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We present a novel approach to describe a P300 by a shape-feature vector, which offers several advantages over the feature vector
used by the BCI2000 system. Additionally, we present a calibration algorithm that reduces the dimensionality of the shape-feature
vector, the number of trials, and the electrodes needed by a Brain Computer Interface to accurately detect P300s; we also define a
method to find a template that best represents, for a given electrode, the subject’s P300 based on his/her own acquired signals. Our
experiments with 21 subjects showed that the SWLDA’s performance using our shape-feature vector was 93%, that is, 10% higher
than the one obtained with BCI2000-feature’s vector. The shape-feature vector is 34-dimensional for every electrode; however, it
is possible to significantly reduce its dimensionality while keeping a high sensitivity. The validation of the calibration algorithm
showed an averaged area under the ROC (AUROC) curve of 0.88. Also, most of the subjects needed less than 15 trials to have an
AUROC superior to 0.8. Finally, we found that the electrode C4 also leads to better classification.

1. Introduction

The P300 is an event-related potential (ERP) endogenous
component that has a positive deflection that occurs in the
scalp-recorded electroencephalogram (EEG) and typically
elicited approximately 300ms after the presentation of an
infrequent stimulus (such as visual, auditory, or somatosen-
sory) [1]. The specific set of circumstances for eliciting a
P300 is known as the Oddball Paradigm which consists of
presenting a target stimulus amid more frequent standard
background stimuli. Under this paradigm, a P300, among
other ERPs, is unconsciously elicited every time a subject’s
brain detects the target stimulus (the rare event). In fact, the
P300 is a reasonable input signal, with desirable properties
and stability to control Brain Computer Interfaces (BCI) [2],
applications requiring precise real-time detection as well as
memory and computation optimization [3, 4]. The feature
vector dimensionality reduction has been a popular choice

to achieve these goals within the BCI community because it
decreases the complexity of classifiers [5].

The features of a P300 have been represented in time,
frequency, time-frequency, and shape domains by using,
among others, Wavelet Transform [6], Genetic Algorithms
[7], and Common Spatial Patterns [8]. Additionally, the
approaches more commonly used for P300 classification are
Linear Discriminant Analysis, Stepwise Linear Discriminant
Analysis [9], and Support Vector Machines [10].

In this work, we are interested in the shape domain
because we assume that (i) every subject produces P300
signals whose waveform can be consistently represented
by template curves and (ii) such template curves from a
subject are more similar to curves with a P300 than to
curves produced by EEG background activity [11]. Most
techniques based on these ideas are classified into Cross Cor-
relation Alignment (e.g., Woody’s [12] and Maximum Likeli-
hood (ML) [13] methods), Dynamic Time Warping (DTW)
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alignment [14, 15], and linear methods such as coherent
averaging [11]. Although the latter is the most controversial
of all, it is the fastest and the most commonly used averaging
method because of the following argument: a P300 can be
considered as a well-defined component since the alignment
of its peaks “is most likely linear even though the distortion
is nonlinear” [16]. For this reason, it is common practice to
repeat the stimulation procedure to improve its signal-to-
noise ratio (SNR) by coherently averaging several segments
of filtered EEG signals generated after the stimulation (i.e.,
trials); the number of stimulations may vary from subject
to subject for reasons explained in [17]. Coherent averaging
implies that ERP components are unaffected by the averaging
procedure and that any variability is due to noise [18].
However, P300’s amplitude, latency, and waveshape vary not
only between electrodes but also in time. The first variation
is due to its position; that is, the farther the electrode is
from the cortical area, the lower the amplitude is. Thus, if we
average all the electrode signals without taking into account
the latter consideration, wewill damage the P300’s properties;
for this reason, usually, the electrode signals are processed
individually. The variation in time is due to either biological
determinants (e.g., increasing difficulty in perception and
cognition of a task), subject’s attention level, or experimenter-
dependent variables [17]. Thus, the coherent average does
distort most ERP’s components [15, 19]; however, for a given
subject, the averaged P300 remains consistent [20]. The
previous considerations can be summarized in the following
statement byKnuth et al. [18]: “Of course, waveshape variabil-
ity also exists, but robust single-trial amplitude and latency
estimates are nonetheless obtainable with the assumption of
fixed component waveshapes.”

The novelty of this paper consists in the detection of
P300 trials based on using pattern recognition techniques
on its shape, represented by a feature vector. Specifically, we
use a contour representation based on an adapted version
of the Slope Chain Code (SCC) and some of its properties
(e.g., the tortuosity measure) [21], as well as some general
descriptors, such as the differences of areas, to describe
the differences between curves. Importantly, chain codes
have been successfully used to describe and classify other
biosignals such as electrocardiograms [22].The advantages of
using the SCC are as follows: (i) it is self-contained, which
implies that a chain does not need decoding, and (ii) it is
finite, which means that the resulting chains can be classified
using either grammatical techniques, syntactic analysis [23],
or algebraic operations. Because the SCC is very expensive,
we adapted it to make it computationally less demanding.
In addition to the adapted SCC, we also present an offline
calibration algorithm that reduces the dimensionality of the
shape-feature vector, the number of subject’s stimulations,
and the number of electrodes needed by a BCI to accurately
detect a subject’s P300.

We organized the paper as follows. In Section 2, we define
the shape-feature vector and explain the details of the pro-
posed algorithm.Then, in Section 2.3, we present our metho-
dology to set the Oddball Paradigm and the experiments to
define the parameters needed for the proposed algorithm.
In Section 3, we present key results and a discussion of the

experiments designed to evaluate the classification perfor-
mance. Finally, in Section 4, we provide some conclusions.

2. Materials and Methods

In this section, we describe the features of the ERP’swaveform
that we use as the vector of characteristics. Additionally,
we present an offline calibration algorithm that reduces the
dimensionality of the shape-feature vector, the number of
trials for a subject, and the number of electrodes needed by a
BCI to detect a subject’s P300.

2.1. Feature Vector Based on ERP’s Waveform. As we men-
tioned before, the vector of characteristics obtained from the
waveformof a P300 is central to ourwork. A first step towards
producing such a vector is the coherent averaging of a set of
trials.

2.1.1. Coherent Averaging. It is a well-known fact that coher-
ent averaging increases the SNR in signals and we take
advantage of this fact to enhance the small amplitude signals
immersed in an EEG. We and other groups [25] assume
that the coherent averaging is feasible because (i) there is no
correlation between the ERP signal and the rest of the EEG,
(ii) the stimulation time and the response reflected in the EEG
signal are known, (iii) there exists a consistently detectable
component (e.g., a P300), and (iv) the EEG is a random signal
with zero mean.

In a common BCI experiment, a number of electrodes are
used to acquire EEG signals.We refer to this number as𝐶.The
signal froman electrode is acquired𝐾 times (i.e.,𝐾 trials).We
will refer to the resulting set of all acquired signals (i.e.,𝐾 sig-
nals for 𝐶 electrodes) as E and we divide it into two nonover-
lapping subsets T and V . We use the set T to train the calibra-
tion algorithm (which is discussed in Section 2.2) and the set
V to validate its performance (see Section 3.2). Furthermore,
every EEG signal recorded by an electrode is discretized
by 𝑇 number of samples. Consequently, the 𝑇-dimensional
vector representing an EEG signal can be represented as fol-
lows:

e = g + n, (1)

where g and n are also vectors representing the ERP signal
and the EEG background (associated with the rest of the
brain’s activity), respectively. By coherently averaging the 𝐾

signals of a single electrode, we have

𝜇 (E, 𝐾) =
1

𝐾

𝐾

∑

𝑘=1

e
𝑘
= g + n =

1

𝐾

𝐾

∑

𝑘=1

(g
𝑘
+ n
𝑘
) . (2)

In practice, the averaged vector n is considered to be the zero
vector (that vector whose element values are all equal to zero)
because the EEG is a random signal with zeromeanwith little
autocorrelation.

Because we intend to use the waveform of the recorded
ERP signals to generate the vector of features, we represent a
recorded signal e as the following sequence of ordered pairs
[(𝑥
󸀠
, 𝑦
󸀠
)
1
, (𝑥
󸀠
, 𝑦
󸀠
)
2
, . . . , (𝑥

󸀠
, 𝑦
󸀠
)
𝑇
], where 𝑥

󸀠 is a nonnegative
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integer corresponding to the sample number and 𝑦
󸀠 is a real

number representing the measured amplitude of the ERP
at the position 𝑥

󸀠. As a result, the coherent average of (2)
produces the vector e󸀠 = [(𝑥

󸀠
, 𝑦)
1
, (𝑥
󸀠
, 𝑦)
2
, . . . , (𝑥

󸀠
, 𝑦)
𝑇
].

2.1.2. SlopeHorizontal Chain Code. Chain codes are alphanu-
meric sequences with integer alphabets being the most
common choices because the easiness and velocity to pro-
cess the resulting chains in comparison to those based
on alphanumeric alphabets. Several integer-alphabet chain
codes have been proposed [21, 26–32] as well as methods to
represent analog signals with sequences of bits (e.g., pulse
code modulation [33]); however, the SCC is the most useful
for the purposes of this paper because it divides the curve into
straight-line segments placed onto the curve and preserves
with higher resolution the contour shape. By using the
ordered-pair representation for ERP signals, we can obtain
a chain code representing the contour of the curve described
by its sequence of ordered pairs [34].

In this work, we adapted the SCC to represent ERP signals
and called it SlopeHorizontal Chain Code (SHCC).Themain
differences between the SCC and our code are the following.
The SHCC adjusts a segment’s length to avoid interpolation;
this adjustment takes advantage of the sampling uniformity
during the biosignal acquisition to keep the sampling points
as the endpoints of segments. Contrary to the SCC, the SHCC
does not compute the angle between two adjacent segments;
in contrast, it computes the slope between a segment and the
horizontal in the continuous range equivalent to (−90∘, 90∘).
Consequently, the segments are independent, which means
that if the signal from one electrode is disturbed (e.g., due to
noise or loss of information), this will not affect more than
one chain element. Furthermore, the SHCC does not require
either rotation invariance, since it is not designed for closed
curves, or scale invariance. Consequently, the previous differ-
ences make the SHCC algorithm computationally less expen-
sive and very useful for real-time applications. Moreover, the
SHCC can be easily implemented in hardware; thus, allowing
the classifier integration to signal acquisition devices.

On the other hand, the SHCC and the SCC share the
following very useful properties for our application: both
place line segments onto the curve to preserve with high
resolution the contour shape, both are translation-invariant,
which is relevant since the SHCC can adequately represent
P300’s variability, and both allow feature dimensionality and
data reduction. The two are very desirable properties in BCI
applications [35].

A first step to transform the curve into a chain by the
SHCC is to resample the vector e󸀠 with a new sampling
distance given by

Δ = ⌈
𝑇

𝑆 + 1
⌉ , (3)

where 𝑆 < 𝑇 is a nonnegative integer representing the
desired number of line segments to represent the curve (in
Section 2.3.4, we will explain the procedure to select the 𝑆

value). The new rediscretized vector is a sequence of ordered
pairs [(𝑥󸀠, 𝑦)

1
, . . . , (𝑥

󸀠
, 𝑦)
𝑠
, . . . , (𝑥

󸀠
, 𝑦)
𝑆
], where 𝑠 = ⌊𝑡 + (𝑚 ×

Δ)+0.5⌋, for 1 ≤ 𝑡 ≤ 𝑇, and𝑚 = sgn((𝑇−1)/Δ)⌊|(𝑇−1)/Δ|⌋.

An alternative to this rediscretization process would be to
change the sampling rate (i.e., subsampling) during the acqui-
sition process but this can potentially distort the ERP signal,
due to aliasing, and produce regions of the signal similar to
a P300, which in turn could produce false positives in the
classification stage.

Before obtaining the alphabet symbols, the SHCC nor-
malizes every element (𝑥󸀠, 𝑦) of e󸀠 as follows:

x =
1

(max
𝑥𝑖
(x󸀠) − min

𝑥𝑖
(x󸀠))

(x󸀠 − min
𝑥𝑖

(x󸀠) 1) ,

y =
1

(max
𝑦𝑖
(y) − min

𝑦𝑖
(y))

(y − min
𝑦𝑖

(y) 1) ,

(4)

where 1 is a vector whose element values are all equal to one.
These operations produce new coordinate vectors x =

[𝑥
1
, . . . , 𝑥

𝑆
] and y = [𝑦

1
, . . . , 𝑦

𝑆
], where 𝑥

𝑖
, 𝑦
𝑖

∈ [0, 1].
With these coordinates, the SHCC produces a chain B =

(𝑏
1
. . . 𝑏
𝑆
) whose 𝑠th element represents the code associated

with the slope between the horizontal axis and the 𝑠th ordered
pair (𝑥, 𝑦)

𝑠
, for 1 ≤ 𝑠 ≤ 𝑆. To compute the members

of the alphabet, we use a precision of two decimals when
computing the individual slopes, resulting in an alphabet of
200 elements. To exemplify this process, we show in Figure 1
a discretized ERP whose chain isB = (0.06 −0.02 −0.06 0.06
0.05 0.02 0.01 −0.04 0.04 −0.03 −0.09 0.04 0.05 −0.01 −0.02
0.04).

Finally, to form a vector of characteristics, we consider
the elements of a chain obtained with the aforementioned
SHCC method as part of the features of the vector together
with other characteristics as we will show below.

2.1.3. Distance between Chains. The possibility of computing
the distance between two curves is an important characteris-
tic that we take advantage of for our proposed method. Since
we use the SHCC to represent 2D curves, we obtain a unique
curve descriptor represented by a chain. The hypothesis is
that the chain representing a P300 template is more similar
to the chain of a P300 than to the chain from a non-P300.

There are several distances tomeasure shape dissimilarity
for 2D curves such as the Manhattan (i.e., the ℓ

1
-norm), the

Euclidean (i.e., the ℓ
2
-norm), the Hausdorff, or the Frèchet

distances [36]. To decide between them, we ran experiments
with preliminary parameters to compare our algorithm’s
performance (we explain our algorithm below) and the
results were not significantly different; thus, we decided to
compute the distance with the ℓ

1
norm because of its lower

computational cost. Consequently, for two chains B
𝑖
and

B
𝑗
of length 𝑆, we define their distance 𝑑 as

𝑑 = ℓ
1
(B
𝑖
,B
𝑗
) =

𝑆

∑

𝑠=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖,𝑠

− 𝑏
𝑗,𝑠

󵄨󵄨󵄨󵄨󵄨
. (5)

To exemplify our hypothesis, we show different subsampled
curves in Figure 2. In Figure 2(a), we present in blue the tem-
plate curve of a subject, whose chain is (0.05 −0.02 −0.05 0.08
0.07 −0.01 0.01 −0.03 0.04 −0.04 −0.09 0.01 0.05 −0.03 −0.04
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(a) Original curve (b) Discretized curve
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(c) Chain of the discretized curve

Figure 1: Example of a P300 discretized curve and its resulting chain code by using the SHCC method.

0.04), and in red a P300 curve of the same subject, whose
chain is (−0.01 −0.04 −0.05 0.04 0.05 0.05 0.02 −0.05 −0.02
−0.05 −0.02 0.05 0.02 0 −0.01 −0.01).TheManhattan distance
between these two chains is 0.55. In contrast, in Figure 2(b),
we present the same template curve together with a non-P300
curve, whose chain is (0.07 −0.03 0 −0.03 0.06 0.04 −0.10 0.06
0.01 −0.04 −0.04 0.06 −0.09 0.01 0.11 0.05); in this case, the
distance between chains is 0.92. For this example, one can see
that the subject’s template curve is more similar to the P300
curve than to the non-P300 curve.This is just an example and
within the calibration process there is some statistical test that
makes sure that this hypothesis is met.

2.1.4. Tortuosity. Another feature that we would like to
capture is how straight or twisted a curve is; one way to
measure such a characteristic is by

Υ (B) =

(𝑆−1)

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑏
𝑖
⌋

100

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (6)

where 𝑏
𝑖
is the 𝑖th element of the chain B. The minimum

value of this measure is zero, corresponding to a curve con-
sisting of purely horizontal segments (i.e., all the components
have slopes equal to zero).On the other hand, as the curvature

increases, the value of Υ will also increase [21]. The measure
Υ above is commonly known as tortuosity, and, for example,
the tortuosity value of the curve shown in Figure 1 is 0.64.

2.1.5. Differences between the Areas of Two Curves. Both the
SCC and the SHCC describe the signals waveform at the
expense of losing voltage information; the latter is useful
for discrimination between conditions.Moreover, two curves
having different shape could have the same tortuosity. For
these reasons, we introduce an additional way to compare
two curves by computing the difference between their areas.
To this end, we apply the trapezoidal rule [37], because it
integrates a curve over an interval by breaking the area under
the curve into small trapezoids whose areas are easier to
compute. In what follows, for a subject, we will compute the
difference between the areas of a template curve (R𝑇) and the
area of either a P300 curve (R𝑃) or a non-P300 curve (R𝑁).
We refer to the segment-wise differences as [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑆−1
].

For any two 𝑆-dimensional vectors p and q, we define the sum
of their segment-wise differences as

𝑇̆ (p, q) =
(𝑆−1)

∑

𝑠=1

p
𝑠
− q
𝑠
. (7)
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Figure 2: Illustration of the difference between a subject’s template curve and (a) a P300 curve and (b) a non-P300 curve.

Finally, for every electrode, we assemble a (2𝑆 + 2)-
dimensional vector of shape features by combining all the
described parameters above in the following way: the first
(𝑆 − 1) elements of the vector correspond to the differences
between the area of two curves [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑆−1
], the following

element is the sum of them 𝑇̆ by (7). The next element is the
distance between chains 𝑑 by (5), followed by the tortuosity
measure Υ by (6), and the last 𝑆 elements of the vector
represent the ERP under analysis (𝑏

1
, . . . , 𝑏

𝑆
), resulting in the

vector k = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑆−1
, 𝑇̆, 𝑑, Υ, 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑆
] of size 𝑉.

2.2. Calibration Algorithm. Like any other BCI system that
uses a feature vector, we need to calibrate ours for every
subject. For our project, the goals of the calibration are (i)
to obtain a template for every electrode that best represents
a subject’s P300 in that electrode, (ii) to obtain the optimum
number of stimulations, (iii) to select the subset of electrodes
that provides the best P300 signal, and (iv) to select the shape
features that maximize the area under the receiver operating
characteristic (AUROC) curve.

In what follows, we define some sets and variables
necessary for our calibration algorithm. For the calibration
process, we select a certain number of P300-labeled trials
and a certain number of non-P300-labeled trials for a given
electrode 𝑐. We refer to the set of non-P300-labeled trials,
with cardinality equal to 𝑁, as E𝑁

𝑐
and as E𝑃

𝑐
to the set of

P300-labeled trials, with cardinality equal to 𝑃. Clearly, the
total number of trials, for a given electrode 𝑐, produces a
set; we refer to it as E

𝑐
(i.e., E

𝑐
= E𝑃
𝑐
∪ E𝑁
𝑐
). When all the

electrodes that we use are taken into account, then the set of
all the trials results in the set T which can then be expressed
as {E
𝑐
| 1 ≤ 𝑐 ≤ 𝐶}.

Algorithm 1 presents the pseudocode for our calibration
method, which is an iterative algorithm based on wrapper
methods [38].

A general view of the calibration algorithm is as follows.
The iterative algorithm is made of several sections that carry
a specific task and are called wrappers. The principal wrapper
is an iterative procedure; see lines 4–24. To control the
iterations, wemake use of the boolean variable loop initialized
in line 1. The algorithm iterates while the value of loop is
true (see line 4). The goals of this wrapper are to select (i)
the electrodes and the shape features that provide the best
P300 signal, (ii) the best templates for each electrode, and
(iii) the optimum number of stimulations. We select the
subset of electrodes and the optimumnumber of stimulations
by finding the templates that satisfy certain criteria. The
number of trials (i.e., 𝐾) is one of the parameters defined
in the experimental design (see Section 2.3.3). We define
the variable 𝑘 as the maximum number of stimulations
𝐾 (see line 2), which will gradually decrease to diminish
subject’s fatigue, to find the optimumnumber of stimulations.
Additionally, we find the best templates and the best shape
features by means of an inner wrapper method that iterates
𝑂 number of times, where 𝑂 is defined in line 5. In each
iteration, the inner wrapper randomly selects a set of P300-
labeled trials to find the best template and the best features for
each electrode by analyzing subsets of trials. For this analysis
to be statistically significant, we apply a cross-validation 𝑈
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1: 𝑙𝑜𝑜𝑝 ← 𝑡𝑟𝑢𝑒

2: 𝑘 ← 𝐾

3: 𝑈 ← ⌊
𝑃 − 𝐴

𝐾
⌋

4: while 𝑙𝑜𝑜𝑝 = 𝑡𝑟𝑢𝑒 do
5: 𝑂 ← ⌊

𝑃

𝑘
⌋

6: for 𝑜 ← 1 to 𝑂

7: for 𝑐 ← 1 to 𝐶

8: R𝑇 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(E𝑃
𝑐
, 𝐴)

9: B𝑇
𝑜,𝑐

← 𝐶ℎ𝑎𝑖𝑛𝐶𝑜𝑑𝑒𝑆𝐻𝐶𝐶(𝜇(R𝑇, 𝐴))

10: for 𝑢 ← 1 to 𝑈

11: R𝑃 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟({E𝑃
𝑐
−R𝑇}, 𝑘)

12: B𝑃
𝑐
← 𝐶ℎ𝑎𝑖𝑛𝐶𝑜𝑑𝑒𝑆𝐻𝐶𝐶(𝜇(R𝑃, 𝑘))

13: k𝑃
𝑢,𝑐

← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(R𝑇,R𝑃,B𝑇
𝑜,𝑐
,B𝑃
𝑐
)

14: for 𝑢 ← 1 to 𝑈

15: R𝑁 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(E𝑁
𝑐
, 𝑘)

16: B𝑁
𝑐

← 𝐶ℎ𝑎𝑖𝑛𝐶𝑜𝑑𝑒𝑆𝐻𝐶𝐶(𝜇(R𝑁, 𝑘))

17: k𝑁
𝑢,𝑐

← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(R𝑇,R𝑁,B𝑇
𝑜,𝑐
,B𝑁
𝑐
)

18: 𝑧
𝑜,𝑐

← 𝐴𝑈𝑅𝑂𝐶𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟(d𝑃
𝑐
, d𝑁
𝑐
)

19: (i󸀠
𝑜
,w󸀠
𝑜
, f 󸀠
𝑜
) ← 𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒(V

𝑜
)

20: (𝜙
𝑘
) ← 𝑎V𝑒𝑟𝑎𝑔𝑒𝐴𝑈𝑅𝑂𝐶(Z)

21: (𝑙𝑜𝑜𝑝, c󸀠) ← 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(𝜙
𝑘
)

22: (𝑙𝑜𝑜𝑝,𝐾
󸀠
, 𝑘) ← 𝑇𝑟𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(𝜙

𝑘
, 𝑘, 𝐾)

23: B󸀠
𝑐
← 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(Z,B𝑇, c󸀠)

24: (I󸀠
𝑐
,W󸀠
𝑐
, F󸀠
𝑐
) ← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(Z, i󸀠,w󸀠, f 󸀠, c󸀠)

25: return c󸀠, 𝐾󸀠, B󸀠
𝑐
, I󸀠
𝑐
, W󸀠
𝑐
and F󸀠

𝑐

Algorithm 1: Calibration algorithm.

times, where 𝑈 is defined in line 3. Since 𝑈 depends on
𝐾, it could be computed after 𝐾 is set. Then, the inner
wrapper evaluates the detection of a P300 through lines 6–
19. On the other hand, in order to reduce the shape-feature
vector dimensionality, we use the stepwise regression method
(SRM) described in [5, 39]. This method performs feature
space reduction by selecting the elements of the shape-feature
vector that satisfy certain entry and removal criteria.

Now, we describe the inner wrapper in detail. As we
explained before, for an electrode 𝑐, we need to search
for the subject’s best template that consistently represents
a P300 waveform (see lines 7–18). Each template chain is
generated by randomly selecting a subset R𝑇 = {e

𝑖
| e
𝑖
∈

E𝑃
𝑐

and 1 ≤ 𝑖 ≤ 𝐴}, where 𝐴 is the number of trials
necessary to generate the subject’s P300 template (we will
detail the method to define both 𝐴 and 𝑆 in Section 2.3.4).
We perform this task by the RandomSelector operator (see
line 8). Then, we compute its coherent average 𝜇(R𝑇, 𝐴)

by (2) and we transform the resulting vector into a chain
B𝑇
𝑜,𝑐

using the SHCC (see Section 2.1.2); this process is
carried out in line 9 by the operator ChainCodeSHCC. At this

point, the algorithm creates a set of several template chains
{B𝑇
1,𝑐

, . . . ,B𝑇
𝑜,𝑐

, . . . ,B𝑇
𝑂,𝑐

} for a given electrode 𝑐.
Every template chain B𝑇

𝑜,𝑐
is compared with the chains

B𝑃
𝑐

and B𝑁
𝑐
, where B𝑃

𝑐
is the chain of the average subset

R𝑃, whose 𝑘 elements (i.e., the number of stimulations) are
randomly selected from the set {E𝑃

𝑐
− R𝑇} (see lines 11 and

12); andB𝑁
𝑐

is the chain corresponding to the averaged subset
R𝑁, composed of 𝑘 elements randomly selected from E𝑁

𝑐

(see lines 15 and 16). These comparisons are carried out (see
lines 8–17) 𝑂 times (see line 6) per electrode.

After these comparisons, we obtain two shape-feature
vectors k𝑃 and k𝑁 as explained in Section 2.1. The vector k𝑃

represents the features extracted fromR𝑇,R𝑃,B𝑇
𝑜,𝑐

, andB𝑃
𝑐

(see line 13); the vector k𝑁 represents the features extracted
from R𝑇, R𝑁, B𝑇

𝑜,𝑐
, and B𝑁

𝑐
(see line 17); this process is

performed by the operator FeatureExtractor. For this analysis
to be statistically significant, we apply a cross-validation test.
Hence, we compute vectors k𝑃

𝑢,𝑐
and k𝑁

𝑢,𝑐
𝑈 times (see lines

10 and 14, resp.) for each electrode. These vectors allow the
creation of the 2𝑈 × 𝑉𝐶 matrix defined as
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V
𝑜
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

v𝑃
1,1,1

⋅ ⋅ ⋅ v𝑃
1,𝑉,1

v𝑃
2,1,1

⋅ ⋅ ⋅ v𝑃
2,𝑉,1

.

.

.
.
.
.

v𝑃
𝑈+1,1,1

⋅ ⋅ ⋅ v𝑃
𝑈+1,𝑉,1

v𝑁
1,1,1

⋅ ⋅ ⋅ v𝑁
1,𝑉,1

v𝑁
2,1,1

⋅ ⋅ ⋅ v𝑁
2,𝑉,1

.

.

.
.
.
.

v𝑁
2𝑈,1,1

⋅ ⋅ ⋅ v𝑁
2𝑈,𝑉,1

v𝑃
1,1,2

⋅ ⋅ ⋅ v𝑃
1,𝑉,...

v𝑃
2,1,2

⋅ ⋅ ⋅ v𝑃
2,𝑉,...

.

.

.
.
.
.

v𝑃
𝑈+1,1,2

⋅ ⋅ ⋅ v𝑃
𝑈+1,𝑉,...

v𝑁
1,1,2

⋅ ⋅ ⋅ v𝑁
1,𝑉,...

v𝑁
2,1,2

⋅ ⋅ ⋅ v𝑁
2,𝑉,...

.

.

.
.
.
.

v𝑁
2𝑈,1,2

⋅ ⋅ ⋅ v𝑁
2𝑈,𝑉,...

v𝑃
1,1,...

⋅ ⋅ ⋅ v𝑃
1,𝑉,𝐶

v𝑃
2,1,...

⋅ ⋅ ⋅ v𝑃
2,𝑉,𝐶

.

.

.
.
.
.

v𝑃
𝑈+1,1,...

⋅ ⋅ ⋅ v𝑃
𝑈+1,𝑉,𝐶

v𝑁
1,1,...

⋅ ⋅ ⋅ v𝑁
1,𝑉,𝐶

v𝑁
2,1,...

⋅ ⋅ ⋅ v𝑁
2,𝑉,𝐶

.

.

.
.
.
.

v𝑁
2𝑈,1,...

⋅ ⋅ ⋅ v𝑁
2𝑈,𝑉,𝐶

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (8)

To evaluate the performance of the calibration process by
using one template at a time, we decided to use the computed
distances between chains as accuracy measures (based on
preliminary experiments); this process is carried out in line
18 by the operator AUROCEstimator. For every 𝑖th column of
matrix V

𝑜
, we take the 𝑆 + 1 element of the first 𝑈 vectors

to form a vector d𝑃
𝑐
, whose elements are the distance element

of such vectors; in the same way, we take the 𝑆 + 1 element of
vectors𝑈+1, . . . , 2𝑈 to form a vector d𝑁

𝑐
.Thus, d𝑃

𝑐
and d𝑁
𝑐

are
𝑈-tuples (𝑑𝑃

1,𝑐
, 𝑑
𝑃

2,𝑐
, . . . , 𝑑

𝑃

𝑈,𝑐
) and (𝑑

𝑁

1,𝑐
, 𝑑
𝑁

2,𝑐
, . . . , 𝑑

𝑁

𝑈,𝑐
).Then,we

compute the AUROC to evaluate the comparisons between
d𝑃
𝑐
and d𝑁

𝑐
and create a matrix entry 𝑧

𝑐𝑜
. Each of these entries

represents the discrimination capacity for the 𝑜th template of
each electrode. These entries build a 𝑂 × 𝐶 matrix defined as

Z =

[
[
[
[
[
[

[

𝑧
1,1

𝑧
2,1

⋅ ⋅ ⋅ 𝑧
𝑂,𝐶

𝑧
1,2

𝑧
2,2

⋅ ⋅ ⋅ 𝑧
𝑂,𝐶

.

.

. d

𝑧
1,𝐶

𝑧
2,𝐶

⋅ ⋅ ⋅ 𝑧
𝑂,𝐶

]
]
]
]
]
]

]

. (9)

As mentioned earlier, one of the goals of the principal
wrapper is to reduce the shape-feature vector dimensionality.
To that end, we use the operator Stepwise (see line 19)
that computes the SRM; its entry criteria is 𝑃-value < 0.1
and its removal criteria is 𝑃-value > 0.15. These 𝑃-values
were defined based on those reported in [5]. The Stepwise
renders the 𝐼-dimensional vector f of the 𝐼 elements of
V
𝑜
selected by the method SRM, the binary 𝐼-dimensional

vector i, representing the indexes of the vector f , and the
𝐼-dimensional vector w of estimated coefficients for all the
terms inV

𝑜
. Every 𝑗th element ofwwhose corresponding 𝑗th

element of i is different from zerowill be an entry to the vector
w󸀠
𝑜
. Likewise, every 𝑗th element of i whose value is different

from zero will be an entry to the vector i󸀠
𝑜
. Finally, every

element of f related to the 𝑖th element of i󸀠
𝑜
will be an entry to

the vector f󸀠
𝑜
. The latter procedure finishes the inner wrapper.

As we mentioned before, some goals of the principal
wrapper are to select both the subset of electrodes that
provides the best P300 signal and the optimum number
of stimulations by finding the templates that satisfy certain

criteria. To that end, the operator 𝑎V𝑒𝑟𝑎𝑔𝑒𝐴𝑈𝑅𝑂𝐶 (line 20)
computes the average AUROC to measure the performance
of the templates of each electrode, for each stimulation 𝑘 by

𝜙
𝑘
=

1

𝑂

𝑂

∑

𝑜=1

𝑧
𝑜
. (10)

The operator𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 (see line 21) selects the subset
of electrodes that provides the best P300 signal for each
subject. To achieve this goal, we select the electrodes where
𝜙
𝑘,𝑐

≥ 0.8. If there are no such electrodes, then we choose
those where 𝜙

𝑘,𝑐
> 0.6 and set the variable loop to false. At

the end, the algorithm will define as c󸀠 the set of electrodes
that meet these conditions; otherwise, it will be unsuitable
to find the subject’s P300. On the other hand, to select the
subject’ s optimum number of stimulations, 𝐾 is gradually
decreased until no more electrodes are found meeting the
condition where 𝜙

𝑘,𝑐
≥ 0.8. In such case, 𝐾 − 1 will be

the optimum number of stimulations 𝐾
󸀠, and the algorithm

stops.This process is carried out by the operator𝑇𝑟𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟

(see line 22). The operator 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 (see line 23)
selects the templates B󸀠

𝑐
= B𝑇argmax

1≤𝑜≤𝑂
(Z),𝑐 that achieve the

highest values of Z for each electrode of the set c󸀠. Finally,
the operator 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 (see line 24) selects the indexes
I󸀠
𝑐
= i󸀠argmax

1≤𝑜≤𝑂
(Z),𝑐 of the shape-feature vectors, the matrix of

regression coefficients W󸀠
𝑐
= w󸀠argmax

1≤𝑜≤𝑂
(Z),𝑐, and the features

F󸀠
𝑐

= i󸀠argmax
1≤𝑜≤𝑂
(Z),𝑐 associated with the previously selected

templates. The algorithm returns the c󸀠, 𝐾󸀠, B󸀠
𝑐
, I󸀠
𝑐
, W󸀠
𝑐
, and

F󸀠
𝑐
values that we store in a text file.

2.3. Experimental Design

2.3.1. Participants. For our experiments, we used the EEG
signal database as reported in [24], acquired by the Neu-
roimaging Laboratory (LINI) of the Universidad Autónoma
Metropolitana (UAM), Iztapalapa. We used the EEG signals
from 21 healthy students (8 females and 13 males) ranging
in age from 21 to 25 years without known neurological
conditions.They slept an average of 7.5 hours the night before
the experiment. Four students smoked one cigarette 24 hours
before the experiments and one of them smoked 5.
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Figure 3: The electrode configuration used in the current study. The EEG was acquired by 10 electrodes located at the international 10-20
system. Image from [24] with author’s permission.

2.3.2. Data Acquisition and Processing. The EEG-signal data-
base was acquired using 10 electrodes denoted by Fz, C4, Cz,
C3, P4, Pz, P3, PO8, Oz, and PO7 following the international
10-20 system (see the configuration in Figure 3), with the
right earlobe and the right mastoid serving as reference
and ground locations. For the acquisition, screwable passive
Ag/AgCl EEG electrodes were used (g.EEGelectrode manu-
factured by GTec [40]). The impedances between the cap
electrodes and the reference electrode never exceeded 5 kΩ.
The EEG signals were registered and amplified using a 24-
bit g.USBamp [41] amplifier. The signal was digitized at
a rate of 256Hz and processed online with a notch filter
(Chebyshev of order 4), with cutoff frequencies between 58
and 62Hz, and a bandpass filter (Chebyshev of order 8), with
cutoff frequencies between 0.1 and 60Hz, to reduce noise. All
aspects of data collection and experimental design were con-
trolled using the BCI2000 system [42].

2.3.3. Task Description and ERP Signal Extraction. Despite
the fact that our proposed method can be used in any BCI
application, we decided to apply it to the P300 word speller,
first described by [43], in order to make a comparison with
a widely documented system. In the P300 word speller, a
subject is presented with an alphanumeric matrix projected
onto a computer screen to allow him or her to write a word.
We did not include additional procedures that may bias the
performance, for example, by inferring symbols.

The participants were asked to spell a priori knownwords
from which we acquired 2,880 EEG signals to form the set E.
These signals were distributed into the training set (T) and
the test set (V). The set T consisted of 480 EEG signals that
potentially contained P300s (i.e., 𝑃 = 480) and 2,400 EEG

signals without P300s (i.e., 𝑁 = 2, 400). The set V contained
150 signals expected to have 150 P300s (i.e.,𝑃󸀠 = 150) and 750
non-P300s (i.e., 𝑁󸀠 = 750).

For the experiments, the participants sat in front of the
computer screen, which is divided into two sections. At the
top left corner of the screen, the word to be spelled was
displayed while the character currently specified for selection
was listed in parenthesis at the endof theword.The remaining
of the screen displays a 6 × 6 matrix speller, as shown in
Figure 4.

The matrix rows and columns were randomly intensified
15 times (i.e., trials) for every letter. The subjects were asked
to silently count the number of times the target character was
intensified while the matrix rows and columns flashed every
125ms in random order (i.e., the interstimulus time); every
flash lasted 62.5ms. Because of the nature of the signal, we
expected to have a P300 wave 300ms after every stimulus.
For this reason, we decided to extract the next 800ms of EEG
data after every stimulus per channel used in the analysis;
thus, we collected around 2 P300 waves in every trial due to
the interstimulus time. Each segment of 800ms was filtered
offline using a 4th-order Butterworth bandpass filter with
bandwidth range from 0.1 to 12Hz to extract the ERP signals
embedded in the EEG as it is common in the field [44]. The
DC component was removed by subtracting themean of each
electrode from the filtered signal. Finally, the linear trend was
removed from each trial.

2.3.4. Algorithm Parameters. Now, we explain the method-
ology used to select the parameters 𝑆 and 𝐴 required by
the calibration algorithm. As we showed in (3), 𝑆 represents
the number of straight-line segments used to divide an
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Figure 4: The 6 × 6 matrix speller used in the current study.

ERP signal to obtain a minimal representation of its shape.
Correspondingly, 𝐴 is the number of a subject’s P300 trials
needed to accurately represent a template.

Our goal is to preserve the P300’s envelope by the min-
imum representation possible while allowing its detection
with the SHCC (see Section 2.1.2). To that end, we chose the
value of 𝑆 based on the fact that the ERP bandwidth can get
up to 10Hz [45] and that the sampling frequency must satisfy
the Nyquist Theorem; thus, we decided on a resampling
frequency of 20Hz. Considering that we extracted trials of
800ms, 16 segmentswere sufficient to preserve thewaveshape
(in other words, 𝑆 = ⌊800ms×20Hz/1000ms⌋ = 16) and the
maximum value of 𝑆 (without signal interpolation) is equal
to 𝑇 − 1. With this value in consideration, the shape-feature
vector k is 34-dimensional for every electrode.

On the other hand, to determine the number of trials
necessary for a template to accurately represent a subject’s
P300 for each electrode, we ran experiments with the cali-
bration algorithm varying the values of 𝐴 with the arbitrarily
chosen values {5, 10, 80, 120, 180, 200, 320, 360}. For these
experiments, we fixed the value of 𝑆 to 16, in view of the
discussion in the previous paragraph, and the value of 𝐾

to 15 trials. Then, we computed the mean and the standard
deviation of 𝜙 for all subjects and for every electrode (see
Figure 5). For a better interpretation, in this figure, the
ordinate represents the amount of P300 necessary to average
while the abscissa indicates the𝜙measure. From these results,
we selected a value for 𝐴 where an inflection point is reached
in most of the electrodes, in this case around the value of 180
(i.e., 𝐴 = 180).

3. Results and Discussion

In this section, we report and discuss the design and results
of our experiments; they test the performance of our method
in detecting P300 trials based on its shape-feature vector.

3.1. CalibrationAlgorithm. In order to test the performance of
the calibration algorithm, we fixed the values for parameters
𝐴 and 𝑆 to 180 and 16, respectively, as we explained in
Section 2.3.4; we also fixed the number of electrodes 𝐶 to

𝜙

Fz

5 10 80 120 180 200 240 280 320 360
0.55

0.6

0.65

0.7

0.75

0.8

0.85

P300’s averaged trials

0.9

Figure 5: Behavior of the calibrationAUROCwhile running several
calibration experiments with a fixed 𝑆 = 16 and varying the number
of P300 averaged.
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Figure 6: Ranking of electrodes according to mean 𝜙, where
electrode 1 corresponds to the best performing electrode for each
subject (not necessarily the same), while electrode 10 is the one with
the lowest 𝜙 per subject.

10 and the number of stimulations 𝐾 to 15, as defined in
Section 2.3.2.

We performed the cross-validation of the Calibration
Algorithmwith the training dataset T .We set the value𝑈 (see
line 3) to 𝑈 = ⌊(𝑃 − 𝐴)/𝐾⌋ = ⌊(480 − 180)/15⌋ = 20. That
is, we randomly selected 20 P300-labeled signals and 20 non-
P300-labeled signals to balance the datasets. For each subject,
we obtained ameanAUROC𝜙 computed by (10).The average
for the studied population (𝜙̂) is presented in Figure 6, where
electrode 1 corresponds to the best performing electrode for
each subject (not necessarily the same), while electrode 10 is
the one with the lowest 𝜙 per subject. In this figure, we can
observe that the average value for electrode 1 for all subjects
was 0.87 ± 0.10. Among all the subjects, two of them had one
electrode with 𝜙 close to one (0.99 ± 0.002 and 0.99 ± 0.01);
12 of them had at least one electrode with 𝜙 ≥ 0.9; 16 subjects
had at least one electrode with 𝜙 ≥ 0.8; and 20 subjects had
at least one electrode with 𝜙 ≥ 0.7. The worst case was one
subject whose best𝜙was equal to 0.64±0.14, possibly because
the subject was distracted for several reasons such as fatigue,
lack of motivation, or hunger [17].

It is worth noting that the normalization process per-
formed by the SHCC could be sensitive to outliers. However,
the filters and the subsampling we applied to the signal
reduce outliers. Moreover, the AUROCs reflect an adequate
performance, even with a nonoptimal normalization.
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Figure 7: Incidence of subjects whose mean AUROC during the
calibration process was greater than or equal to 0.8 when they are
stimulated an optimum number of times (see Table 1).

On the other hand, it is common practice to stimulate
a subject fifteen times for every letter [46]. However, our
experiments suggest that P300s can be accurately detected
with fewer than fifteen stimulations with our calibration
algorithm (see Table 1); however, this observation is subject-
dependent: fourteen of the twenty-one subjects required
fewer than fifteen stimulations to have at least one electrode
which had a mean AUROC greater than or equal to 0.8.
Moreover, eight of themneeded atmost five stimulations, and
in one case the subject only required two.

Additionally, we analyzed the behavior of the sets of
electrodes for all subjects based on calibrations 𝜙’s. For this
purpose, we carried out two experiments. In the first one,
we set the number of stimulations 𝐾 to 15. The incidence of
subjects whose electrodes provided a𝜙 ≥ 0.8 is as follows.The
PO8 electrode met this criterion with 27% (corresponding
to six subjects), followed by Fz with 18% (corresponding to
four subjects), Cz and PO7 with 14% (corresponding to three
subjects), and C4, Pz, and Oz with 9% (corresponding to
two subjects). The electrodes that did not meet this criterion
were P3, C3, and P4. In the second experiment, we expected
the optimum number of stimulations shown in Table 1 to
perform as the previous experiment. Figure 7 illustrates the
incidence of subjects whose electrodes provided a 𝜙 ≥ 0.8.
The electrodes PO8 and Cz had the highest incidence of all,
27% (corresponding to six subjects) and 23% (corresponding
to five subjects), respectively, followed by PO7 and Fz, with
18% (corresponding to four subjects) and 14% (corresponding
to three subjects). Finally, the electrodes Pz, Oz, and C4 had
the lowest incidence with Pz having only 9% (corresponding
to two subjects) and both Oz and C4 having 5% (correspond-
ing to one subject), the remaining two.

We have hypothesized that the discrepancy between the
incidences shown above is the result of the criterion that we
use for selecting the electrodes. Certainly, there can be other
criteria for this selection like statistical tools such as a 𝑡-test
to decide whether an electrode is really better than another.

After carrying out the selection of electrodes, we found
out that the best information is provided by electrodes C4,
Cz, Fz, Pz, PO7, PO8, and Oz, unlike the P3, C3, and

P4 electrodes whose information can be discarded since
they did not contribute to a desired performance. These
results are consistent with the literature [5, 47] which claims
that the P300 is generally detected in the central, frontal,
parietal, and parieto-occipital areas of the scalp (i.e., in the
electrodes Cz, Fz, Pz, PO7, PO8, and Oz), regions associated
with attention, memory, and visual processes. Additionally,
we observed that C4 also provides the best performance
for several subjects. For this reason, we suggest using the
aforementioned electrodes for speller P300 experiments as a
common practice. Therefore, the calibration algorithm could
be useful to discard those electrodes that do not provide a
relevant information for our methods, either because they
are improperly placed, which would generate an undesirable
template, or because they will lead to a misclassification.
Moreover, if signals are obtained by electrodes other than
the ones we suggested, the calibration algorithm will be able
to select the ones that lead to the best performance of the
calibration process.

3.2. Validation. Theaimof the validation process is to analyze
the performance of the P300 detection when using our
shape-feature vector k, the set of templates found for the
selected electrodes, and the optimumnumber of stimulations
obtained by theCalibrationAlgorithm. To that end, we gener-
ated the following two experiments. In the first experiment,
we compared the performance of two classifiers commonly
used by the BCI community [9]: the Stepwise Linear Dis-
criminant Analysis (SWLDA) and Support Vector Machine
(SVM) by using the vector k. In the second experiment, we
compared the performance of SWLDA (considered as one of
the best BCI classifiers by Krusienski et al. [9]) by applying
both vectors k and the one used by the BCI2000 system (k󸀠)
as described in [5].

In the first experiment, we extracted a balanced subset
B from the training set T . The set B is composed of the
available 𝑈 P300-labeled signals and the randomly selected
𝑈 non-P300-labeled signals. We trained twice the number
of 𝑈 SVM by applying a leave-one-out cross-validation with
the set B. Then, we randomly selected one SVM. To evaluate
the classifiers performance, we extracted a balanced subset
B󸀠 from the validation set V ; the set B󸀠 is composed of the
available𝐷 P300-labeled signals and the randomly selected𝐷

non-P300-labeled signals, where 𝐷 = ⌊𝑃
󸀠
/𝐾⌋ = 10. Then, we

obtained the shape-feature vectors k (see Section 2.1) of B󸀠.
Finally, we classified such vectors with the selected SVM and
with the SWLDA. We applied a confusion matrix to analyze
the performance of both classifiers. The resulting accuracy 𝜓

was computed by

𝜓 =
(TP + TN)

(TP + FP + FN + TN)
, (11)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives.

The average accuracy for the studied population (𝜓̂) of
both classifiers is presented in Figure 8, where “electrode
1” corresponds to the performance of the selected features,
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Figure 8: Ranking of electrodes according to the average accuracy
of classifiers SWLDA and SVM for the studied population, where
electrode 1 corresponds to the performance of the selected features,
which includes information from all the electrodes, computed with
the template of the best performing electrode for each subject (not
necessarily the same), while electrode 7 is the one with the lowest 𝜓
per subject.

0.4

0.5

0.6

0.7

0.8

0.9

1

AC
S

A
PM A
SG A
SR CL

L
D

CM D
LP

D
M

A
EL

C
FS

Z
G

CE IC
E

JC
R

JL
D

JL
P

JM
R

JS
C

JS
T

LA
C

LA
G

LG
P

LP
S

Subjects

𝜓

SVM
LDA

Figure 9: Detailed accuracy 𝜓 of classifiers SVM and SWLDA for
the electrode 1 of Figure 8 by using our shape-feature vector.

which includes information from all the electrodes, com-
puted with the template of the best performing electrode for
each subject (not necessarily the same), while “electrode 7”
is the one with the lowest 𝜓 per subject. In this figure, we
can observe that the average value of “electrode 1” with the
SVM for all subjects was 0.87 ± 0.09 and with the SWLDA
was 0.88 ± 0.09. In addition, Figure 9 shows the detailed
information yielding the accuracy for “electrode 1” for every
subject: one of them had one electrode with 𝜓 = 0.99 ± 0.02

with both classifiers; eight subjects had at least one electrode
with 𝜓 ≥ 0.9; 17 subjects had at least one electrode with
𝜓 ≥ 0.8 with the SVM and 20 with the SWLDA; and 20
subjects had at least one electrode with 𝜓 ≥ 0.7 with both
classifiers. The worst case was one subject whose best 𝜓 was
equal to 0.59 ± 0.10 with the SVM and 0.57 ± 0.18 with the
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Figure 10: Comparison between the percentage of correct P300
detection by using the shape-feature vector (SFV) and the vector
used by BCI2000 system (DV).

SWLDA, with distraction due to fatigue, lack of motivation,
or hunger being a possible cause for such low accuracy. As
stated in Section 3.1, the average value of the best electrode
for all subjects was 0.87 ± 0.10, which is not different from
the average value of “electrode 1” classified with the SVM, and
with the SWLDA the average and the standard deviation have
a difference of 0.01.

In order to evaluate the second experiment, we used an
unseen unbalance set V . First, we obtained its shape-feature
vectors k (see Section 2.1) and its feature vectors k󸀠 as used
in the BCI2000 system. Then, we classified those vectors by
the SWLDA. Since the set V was labeled, we computed the
percentage of correct classification. The SWLDA was unable
to generate useful coefficients with the given parameters for
two subjects when using the feature vectors k󸀠. In contrast,
it was able to generate weights for all the subjects when
using the shape-feature vectors k. Thus, taking into account
the nineteen subjects that both vectors could solve, the
P300 detection using the SWLDA with the shape-feature
vectors k was 93.15% ± 7.17, whereas with feature vectors
k󸀠 the detection was 83.18% ± 9.03. For all the subjects, the
percentage of correct classification with the shape-feature
vectors k was 10% higher than that with the feature vectors
k󸀠 (see Figure 10).

On the other hand, we evaluated the dimensionality
reduction. We selected the elements of the shape-feature vec-
tor by the stepwise regression method. We observed that the
SRM computes the maximum size of a vector (equal to 38 per
electrode), because no additional terms satisfy the entry and
removal criteria.However, it is possible to reduce even further
the dimensionality of the vector while keeping an accuracy
of one at least for one electrode; that was the case for nine
subjects using the SWLDA and eight subjects using the SVM.

Finally, we compare other methods with ours. As men-
tioned earlier, the idea that a P300 is more similar to a
template whose waveform resembles that of a P300 than to
a non-P300 is not new. As mentioned in Section 1, there
is a group of algorithms implementing template matching
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Table 1: Optimum number of stimulations. The middle column
shows the best electrode for each subject.

Subjects Electrodes Stimulations
ACS Cz 7
APM Fz 7
ASG PO8 5
ASR Fz 15
CLL PO8 15
DCM PO8 2
DLP Cz 15
DMA C4 8
ELC Pz 5
FSZ Pz 15
GCE PO8 5
ICE Cz 4
JCR Oz 15
JLD Cz 9
JLP Cz 15
JMR PO8 4
JSC Fz 9
JST PO7 3
LAC PO7 4
LAG PO8 15
LGP PO7 14

classifiers that can be used for detecting P300s (i.e., ML [13],
DTW [14, 15], andWoody [12]).We consider ourmethod as a
member of this group. Our method is similar to DTW since
both are based on slopes; however, our method is based on
representing a signal waveform by a chain code. Additionally,
unlike the methods based on an artificial template (such as
those based onWoody’smethod [48]), we generate a template
for every subject based on their own ERP signals by means of
a wrapping method.

4. Conclusions

The P300 is an ERP elicited after the presentation of an
infrequent stimulus. This endogenous component possesses
some useful properties that permit controlling BCI appli-
cations [49]. For these applications to run in real time,
it is important to optimize their computational resources.
One indirect way to diminish the computational time is by
reducing the dimensionality of the input feature vector used
in the classification process without weakening the detection
accuracy. The dimensionality reduction of such a vector can
be achieved by lowering the number of electrodes used to
acquire a subject’s EEG. On the other hand, to improve
the detection of a P300, several researchers have proposed
representing this signal in different domains such as time,
frequency, time-frequency, or shape. In this work, we have
chosen the latter because we assume that a subject produces
P300 signals whosewaveform can be consistently represented
by template curves and that these template curves are more

similar to curves with a P300 than to curves produced by EEG
background activity. The novelty of this work is the descrip-
tion of all these curves bymeans of their shape features.These
features are represented as a vector of characteristics whose
elements are provided by an adapted version (developed by
us) of the Slope Chain Code. The latter is the most useful
chain code for the purposes of this work because it divides the
curve into straight-line segments placed onto the curve and
preserves with higher resolution the contour shape. However,
our chain code is computationally less expensive than the
Slope Chain Code and, therefore, it is very useful for real-
time applications. Similar to other chain codes, ours does not
require decoding because it is self-contained and allows using
grammatical and syntactic analysis techniques. In addition to
the chain, we included in our vector other shape features such
as the tortuosity measure (i.e., one of the curve’s properties
measured by the Slope ChainCode), the individual difference
between the areas of every segment that divides the curve, and
the sum of these differences.

In order to demonstrate our main hypothesis that our
shape-feature vector improves the P300 detection accuracy,
we designed some experiments which demonstrated that the
performance of the SWLDA classifier is better when applying
our feature vector than when applying the one used in the
BCI2000 system [5]; our experiments also suggested that
it is possible to significantly reduce the dimensionality of
our feature vector while preserving a high accuracy during
classification.

Because calibration is a crucial step of any BCI system,
we have proposed a calibration methodology that achieves
the following goals: (i) it obtains a set of templates that best
represents, for a given electrode, the subject’s P300 based on
his/her own acquired signals, (ii) it finds the optimal number
of trials for every subject, (iii) it selects the subset of electrodes
that provides the best P300 signal for every subject, and (iv)
it selects the shape features that maximize the classification
accuracy while reducing the dimensionality of the feature
vector. Our statistical tests showed that our method achieves
a high average accuracy in the detection of P300 signals with
fewer than fifteen stimulations. Furthermore, in agreement
with the literature [5, 47], our results show that the best infor-
mation is provided by the electrodes selected in the central,
frontal, parietal, and parieto-occipital areas of the scalp.

Our future work will focus on the implementation of our
methodology to a BCI. Additionally, we are planning further
studies to analyze the robustness of the computed templates
over time. Because there is evidence that the use of grammati-
cal techniques and syntactic analysis yields promising results,
we plan to investigate these techniques for detecting the P300
using the chain code approach. Finally, our chain code can
be easily implemented on integer-number arithmetic; this
makes it suitable for an efficient hardware implementation
that integrates a classifier into signal acquisition devices,
something that we are currently exploring.
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