
tic G-protein coupled receptors linked to Gi/o, such as GABA-B
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receptors, opioid receptors, and others whose activation leads
to the release of Gßc subunits.94–99 This inhibition, which may
have a tonic component, shifts the voltage-dependence of CaV2
channel activation to more positive potentials, and slows acti-
vation kinetics,100,101 which can be overcome by prior depolari-
zation, including in some cases an action potential train.102

This macroscopic current slowing is mediated at the single-
channel level by a prolongation of the latency to first opening
both of native N-type single-channel currents103 and of cloned
CaV2.2 channels,104,105 with no change in single-channel
conductance.

Gßc binding mediates the inhibition, and voltage-dependent
Gßc unbinding underlies the slow activation of the CaV2
channels, and triggers the depolarization-mediated reversal of
inhibition.96,98 Here it should be noted that CaV2.1 channels are
less subject to G-protein modulation than CaV2.2, since the Gßc

off-rate from these channels is more rapid.98

Given that, as described above, only a few CaV channels
may open in response to a single action potential at individual
synapses, and Gßc-mediated inhibition involves slowing of
their activation, the effect on synaptic transmission has the
potential to be profound, particularly where a high proportion
of CaV2.2 channels is present, such as primary afferent
terminals.6

T-type Channels Are Partially Inactivated at
Resting Membrane Potentials

T-type channels are present in certain presynaptic terminals,
and they may play an important role in influencing resting
Ca2þ levels, or in providing Ca2þ for downstream events.
Although CaV3 channels do not normally supply significant
amounts of Ca2þ for neurotransmitter release resulting from
action potentials arriving at the terminal, nevertheless their
availability can be affected by the interplay of other channels
such as HCN channels and Ca2þ-activated Kþ channels, which
affect membrane potential.50 Functional HCN1 channels are
present on particular glutamatergic synaptic terminals, for ex-
ample onto entorhinal cortical layer III pyramidal neurons,
where they depolarize the membrane potential and reduce

neurotransmitter release. These effects at least partly result
from reduced availability of CaV3.2 channels.50 Furthermore,
CaV3 channels were also found to play an important part in
asynchronous dendrodendritic release of glutamate from olfac-
tory bulb mitral cells.107 In another study GABA release from
interneurons could be promoted by activation of presynaptic
nicotinic receptors and subsequent activation of presynaptic
CaV3.1 channels, together with release of Ca2þ from ryanodine-
sensitive intracellular stores.108 Thus, there is evidence from
numerous studies for a variety of presynaptic roles for T-type
channels.

A Role for Ca21-induced Ca21 Release in
Presynaptic Terminals

Although Ca2þ-induced Ca2þ release (CICR) is mainly associated
with CaV1.2 channel function, for example in cardiac muscle
cells, nevertheless smooth endoplasmic reticulum is present in
presynaptic terminals,109 and there is evidence that CICR occurs
from this endoplasmic reticulum which can affect neurotrans-
mitter release.110,111 The channels involved in presynaptic CICR
are mainly ryanodine receptors,112,113 and the initial source of
Ca2þ for CICR could be CaV channels, particularly T-type or R-
type, which are activated by small depolarizations,113 or other
presynaptic Ca2þ-permeable channels such as a7 nicotinic
receptors.108,114 It was further suggested that clustering of the
endoplasmic reticulum sensor of Ca2þ depletion, STIM1, may di-
rectly inhibit CaV channels.110 The importance of CICR in neuro-
transmitter release is more evident following prolonged
activation rather than single action potential-induced
responses,111,113 although single action potentials can also re-
sult in CICR.111,115

The Roles of Mitochondria in Controlling
Intracellular Ca21 in Presynaptic Terminals

Mitochondria are present in about half of all presynaptic termi-
nals,116 and they can sequester presynaptic Ca2þ entry resulting
from trains of action potentials.117,118 Presynaptic mitochondria
are found to have a low threshold for Ca2þ uptake, relative to

Figure 2. Diagram of CaV Channels in Relation to Other Pre-Synaptic Proteins and Organelles. Some of the proteins involved in anchoring CaV channels near to synaptic

vesicles forming a nanodomain within the presynaptic active zone (dark blue membrane). These include Rab3 (orange), synaptotagmin (purple), and synaptobrevin

(pink) associated with the vesicular membrane. Rim (blue) and RBP (green) are cytosolic; Munc13 (black) and syntaxin (orange) are associated with the plasma mem-

brane. CaV2.1 (red) and CaV2.2 (light pink) are likely to be differentially localized within active zones, whereas the other CaV channels, if present, are thought to be lo-

cated elsewhere in the presynaptic membrane. Figure based on Fig. 4a in Dolphin and Lee.81
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those in other tissues, which is conferred by a brain-specific
protein MICU3, allowing mitochondria to take up Ca2þ directly
from the cytoplasm near to sites of Ca2þ entry through the
plasma membrane.119 Indeed, mitochondria have been visual-
ized to be tethered to presynaptic terminal membranes in the
calyx of Held.120 Furthermore, Ca2þ is required for optimal ATP
levels, and presynaptic mitochondria promote synaptic trans-
mission in active synapses by supplying the essential ATP.
Maintenance of the voltage and ionic gradients related to pre-
synaptic function is also a major consumer of ATP,119 and thus
mitochondria fulfill multiple presynaptic roles.

Conclusions

The molecular and biophysical properties of CaV channels are
finely tuned to their roles in presynaptic terminals to mediate
neurotransmitter release. Although there are many types and
geometries of synapse, the channels in these terminals function
in broadly similar ways to mediate Ca2þ entry that triggers ve-
sicular release. Since the opening of a few channels, or even a
single channel, is able to mediate release at discrete small excit-
atory and inhibitory synapses, it is extremely important to un-
derstand the individual and distinct properties of these
channels, in order to appreciate how this process of release is
constrained by the localization, tethering, properties, and mod-
ulation of the channels. Similarly, the different mix of types of
channels present, and their relative active zone distribution, is
tuned to the functions of individual synapses and to changes
during development and synaptic activity.
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