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Abstract
Endothelium, the gatekeeper of our blood vessels, is highly heterogeneous and a crucial physical barrier with the ability 
to produce vasoactive and protective mediators under physiological conditions. It regulates vascular tone, haemostasis, 
vascular inflammation, remodelling, and angiogenesis. Several cardio-, reno-, and cerebrovascular diseases begin with the 
dysfunction of endothelial cells, and more recently, COVID-19 was also associated with endothelial disease highlighting the 
need to monitor its function towards prevention and reduction of vascular dysfunction. Endothelial cells are an important 
therapeutic target in predictive, preventive, and personalised (3P) medicine with upmost importance in vascular diseases. 
The development of novel non-invasive techniques to access endothelial dysfunction for use in combination with existing 
clinical imaging modalities provides a feasible opportunity to reduce the burden of vascular disease.
This review summarises recent advances in the principles of endothelial function measurements. This article presents an over-
view of invasive and non-invasive techniques to determine vascular function and their major advantages and disadvantages. 
In addition, the article describes mechanisms underlying the regulation of vascular function and dysfunction and potential 
new biomarkers of endothelial damage. Recognising these biomarkers is fundamental towards a shift from reactive to 3P 
medicine in the vascular field. Identifying vascular dysfunction earlier with non-invasive or minimally invasive techniques 
adds value to predictive diagnostics and targeted prevention (primary, secondary, tertiary care). In addition, vascular dys-
function is a potential target for treatments tailored to the person.

Keywords Vascular function and endothelium · Predictive preventive personalised medicine · Invasive and non-invasive 
techniques · Biomarkers · Individualised patient profile · Improved individual outcomes

Introduction

Predictive, preventive, and personalised (3P) medicine is 
increasingly important to reduce cardiovascular events and 
increase life expectation worldwide [1]. The endothelium 
comprises a monolayer of endothelial cells (ECs) facing the 
lumen of blood and lymphatic vessels. It has an extension 

of more than  1000m2 covering the vasculome. ECs display a 
marked phenotypic heterogeneity, with specific receptors, a 
transcriptome and different functions tailored to each region 
of the organism [2, 3]. Despite this diversity, key features 
typical of many ECs can be summarised in Fig. 1.

Traditional and emergent risk factors for cardiovascular 
disease foster the damage of ECs monolayer conducting to 
endothelial cell activation and dysfunction (Fig. 2).

Pathophysiology of endothelium

Endothelial dysfunction has a major role in the initial phases 
and in the progression of several diseases as cardiovascu-
lar disease, some types of cancer and infection diseases as 
COVID-19 [4]. The aetiology is diverse and ranges from 
genetic, environmental, and metabolic factors [5].
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Due to several risk factors, ECs became activated and 
reduce the production or availability of vasodilators in par-
ticular nitric oxide (NO) and increase the number of vaso-
constrictors such as endothelin 1, angiotensin II, thrombox-
ane  A2  (TxA2), and prostaglandin  (PGH2) in the vasculature 
[6]. The vascular permeability barrier becomes impaired 
with glycocalyx disruption [syndecans (SDC 1–4), endo-
can], the decrement in vascular endothelial-cadherin, ECs 
sloughing and apoptosis and basement membrane degrada-
tion [7–9]. The pro-oxidant (increased expression of nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase 
and reactive oxygen species (ROS)), pro-coagulant (von 
Willebrand factor, tissue factor,  TxA2), and pro-inflam-
matory milieu enriched with cytokines, chemokines, cell 
adhesion molecules (CAMs, E- and P-selectins), and the 
leukocyte recruitment to the subintima region constitute the 
early stages of atherosclerosis and promote vascular dys-
function. A pro-proliferative state with increased levels of 
platelet-derived growth factor, insulin-like growth factor-1, 
interleukins (Fig. 2) can foster the increment of media layer 
leading to hypertension [6, 10].

In larger arteries, the major vasodilator in the vascular 
wall is NO while in smaller vessels, depending on the local, 
it is more heterogeneous (endothelial-derived hyperpolar-
izing factors or prostacyclin  (PGI2) [10]).

Under physiological conditions, NO is atheroprotective, a 
potent vasodilator, inhibits proliferation of vascular smooth 
muscle cells (VSMCs), platelet aggregation and reduces 
inflammation. In the vascular wall NO production in ECs, 
platelets, VSMCs, and activated macrophages is dependent 

on the activities of endothelial nitric oxide synthase (eNOS) 
and inducible NOS (iNOS). A reduction in NO bioavailabil-
ity due to oxidative stress or/and eNOS uncoupling leads to 
atherosclerosis and other vascular abnormalities [6] (Fig. 3). 
Higher levels of NO, due to increased expression of iNOS 
in activated macrophages, are associated with inflamma-
tory vascular responses and very high levels are related with 
infections, systemic inflammatory stress response, septicae-
mia, and lead to septic shock [11] (Fig. 3).

Vascular barrier impairment is common in various infec-
tious or inflammatory diseases [12, 13]. In animal models, 
several compounds have been shown the ability to enhance 
endothelial barrier properties such as activated protein C, 
angiopoietins, anti-vascular endothelial growth factor, cor-
ticosteroids, histamine receptor blockades, protein kinase 
C inhibitors, RhoA inhibitors, sphingosine 1-phosphate, 
and vasopressin type 1a agonists [9, 14–17] although not 
all demonstrate clinical efficacy [18]. Novel therapeutic 
approaches and clinical trials are needed to unravel the 
key pathways to barrier structure and function in vascular 
diseases.

Importantly, the damaged endothelium can be repaired, 
mobilizing endothelial progenitor cells from bone marrow 
[19]. Endothelial dysfunction is reversible, and its early 
identification could help to prevent irreversible vascular 
disease and improve individual outcomes.

Assessment of endothelial function

Endothelial function determination is difficult due to its 
diversity and heterogeneity. Several techniques have been 
used to measure endothelial function based on the quantifi-
cation of decreased endothelial-dependent vasodilation com-
pared with endothelial-independent vasodilation (Fig. 4), in 
an invasive or non-invasive fashion. The most suitable tech-
nique should be non-invasive, safe, repeatable, reproducible, 
inexpensive, and standardised [5].

Invasive methods

Vascular function can be measured using invasive techniques 
involving the intra-arterial infusion of vasoactive substances 
that lead to increase NO release, promoting the dilation of 
the VSMCs (Fig. 4).

Quantitative coronary angiography with intracoronary 
infusion of vasoactive agents

One of the most accurate and reliable method to evaluate 
endothelium in coronary arteries is through the quantitative 
coronary angiography (QCA) with intracoronary infusion of 
vasoactive agents [20]. QCA remains the gold standard and 

Fig. 1  Various endothelial cells functional properties. VSMCs, vascu-
lar smooth muscle cells
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most direct method for the functional evaluation of coronary 
arteries [21]. Measurement of vascular diameter changes in 
response to intracoronary infusion of vasoactive compounds 
is performed in addition with the evaluation of coronary 
blood flow, vascular resistance, and coronary flow reserve 
(typically after infusion of adenosine or stimulus such as 
pacing or exercise). More recently, several authors have 
developed three-dimensional (3D) QCA to overcome some 
of the limitations of two-dimensional (2D) QCA enabling 
a more accurate measurement of real vessel size due to the 
fusion of two angiographic views [22–24].

The advantage of this method is the evaluation of the 
coronary artery vascular bed through dose response curves 
to agonists and antagonists of ECs and the study of the basal 
endothelial function with infusion of eNOS antagonists. The 
major drawbacks are the invasive nature of the methodol-
ogy, the costs, the risks associated with the catheterization 
of arteries (myocardial infraction, stroke, infection) imped-
ing its use on a wide scale as a screening method of large 
asymptomatic populations [25].

Intravascular ultrasound

Intravascular ultrasound (IVUS) is a Doppler technique 
that in association with acetylcholine (ACh) or other vaso-
active infusions can be used to evaluate coronary blood 
flow velocity using a Doppler-guided wire to obtain vessel 
measurements. IVUS provides a full assessment of lumen 
morphology and lesion severity when compared to visual 
estimation on 2D-QCA [26]. In contrast, 3D-QCA may be 
analogous to IVUS in recognizing functionally important 
coronary stenosis, as evaluated by fractional flow reserve 
[5, 23].

IVUS is excellent for the characterization of an athero-
sclerotic plaque (evaluates plaque burden and composi-
tion). The drawbacks of the method are associated with its 
invasive nature and limited availability, the need to use an 
iodinated contrast agent for catheter positioning, and does 
not evaluate the adventitia [27].

Fig. 2  At left, some physiologic endothelial functions are summa-
rised. In the middle, the main changes that occur when endothelium 
is activated and becomes dysfunctional leading to several cardiovas-
cular diseases are illustrated. Ang II, angiotensin II; BM, basement 
membrane; CAMs, cellular adhesion molecules; CD40L, CD40 
ligand; CVA, cerebrovascular accident; ECs, endothelial cells; EDHF, 
endothelial-derived hyperpolarizing factor; ET1, endothelin 1; IGF, 
insulin-like growth factor; MI, myocardial infarction; NADPH, nico-

tinamide adenine dinucleotide phosphate; NO, nitric oxide; PAI-1, 
plasminogen activator inhibitor 1; PDGF, platelet-derived growth fac-
tor; PGH2, prostaglandin H2;  PGI2, prostacyclin; ROS, reactive oxy-
gen species; SDC 1–4, syndecans 1–4; TFPI, tissue factor pathway 
inhibitor; TM, thrombomodulin; tPA, tissue plasminogen activator; 
 TxA2, thromboxane  A2; uPA, urokinase plasminogen activator; VE-
cadherin, vascular endothelial cadherin; vW, von Willebrand factor
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Venous occlusion plethysmography with intrabrachial 
infusion of vasoactive agents

Venous occlusion plethysmography (VOP) is a methodology 
used for more than a century to evaluate blood flow [28]. 
This method is suitable to study the endothelial function, 
the vasodilator response to different stimuli in both healthy 
and pathologic situations, and the regulation of blood flow 
by autonomic nervous system [29, 30].

The underlying principle of VOP is that during occlu-
sion of venous return, the rate of forearm distension can 
be used to determine the rate of arterial blood flow. A cuff 

surrounding the arm (Fig. 5) is inflated applying a pressure 
lower than the diastolic pressure (i.e. 40 mmHg) for a short 
period of time (5–10 s), occluding venous return but unaf-
fecting arterial inflow. The rate of forearm distension distally 
can be assessed measuring forearm circumference by a strain 
gauge. A lower cuff is placed around the wrist and inflated 
to suprasystolic pressure (i.e. 200 mmHg) just before the 
measurement to ensure that the circulation to the hand does 
not interfere with the results [31].

This stimulus can be mechanical, promoting reac-
tive hyperaemia, or chemical and invasive, through the 
administration of intra-arterial infusion of vasoactive 

Fig. 3  Physiological and pathological functions of nitric oxide. Nitric 
oxide (NO) plays a significant role in maintaining the optimum physi-
ological function within the cardiovascular system. The levels of 
NO vary depending on the tissue and intracellular conditions, rang-
ing from subpicomolar to micromolar concentrations. In endothelial 
cells (ECs), vascular smooth muscle cells and activated macrophages, 
endothelial nitric oxide synthase (eNOS), and inducible nitric oxide 
synthase (iNOS) enzyme activities contribute to maintain the fine 

balance of NO. At physiological levels, NO regulates the local vas-
cular tone and is atheroprotective. A shift to both lower and higher 
concentrations of NO contribute to pathological conditions within the 
cardiovascular system. DM, diabetes mellitus; ECs, endothelial cells; 
eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide 
synthase; IUGR, intrauterine growth restriction; NO, nitric oxide; 
VSMCs, vascular smooth muscle cells

Fig. 4  Scheme summariz-
ing the basis to endothelial 
function evaluation (left panel) 
and the used of acetylcholine 
as a stimulus for endothelial 
cells (ECs, right panel) with 
subsequent nitric oxide (NO) 
production and relaxation in 
vascular smooth muscle cells. 
ECs, endothelial cells; M1, M3, 
muscarinic receptors; NO, nitric 
oxide; VSMCs, vascular smooth 
muscle cells
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substances. Endothelium-independent vasodilation is 
determined through the infusion of precursors of NO, 
such as sodium nitroprusside. This method measures 
blood flow, not arterial diameter, depends on conditions 
at baseline and lacks standardization between laborato-
ries. Despite these limitations, VOP using intra-arterial 
infusion of vasoactive compounds is regarded the gold 
standard for the evaluation of vascular function [32].

An advantage of this method is that the brachial artery 
is more accessible and easier to cannulate. Despite the 
need for arterial cannulation, it provides useful and repro-
ducible surrogate measures in a less invasive manner than 
3D-QCA enabling dose response curves to agonists and 
antagonists of ECs and the study of the basal endothelial 
function with infusion of antagonists of eNOS. The major 
drawbacks are the invasive nature of the methodology, the 
risks associated with the catheterization of the artery, the 
possibility of damage or injection of median nerve, and 
the variability due to several individual subject charac-
teristics making it unsuitable for large clinical trials and 
requiring repetitive measurements.

Functional studies ex vivo

Functional assessment of endothelial function has been 
available for several decades in organ bath systems and myo-
graphic recordings enabling the detection of the endothe-
lium-dependent and endothelium-independent relaxation of 
arterial rings, in response to known agonists such as ACh 
and sodium nitroprusside, respectively [33]. Endothelial-
derived vasodilators include NO and  PGI2 are produced in 
response to several agonists of ECs enabling the functional 
evaluation of endothelium [34].

Isolated organ bath is an ex vivo method that evalu-
ates vascular reactivity of biological preparations creating 
dose–response curves to agonists and antagonists to study 
the physiological and pharmacological responses of ECs, 
VSMCs, and others. Tissues and organs typically studied 
include rings of arteries, veins, intestine (duodenum, jeju-
num, and ileum), or strips of atrium, ventricle, or papillary 
muscle, among others. The evaluation of these samples in 
the appropriate physiological environment (nutrient solution, 
controlled temperature, aeration) enables its characterization 

Fig. 5  Several techniques to evaluate endothelial function. ED, endothelial dysfunction; FMD, flow-mediated dilation; NO, nitric oxide; PAT, 
peripheral arterial tonometry
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through cumulative doses of vasoactive agents or electrical 
stimulation (the organ is fixed between two platinum elec-
trodes connected to an electrical stimulator), which result 
in the contraction or relaxation of the muscle under evalua-
tion. From the experimental results, dose–response curves 
are generated, and endothelial dependent and independent 
evaluation is performed [33–36].

Advantages of this technique include the evaluation of 
multiple preparations in simultaneous, an accurate control 
of the experimentation conditions as well as a precise quan-
tification of the responses. In addition, it enables isolating 
components of endothelial function pharmacologically (for 
instance, using inhibitors of the eNOS enzyme). A major 
drawback of this method is that its use is generally limited 
to animal experiments, due to ethical considerations that 
restrain the availability and quantity of human samples and 
the variability of responses in patients. In human studies, 
sampling is often opportunistic or from subcutaneous fat 
[37, 38]. Another disadvantage is the inability to evaluate 

vessels with smaller diameters (< 60 mm). Being the most 
widely used method for the study of endothelial function in 
animal models, it has the limitation of not distinguishing 
the biological events that occur in the lumen and outside the 
blood vessel, not studying the impact of perivascular tissues 
usually removed in these studies [39].

Non‑invasive methods

The development and utilization of non-invasive meth-
ods is always preferred to evaluate vascular function [40]. 
Most imaging techniques are non-invasive and provide the 
structural evaluation of blood vessels given no indication 
about their function. In the last decade, major technologic 
advances enabled the detection of early atherosclerosis 
with these techniques as carotid intima-media thickness 
(cIMT), computed tomography (CT) angiography, IVUS, 
and 18-fluorodeoxyglucose positron emission tomography 
(FDG-PET). The latter associated with CT imaging can 

Fig. 6  The progression of atherosclerosis accompanied by different 
imaging modalities capable of monitoring the events. In this figure, 
it is represented the beginning of the atherosclerotic process starting 
with endothelial dysfunction, followed by an increment in the expres-
sion of cellular adhesion molecules that response to hypertension or 
dyslipidaemia with monocyte recruitment. The monocytes can incor-
porate lipids and become foam cells. In addition, smooth muscle 
cells migrate from the media into the intima, producing elastin and 
collagen that forms the fibrous cap. Plaque growth can downgrade 
blood flow to distal regions, leading to peripheral arterial disease or 
stable angina. Otherwise, erosion of the fibrous cap can uncover its 
prothrombotic content, causing clot formation and infarction, either 
in the brain or the myocardium. Imaging modalities for the various 
stages should be chosen in accordance with the physiological modi-
fications anticipated to a given stage of the process. ADMA, asym-

metric dimethylarginine; CAC, coronary artery calcium; CAVI, 
cardio-ankle vascular index; CCL2, CC-chemokine ligand 2; CT, 
computed tomography; FDG-PET, 18-fluorodeoxyglucose positron 
emission tomography; FMD, flow-mediated dilatation; hsCRP, high 
sensitive C-reactive protein; ICAM-1, intercellular adhesion molecule 
1; IVUS, intravascular ultrasound; MMPs, metalloproteinases; MPO, 
myeloperoxidase; MRI, magnetic resonance imaging; NaF-PET, 
sodium fluoride positron emission tomography; PAI-1, plasmino-
gen activator inhibitor 1; PAT, peripheral arterial tonometry, detects 
changes in small arteries; PWV, pulse wave velocity, monitors arterial 
stiffness and integrity of tunica media; sE-selectin, soluble E-selec-
tin; TF, tissue factor;  TxA2, thromboxane  A2; VE-cadherin, vascular 
endothelial cadherin; VCAM-1, soluble vascular cellular adhesion 
molecule 1
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detect and localize the increased metabolic uptake of radi-
olabelled glucose. FDG-PET signal is increased in early 
atherosclerotic process and when endothelial inflammation 
occurs (Fig. 6) [27, 41].

Assessment of carotid intima‑media thickness

Ultrasound image of the common carotid artery obtained 
with an echocardiograph using a 12L linear probe is the 
most validated imaging biomarker for prediction of athero-
sclerotic risk and follows specific international guidelines 
[42–44]. For this examination, participants are placed in the 
supine position, with the neck slightly hyperextended and 
rotated away from the transducer. In the two-dimensional 
images obtained from the neck vessels, the distal common 
carotid artery should be capture along its longitudinal path 
to the carotid bifurcation. The cIMT is typically measured 
on the posterior wall, at a distance of at least 5 mm from the 
bifurcation. The arterial segment under analysis must have 
the lumen/intima and media/adventitia interfaces clearly 
visible, along a length of at least 1 cm. The evaluation is 
carried out in telediastole, coinciding with the R wave of 
the electrocardiogram tracing. A semi-automatic image pro-
cessing method performed at least 50 to 60 measurements 
of the cIMT on the selected segment, then presenting a final 
value that corresponded to the average of the measurements 
performed [45, 46].

A large meta-analysis with 37,197 patients showed that 
for every 0.1 mm increase in cIMT adjusted risk of future 
myocardial infraction or stroke enhances by approximately 
10% and 13%, respectively [47]. Studies in paediatric age 
confirm the existence of a pro-atherosclerotic environment 
correlated with the increase in carotid intima-media thick-
ness [46, 48].

The main advantages are the relative simplicity, accu-
racy, and reproducibility. Indeed, cIMT provides a non-
invasive reliable tool for evaluating vessel wall structural 

modification at the macrovascular level. One disadvantage 
is that is operator dependent, and it does not measure adven-
titial thickness, an important contributor for atherosclerotic 
development [49].

Flow‑mediated dilation

Flow-mediated dilation (FMD) is a non-invasive method that 
enables the determination of endothelial dysfunction in the 
brachial artery in response to reactive hyperaemia [40]. A 
pneumatic cuff placed at the upper arm or wrist occludes 
(200–250 mmHg) arterial flow for 5 min, followed by rapid 
cuff deflation that induces reactive hyperaemia leading to 
shear stress and subsequent release of vasodilators as NO 
and  PGI2 [29, 50]. Classically, an ultrasonography system 
equipped with a high-resolution linear artery transducer 
(7.5–12 MHz) is used for the measurement of brachial 
artery diameter (monitoring baseline measurements, at rest, 
and during reactive hyperaemia). In response to a transient 
physiologic stimulus (increase in blood flow), vasodilators 
are released and arteries, including brachial artery dilate and 
increase in diameter (Figs. 5 and 7). The FMD is the percent 
increment of the diameter value of the artery with respect 
to the baseline. FMD is calculated as FMD = (peak diame-
ter—baseline diameter)/baseline diameter. Intraarterial infu-
sion of eNOS inhibitors (i.e. Ng-mono-methyl-L-arginine) 
clearly showed that this process is dependent on the release 
of NO from the endothelium. Endothelium-independent 
vasodilation is assessed through sublingual administration 
of sodium nitroprusside or nitroglycerin [51].

Impaired FMD is an important tool to detect endothe-
lial dysfunction and has the potential to predict and identify 
risk factors for cardiovascular events, even in asymptomatic 
patients [52]. In addition, FMD enables stratification of indi-
viduals for upcoming cardiometabolic events, and impaired 
FMD has long-term prognostic value in cardiovascular 
patients [53, 54].

Fig. 7  Flow-mediated dilation 
procedures. NO, nitric oxide
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FMD is a gold-standard method, extensively validated 
that strongly correlates with coronary artery function. 
Moreover, there are several disadvantages associated with 
FMD. First, the lack of standardization and variations in 
the placement of cuffs in the wrists/arms and in vessel 
diameters make it difficult to compare the results between 
laboratories. In addition, alterations in blood vessel struc-
tures and impaired dilation can act as limiting factors. 
The lack of resolution compared with the relative size 
of the artery, the inter-measurement variability, the poor 
reproducibility, and the operator dependence are the main 
disadvantages of this methodology. It is imperative that 
well-trained and experienced operators perform the tech-
nique in addition with several precautions to obtain more 
accurate results. Indeed, strict recommendations must be 
considered to reduce the variability associated with this 
methodology (Table 1) [55].

More recently, a novel approach, based in an oscil-
lometric method, was used to quantify flow-mediated 
dilation–enclosed zone FMD (ezFMD) [56]. Blood pres-
sure can be measured by an oscillometric method using 
and automatic instrument and in simultaneous oscillation 
amplitude can also be quantified. There is a proportional 
relation between oscillation amplitude and volumetric 
change with pulse pressure in brachial artery. The change 
in peak oscillation amplitude after a 5-min occlusion of 
the artery reflects a volume change instigated by reactive 
hyperaemia. Classic FMD is based in changes in vascular 
diameter determined by ultrasonography, whereas ezFMD 
is based in changes in vessel volume indirectly deter-
mined by oscillation amplitude. ezFMD = (peak ampli-
tude–baseline amplitude)/baseline amplitude. ezFMD is 
an operator independent method, automatically performed 
after the placement of a blood pressure cuff around the 
upper arm [56, 57].

Arterial stiffness

Pulse wave velocity Arterial stiffness is an independent 
biomarker of cardiovascular disease. It is associated with 
modification in functional (regulation of vascular tone due 
to contraction/relaxation of VSMCs) and structural (elastin, 
collagen fibres, extracellular matrix components) properties 
of the arteries. Several methods have been used to measure 
arterial stiffness, non-invasively: (1) vascular imaging tech-
niques, such as ultrasound and magnetic resonance imaging 
(MRI) allowing the measurement of arterial compliance with 
sonographic stiffness indices (i.e., augmentation index) and 
(2) recording of the pulse wave by tonometry or ultrasound 
Doppler. After left ventricular contraction, a pressure wave 
is generated travelling along the arterial tree. The velocity of 
this wave is called pulse wave velocity (PWV) and reflects 
the rigidity of the arteries. PWV is calculated by dividing 
the travelled distance by expended time [58, 59]. The lower 
the PWV, the more elastic and healthier the vessel is. How-
ever, when the vessel has a high level of rigidity, there is an 
increase in the propagation of pulse waves in the aorta artery 
and great vessels, in addition to causing an early return of 
pulse waves reflected from the periphery [60]. The pulse 
wave is normally reflected at any point of discontinuity in 
the arterial tree, causing a retrograde wave in the ascending 
aorta. This early return, even at the end of systole, promotes 
an overload in cardiac work [61].

Age, hypertension, diabetes, increased homocysteine levels, 
and diastolic dysfunction are associated with arterial stiff-
ness [62, 63]. Impaired homocysteine metabolism, recently 
recognised as a target in 3P medicine [64], may lead to 
an increment in homocysteine levels, fostering vascular 
dysfunction.

Carotid-femoral PWV (cfPWV) is the gold standard, non-
invasive assessment for arterial stiffness [65–67]. The evalu-
ation is done with the individual in supine position, and two 

Table 1  There are several conditions that need to be performed to obtain a significant decrease in variability in studies with flow-mediated dila-
tion

NSAIDs Non-steroid anti-inflammatory drugs

- Evaluations should be performed with the subject fasting for at least 6 h

- Tests with repeated evaluations must be done on the same day
- Vasoactive medication (when possible) must be avoided (4 half-lives before the measurements) and the results evaluated accordingly
- Anti-inflammatory medication such as NSAIDs must be withdrawn 1 and 3 days before
- Abstinence of physical activity at least 12 h before the test
- Caffeine and other stimulatory drugs must be avoided 12 h before the examination
- No smoking or exposition to cigarette smoke at least 12 h before the test
- Vitamin supplementation must be withdrawn at least 72 h before the examination
- Women in fertile phase must be evaluated in the follicular phase of the menstrual cycle
- The measurements must be performed in a calm environment, with a room temperature between 20 and 25 °C
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transducers are positioned, one in the right common carotid 
artery and the other in the right femoral artery. PWV is cal-
culated by dividing the distance between the transducers and 
the difference in time between the onset of the carotid pulse 
wave and the onset of the femoral pulse wave [66, 68]. The 
method is reproducible but the accuracy of recording the 
pulse waveform is not reliable in patients with atrial fibril-
lation or peripheral artery disease [69].

The major drawback of PWV is that is strongly influenced 
by blood pressure and, to a lesser extent, by heart rate.

Cardio‑ankle vascular index Cardio-ankle vascular index 
(CAVI) reflects the general stiffness of elastic and muscular 
arteries from the beginning of the aorta to the ankle. It deliv-
ers operator-independent information regarding changes in 
structural and functional arteriosclerotic processes. CAVI is 
less influenced by short-term blood pressure changes com-
pared with PWV and a mathematical correction can further 
improve this limitation [70].

Peripheral arterial tonometry

Reactive hyperaemia peripheral artery tonometry (RH-PAT) 
is a non-invasive technique that combines flow-mediated 
dilation with disposable pneumatic finger-tip probes to 
measure arterial pulse wave amplitude and obtain the reac-
tive hyperaemia index that reflects microvascular endothelial 
function [71, 72] (Fig. 5).

Shortly, the individuals are placed in a supine and com-
fortable position with the hands at the level of the heart. 
Disposable modified pneumatic probes on the index fingers 
record pulse wave amplitudes. After baseline measurement, 
arterial flow to the arm is occluded for 5 min using a blood 
pressure cuff inflated to 40 mmHg above systolic pressure. 
At the end, the cuff is rapidly deflated, and a transient incre-
ment in blood flow occurs. The ratio between the post- and 
pre-occlusion pulse wave amplitude values is used to calcu-
late the RH-PAT index. The value is normalised using the 
data from the opposite finger to correct for modifications in 
systemic vascular tone [72].

RH-PAT and FMD evaluate distinct aspects of vascular 
function (Table 2, Fig. 7), and most studies do not show 
a correlation between these methodologies and defend a 
more complementary association [73–75]. Several studies 

describe that RH-PAT correlates with coronary microvascu-
lar function, predicts cardiovascular events, and is associated 
with classic cardiometabolic risk factors [76–79]. Notewor-
thy, digital microvessel dilatation during hyperaemia is only 
partially dependent on NO bioavailability [80], functioning 
as a biomarker of peripheral microvascular capacity. More 
recently, PAT was described to be a predictor of stroke inci-
dence. RH-PAT index may suggest early subclinical cer-
ebrovascular remodelling and damage, atherosclerosis, or 
autonomic nervous system abnormalities [81].

RH-PAT is a non-invasive, safe, and rapid, operator inde-
pendent technique that can reflect basal endothelial function. 
The main disadvantages are the sensitivity to the autonomic 
tone, the prognosis value, the low reproducibility, the lack 
of correlation with FMD, and the influence of structural vas-
cular aspects (Table 3) [82, 83].

Microvascular endothelial function assessment

The endothelial function in microvascular blood vessels can 
also be evaluated noninvasively by different methodologies 
with direct and indirect approaches (Table 4) [84].

Direct methods enable the observation of the vessels (e.g. 
shallow capillaries, arterioles, and venules in skin, sublin-
gual mucosa, bulbar conjunctiva, and in the retina) using 
microscopy in combination with photo/video recording. 
More recently, optical coherence tomography imaging has 
been introduced into the microvascular research to visualize 
microvessels in the skin or capillaries in the retina [85–89]. 
Obtaining and analysing large datasets of microvascular 
measurements is challenging and time consuming [90]. For 
some measurements, (semi-)automated applications have 
been developed to analyse images improving reproducibility, 
saving time and being user independent. Computer-assisted 
analyses of microvascular datasets including machine learn-
ing, and deep learning [91, 92] are proving its value in epi-
demiological research and clinical trials, an example already 
established is the retinal dynamic vessel analyzer [93–95].

Indirect methods enable the specific characterization of 
function in small blood vessels. In animal models, in vivo, 
intravital microscopy is the most frequent and reliable 
approach. This technique monitors vascular dynamic events 
such as vascular permeability and tonus, blood flow [96], 
or the arterial glycocalyx [97–99]. Evaluation of dynamic 

Table 2  Comparison between 
several non-invasive vascular 
tests: FMD, RH-PAT, and PWV

baPWV, brachial-ankle pulse wave velocity; cfPWV, carotid-femoral pulse wave velocity; FMD, flow-medi-
ated dilation; RH-PAT, reactive hyperaemia peripheral arterial tonometry

Vascular test FMD RH-PAT cfPWV baPWV

Vascular layer evaluated Endothelium Media
Vascular bed Brachial artery Finger arterioles Aorta Aorto-muscular
Parameter Endothelial function Arterial stiffness
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functions include for instance blood flow/perfusion meas-
urements using laser-Doppler flowmetry (LDF; skin) or 
plethysmography (skin and muscle), blood oxygenation 
and hemodynamic measurements using near-infrared spec-
troscopy (brain, muscle, skin) [100, 101], transcutaneous 
oxygen pressure determinations  (tcpO2; skin), and tissue 
microvascular blood flow and blood volume measurements 
using contrast-enhanced ultrasonography (adipose tissue, 
muscle, kidney, liver, heart) [102]. The last method is inva-
sive since it involves the infusion of a contrast agent. The 
other techniques use non-invasive assessment of microvas-
culature. In addition, RH-PAT (discussed above) also reflects 
microvascular endothelial function [103].

Other methodologies that indirectly monitor microvas-
cular function include measuring microalbuminuria [33, 

104]; determining biomarkers of acute kidney damage [105]; 
measuring skin mottling over the anterior surface of the knee 
[101]; measuring protein concentrations in alveolar fluid lav-
age; and haemostasis-related biomarkers (von Willebrand 
factor, factor VIII, partial thromboplastin time, international 
normalised ratio, and platelet count) [106].

Different stimuli may be used to evaluate dynamically 
the microvasculature. For instance, flicker light exposure 
promotes reactive hyperaemia in the retinal microves-
sels. This response implicates neurovascular coupling 
and is partially mediated by endothelial NO production 
[107]. In skin, reactive hyperaemia can be induced during 
local skin heating or after ischaemia promoted by arte-
rial occlusion and evaluated with laser Doppler–based 
techniques (see the “Laser Doppler flowmetry” section). 

Table 3  Advantages and disadvantages of different endothelial dysfunction assessment techniques

FMD, Flow-mediated dilation; MI, myocardial infarction; NOS, nitric oxide synthase

Method Advantages Disadvantages

Quantitative coronary angiography • Directly quantifies endothelial function in the 
vascular bed of interest

• Allows to establish the relationship between ago-
nists and antagonists

• Allows to examine basal endothelial function after 
administration of NOS antagonists

• Invasive
• Expensive
• Risks related to coronary artery catheterization: 

stroke, MI, infection

Venous occlusion plethysmography • More accessible
• High reproducibility, validity
• Allows to establish the relationship between ago-

nists and antagonists
• Allows to examine basal endothelial function after 

administration of NOS antagonists

• Semi-Invasive
• Indirect measure of blood flow
• Time consuming
• Limited applications in exercise
• Risks: median nerve injury, infections, vascular 

injury
Doppler ultrasound • Non-invasive

• Possible to measure blood flow velocity
Continuous wave Doppler
• Simpler hardware implementation
• Ability to measure high blood flow velocity
• Wide depth range
Pulse wave Doppler
• Measurement range definition

• Precise positioning over a large blood vessel at an 
appropriate angle

• Expensive
• Contact gel
Continuous wave Doppler
• Measurement range ambiguity
Pulse wave Doppler
• For use by qualified personnel only
• “Aliasing” artefacts at high blood flow velocities
• Measurement depth limitations

Arterial tonometry • Non-invasive
• Safe and rapid
• Less operator dependent than FMD
• Accurately records the arterial blood pressure 

waveform
• Can reflect basal endothelial function

• Influenced by structural vascular aspects and less 
by the endothelium

• Sensitivity to the autonomic tone
• Temperature dependent
• Requires clipping of long fingernails
• Movement artefacts

Flow-mediated dilation • Non-invasive
• Safe, rapid
• Well correlated with coronary endothelial function
• Blood flow is a physiological stimulus of vasodila-

tion, like agonists
• Gold-standard method

• Low resolution influenced by the vessel size
• Inter-measurement variability
• Operator dependence
• Poor reproducibility
• Lack of strict protocols

Intravascular ultrasound • Excellent for evaluation of plaque burden and 
composition

• Invasive
• Limited availability
• Iodinated contrast agent required (for catheter 

positioning)
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These responses are dependent on endothelial vasorelax-
ant factors (e.g., NO, endothelial derived hyperpolarizing 
factor, prostaglandins) [108]. Systemic or local infusion 
of vasoactive substances, or via iontophoresis, can stim-
ulate ECs (e.g. acetylcholine,) or VSMCs (e.g. sodium 
nitroprusside). The following outcomes (vasodilation/
constriction and augmented/reduced perfusion) can be 
observed with different methodologies. Some devices 
can even combine several techniques like LDF and  tcpO2 
[109] or charge-coupled device and laser speckle contrast 
imaging [108].

Noteworthy, it is vital to recall that the phenotype 
of the endothelium is heterogeneous along the vascular 
tree [3]. The endothelium exhibits different responses to 
stimuli producing different vasoactive substances depend-
ing on the location (i.e., venules or arterioles of different 
size). Therefore, the results obtained in microvascular 
function are difficult to compare since they measure dif-
ferent vessel types within the microcirculation or evaluate 
distinct areas. Obtaining and combining information from 
different areas may be important and complementary, for 
instance, improving the diagnosis of a disease [110].

Moreover, the control of microvascular function varies 
considerably among different tissues, depending on their 
function, and nourishing requirements. The retinal micro-
circulation does not possess sympathetic innervation, and 
the brain and kidney microvasculature typically display 
low impedance in contrast to that of skin or muscle [111]. 
All these details need to be considered when determining 
and analysing microvascular function.

Arterial glycocalyx

One of the diagnostic methods to evaluate endothelial 
function is grounded on the measurement of the glycoca-
lyx integrity and thickness by intravital microscopy or by 
orthogonal polarization spectral (OPS) imaging [112].

Intravital microscopy using sidestream darkfield (SDF) 
imaging is a non-invasive method utilised to analyse the sub-
lingual microcirculation. The technique monitors red blood 
cells within the microvasculature when light emitted by a 
diode probe is reflected by haemoglobin and monitored by 
a SDF camera [113]. Total vessel density, perfused vessel 
density, proportion of perfused vessels, and microvascular 
flow index are predicted, and more recently using validated 
automatic software platforms, the operator-dependent limi-
tations are minimised [114]. SDF imaging detection of red 
blood cells is used as a marker of microvascular perfusion, 
and measurement of the distance between the endothelium 
and red blood cells in circulation represents the thickness 
or dimension of the glycocalyx that correlates with levels 
of classical cardiovascular risk biomarkers such as blood 
glucose, low-density lipoprotein (LDL), high-density lipo-
protein, and body mass index.

Multiple studies have shown, in critically ill patients, 
sublingual microvascular glycocalyx impairment [115–118]. 
The exactness of in vivo glycocalyx determination has been 
analysed further with an in vitro approach using atomic 
force microscopy [118, 119]. Consensus European Society 
of Intensive Care Medicine guidelines released recommen-
dations for acquisition and interpretation of microcirculatory 

Table 4  Advantages and disadvantages of different microvascular endothelial function assessment techniques

OPS, orthogonal polarization spectral; SDF, sidestream darkfield

Method Advantages Disadvantages

Arterial glycocalyx • Tracer dilution method: direct measure
• OPS + SDF: simple, non-invasive, bedside perfor-

mance

• Tracer dilution method: invasive and time-consuming
• OPS + SDF: indirect measures

Near-infrared spectroscopy • Non-invasive, portable
• Tissue oxygen consumption measurement
• Recordings during exercise

• Affected by adipose tissue thickness
• Myoglobin may interfere

Laser Doppler flowmetry • Simple, non-invasive
• Continuous blood flow measurement during exer-

cise
• Coupling with reactivity tests

• Expensive equipment
• Requires experienced operator for high accuracy and 

low variability over time
• Susceptible to changes in autonomic nervous system 

and vasomotor tone
• Temperature dependent

Laser speckle contrast analysis • Simple, non-invasive
• Real-time recording of blood flow changes

• Expensive equipment
• Requires experienced operator for high accuracy and 

low variability over time
• Movement artefacts
• No recordings in absolute flow units
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images obtained with hand-held vital microscopes for 
assessment of the microcirculation in critically ill patients 
[97].

Arterial glycocalyx can be evaluated using direct meas-
urement with dilution tracers, but they are invasive and time-
consuming methods. OPS and SDF are simple, non-invasive, 
bedside performance, indirect methods to measure arterial 
glycocalyx [120].

Laser Doppler flowmetry

Laser Doppler flowmetry is an excellent non-invasive tech-
nique to evaluate skin microvasculature function after a 
stimulus [121, 122]. It is based on diffusion and refraction 
of a laser beam light through moving blood cells related 
with the concentration and velocity of measured [108]. 
LDF determines modifications in the skin microcirculation 
in real time after stimuli, such as post-occlusion reactive 
hyperaemia, the infusion of vasoactive substances or the 
iontophoresis of small, charged molecules. For instance, 
intradermal administration of ACh by iontophoresis induces 
endothelium-dependent dilatation that, in association with 
LDF, enables quantification of the regional blood flow [123]. 
Microvascular reactivity obtained with LDF proved to be 
an impartial predictor of atherosclerotic disease in diabetic 
conditions [124].

LDF is a relatively simple, non-invasive method that 
monitors continuous blood flow measurement during exer-
cise and can be coupled with reactivity tests. It has good 
accuracy for quantifying rapid modifications in cutaneous 
blood flow. Tough, the characteristic heterogeneity of this 
tissue, due to differences in its anatomy, promotes spatial 
variability that contributes to a relatively low reproducibility 
[122, 125]. The use of integrated probes helps to reduce spa-
tial variability enabling to increase the reproducibility [108]. 
Another advantage of this technique, when coupled with 
intradermal infusion, is the safety, given the small amount 
of drug infused. The main limitations involve an equipment 
very expensive requirement of an experienced operator for 
high accuracy and low variability over time. In addition, it is 
an indirect method unable to determine the local blood flow, 
but it provides an index of skin perfusion [120].

Laser speckle contrast analysis

Laser speckle contrast analysis is a novel, fast, non-invasive 
technique that enables continuous measurement of skin 
blood flow. The main principle relies on the backscattered 
light from a tissue lit with laser light creates a random inter-
ference pattern on the detector (i.e. ‘speckle pattern’). This 
method can be combined with reactivity tests such as local 
thermal hyperaemia, and post-occlusive reactive hyperae-
mia enhancing reproducibility when compared with the LDF 

[126]. The method has been performed to evaluate distinct 
vascular beds [127, 128] in patients with type 1 diabetes 
mellitus [129], chronic kidney disease [130], and coronary 
artery disease [131]. Laser speckle contrast analysis is a sim-
ple, non-invasive real-time recording of blood flow changes. 
The equipment is expensive and requires experienced opera-
tors for high accuracy and low variability over time. It is 
sensitive to movement artefacts, and no records in absolute 
flow units can be obtained [132].

Index of microvascular resistance in coronary arteries

The index of microvascular resistance (IMR), the product 
of hyperaemic distal coronary pressure and hyperaemic 
transit time, is currently thought the standard of microvas-
cular (dys)function. IMR has been shown to be specific for 
microvascular function [133] and has been correlated to 
outcome. However, it is an invasive method that depends on 
the injection technique of the operator (adenosine-induced 
hyperaemia is obligatory for both coronary flow reserve or 
coronary flow velocity reserve and IMR).

Recently, Konst and co-workers [134] performed an inva-
sive investigational protocol with acetylcholine testing (for 
endothelium-dependent epicardial microvascular spasm), 
adenosine testing (for endothelium independent dysfunc-
tion), and measurement of absolute coronary blood flow 
and microvascular resistance as an innovative method for 
quantitative assessment of microvascular disease in patients 
with suspects of ischaemia with nonobstructive coronary 
arteries [135] and used fractional flow reserve testing to 
evaluate functionally epicardial disease. Absolute flow and 
resistance measurement, in the study by Konst et al. [134], 
does not require pharmacological stimuli since the saline 
infusion itself induces a maximum hyperaemia very rapidly. 
In contrast to coronary flow reserve or coronary flow veloc-
ity reserve and IMR, it is completely operator independent 
[135, 136]. Thus, evaluations of absolute flow and resistance 
are predictable to be of complementary importance to IMR.

Near‑infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a novel, non-inva-
sive method that determines local tissue oxygenation pro-
viding crucial information about tissue oxygen consump-
tion and blood flow [120]. A portable device produces 
near-infrared light irradiating the examined tissue and 
detecting and measuring changes in absorbance of oxy-
gen carrier compounds (i.e. haemoglobin and myoglobin) 
based on their oxygenation state [137]. The ‘modified 
Beer-Lamberts law’ is the basis for this methodology 
[137] that allows the evaluation of microvascular reac-
tivity and skeletal muscle oxygenation at rest and during 
exercise, via non-stop recording of functional alterations 
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in oxygenated haemoglobin dissociation [138]. Moreover, 
using post-occlusion reactive hyperaemia, NIRS provides 
information on microvascular function and muscle’s oxi-
dative capacity and oxygenation, both at rest and during 
exercise [138].

The main advantages of NIRS are that is a portable, 
non-invasive technique and measures the tissue oxygen 
consumption, at rest and during exercise. The major draw-
backs are that the measurements are affected by adipose 
tissue thickness and myoglobin content [137].

Biomarkers

The application of serum biomarkers to monitor endothe-
lial function has countless advantages given the relative 
simplicity of the procedures. Indeed, venous blood sam-
ples are commonly used in clinical laboratories and could 
be an accessible way to measure systemic biomarkers 
of vascular disease. The use of these biological markers 
(Fig. 8, Table 5) to assess the prognosis and/or diagnosis 
of vascular disorders is continuously growing due to its 
clinical relevance [106, 139, 140]. Identifying biomarkers 
is fundamental towards the shift from reactive to 3P medi-
cine in the vascular field helping to obtain an individual-
ised patient profile and improve individual outcomes.

Serum biomarkers

Endothelial activation is triggered by several inflammatory 
stimuli such as toxins, inflammatory markers such as C-reac-
tive protein, CD40 ligand (CD40L), interleukins (such as 
IL-1β, IL-18), CC-chemokine ligand 2 (CCL2), pentraxin-3, 
and sortilin (Table 5) [141–143]. In addition, inflammation 
is a vital feature in the development and progression of ath-
erosclerosis and its complications. The inflammatory cas-
cade is present in endothelial dysfunction and throughout 
the process of atherosclerosis [144].

Cell adhesion molecules

Endothelial cells are major players regulating the perme-
ability and transport of molecules between the blood and 
the interstitial space and controlling the signalling pathways 
associated with innate immunity. Due to inflammation, ECs 
are activated, and the expression of adhesion molecules is 
incremented. Cell adhesion molecules are considered early 
markers of endothelial activation and systemic inflamma-
tion [141].

Soluble CAMs (i.e. intercellular adhesion molecule-1 
(ICAM-1), E-selectins, and vascular cell adhesion mol-
ecule-1 (VCAM-1)) regulate the transmigration of leuko-
cytes. ICAM-1 and VCAM-1 belong to the immunoglobulin 
superfamily and are ligands for β integrins on leukocytes 
and mononuclear cells, respectively [145, 146]. ICAM-1 is 
highly expressed in ECs and subendothelial macrophages 
[147] while VCAM-1 is predominant to ECs and is not pre-
sent in healthy endothelium [147]. ICAM-1 participates in 
the adhesion and transmigration of leukocytes in the vas-
cular endothelial wall and leads to endothelial cell acti-
vation and inflammation, early steps in the initiation and 
progression of atherosclerosis [148]. VCAM-1 expression 
probably results from endothelial activation, as it enhances 
local recruitment of monocytes and its interaction with ECs 
during the early phases of the atherosclerotic process [149].

E-selectin, belongs to the C-type lectin family, is one of 
the most specific markers of endothelial activation [5, 150]. 
Its expression is limited to the ECs and induced by inflam-
matory cytokines. E-selectin recruits leukocytes mediating 
its rolling to the site of inflammation [150].

Elevated levels of soluble adhesion molecules, as VCAM-
1, P-selectin, and ICAM-1 have also been reported in 
COVID-19 patients [151, 152].

C‑reactive protein

C-reactive protein (CRP) is a pentraxin with a crucial 
role in the innate human immune response [153]. CRP, 
traditionally consider a biomarker of inflammation, has 
pro-atherogenic properties, increasing the expression of 

Fig. 8  Systemic endothelial dysfunction biomarkers. ADMA, 
asymmetric dimethylarginine; ED, endothelial dysfunction; EMP, 
Endothelial microparticles; EPCs, Endothelial progenitor cells; 
sICAM-1, soluble intercellular adhesion molecule 1; sVCAM-1, solu-
ble vascular cellular adhesion molecule 1
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adhesion molecules, reducing NO bioavailability, promot-
ing vasoconstriction and endothelial dysfunction [144, 
154]. CRP promotes endothelial activation through the 
expression of ICAM-1, VCAM-1, E-selectins, and CCL2 
and activates macrophages that express cytokines and 
tissue factors [154]. CRP leads to a reduction in vaso-
active factors derived from the endothelium, mainly NO, 
affecting vascular homeostasis. This process may promote 
apoptosis in ECs and reduce compensatory mechanisms 
important for angiogenesis [155].

Concomitantly, CRP increases the production of endothe-
lin 1, a potent endothelium-dependent vasoconstrictor, and 
IL-6, a key pro-inflammatory cytokine [156]. CRP is consid-
ered a predictor of atherosclerosis and vascular dysfunction. 
This protein is able to modify the endothelial cell phenotype 
and contributing to lesion formation, plaque rupture, and 
coronary thrombosis. CRP is an inflammatory biomarker 
and a mediator of vascular disease [141].

CD40 ligand

The CD40L, belongs to the TNF superfamily, is a type II 
transmembrane soluble protein that comprises a pathophysi-
ological pathway linked to inflammation and atherogenesis 
[157]. CD40L is primarily produced in platelets being fun-
damental in haemostasis and in the inflammatory response in 
the vascular wall [158]. Activated platelets express CD40L 
on their surface stimulating the secretion of chemokines 
and expression of adhesion molecules in ECs leading to 
the recruitment and mobilization of leukocytes to the lesion 
location [159].

CD40L can rapidly detach from the platelet membrane, 
appearing systemically. CD40L has proinflammatory, 
pro-oxidant and prothrombotic activity, increasing plate-
let activation and aggregation, and platelet-leukocyte and 
leukocyte-endothelial coupling both in the soluble form 
and in the platelet [160]. Indeed, CD40L leads to chronic 

Table 5  Summary of the most frequent circulating biomarkers to monitor endothelial dysfunction in human studies

ADMA, asymmetric dimethylarginine; CAD, coronary artery disease; CCL2, CC-chemokine ligand 2; CEC, circulating endothelial cells; cEPCs, 
endothelial progenitor cells; CVD, cardiovascular disease; ED, endothelial dysfunction; EMP, endothelial microparticles; ET1, endothelin 1; 
hsCRP, high sensitive C-reactive protein; IL-1β, interleukin 1β, IL-6, interleukin-6, IL-8, interleukin-8, MPO, myeloperoxidase; NOS, nitric 
oxide synthase; oxLDL, oxidized low-density lipoprotein; PAI-1, plasminogen activator inhibitor 1; PTX3, pentraxin 3; SDMA, symmetric 
dimethylarginine; sE-selectin, soluble E-selectin; sICAM-1, soluble intercellular adhesion molecule; sP-selectin, soluble P-selectin; sVCAM-1, 
soluble vascular cellular adhesion molecule; TM, thrombomodulin; TNF-α, tumour necrosis factor α; TWEAK, TNF-like weak inducer of apop-
tosis; tPA, tissue plasminogen activator; vWF, von Willebrand factor

Method Characteristics Advantages Disadvantages

Serum markers Blood drawn
NOS inhibitors

  ADMA, SDMA Competitive inhibitor of NOS Some prospective clinical data Not widely available
Inflammatory biomarkers

  ET1 Proinflammatory peptide Some prospective clinical data Not widely available
  hsCRP, IL-6, IL-8, IL-1β, 

TNF-α, CCL2,
  TWEAK, PTX3, CD40L

Inflammatory biomarkers Widely available; many data in CVD 
and ED

May be high in inflammation/
infection

Cell adhesion molecules
  sICAM-1, sVCAM-1, sE-selec-

tin, sP-selectin
Adhesion molecules Some prospective clinical data Not widely available

Expensive
Coagulation pathway molecules

  vWF, tPA, PAI-1, TM, fibrino-
gen, ADAMTS13

Thromboembolic markers vWF is widely available Not a lot of data on ED

Glycocalyx damage
  Endocan, syndecan 1; Endothelial glycocalyx Not widely available

Oxidative stress
  MPO Activated neutrophils and 

macrophages increment 
MPO and increase ROS

Biomarker of oxidative stress Not widely available

  oxLDL
Cellular markers

  cEPCs Circulating endothelial 
progenitor cells promoting 
vasculogenesis

Good correlation with CAD and ED Expensive, not widely available

  CEC, EMP Good correlation with CAD and ED Not widely available
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inflammation, contributing to endothelial dysfunction and 
atherogenesis [157].

CC‑chemokine ligand 2

The increased expression of CCL2 attracts monocytes 
from the vessel lumen into the subendothelial space and in 
association with adhesion molecules facilitates monocytes 
binding to the ECs and transmigration to the intima layer. 
The monocyte recruitment and migration are mediated by 
CCL2 [161, 162]. Inside the intima, monocytes differenti-
ate into macrophages and start to express receptors such as 
macrophage scavenger receptor (SR-A), lecitin-like oxidized 
LDL receptor 1 (LOX-1), and CD36 that internalize modi-
fied LDL beginning the atherosclerotic process [162].

Endothelial damage triggers the increased expression of 
CCL2. The measurement of systemic levels of CCL2 is con-
sidered a biomarker of endothelial dysfunction [162].

Asymmetric dimethylarginine

Asymmetric dimethylarginine (ADMA) is an endogenous 
inhibitor of NO synthase [163] and a biomarker of NO 
impairment and atherosclerosis [164, 165]. ADMA levels 
independently correlate with endothelial function measure-
ments [166, 167]. Elevated plasma levels of ADMA are 
related with hyperlipidaemia, hypertension, coronary artery 
disease, unstable angina, end-stage renal disease, myocardial 
infarction, stroke, and diabetes (Fig. 9) [168–174]. Type 2 

diabetes has been associated with elevated ADMA levels. 
ADMA and NO are crucial determinants of insulin resist-
ance [175]. Metformin reduced serum levels of ADMA by 
30% in type 2 diabetic patients [176]. Similarly, rosiglita-
zone reduced ADMA levels in insulin-resistant non-diabetic 
hypertensive individuals [177]. Increased levels have been 
reported in COVID-19 patients [178].

Endocan

Endocan, a soluble chondroitin/dermatan sulphate proteo-
glycan, is expressed and secreted mostly by the activated 
endothelium. Several pro-inflammatory cytokines and pro-
angiogenic factors upregulate its synthesis and secretion 
[179]. Elevated levels of endocan have been associated with 
various cardiometabolic disorders, such as hypertension 
[180–182], chronic kidney disease [183], coronary artery 
disease [184–186], fatty liver disease [187], type 2 diabe-
tes [188–190], and atherosclerosis [190–192]. In hyperten-
sion, endocan levels are positively correlated with cIMT, 
high-sensitivity CRP levels [180, 193], and arterial stiffness 
[194]. It has recently been implicated in the early phases of 
atherosclerosis in patients with type 2 diabetes [190].

Endocan is involved in atherosclerosis through endothe-
lial dysfunction by promoting inflammation, cell adhesion, 
and oxidative stress [195]. Endocan enhances under proin-
flammatory conditions (i.e. increment in IL-1β, TNF-α, and 
other pro-inflammatory factors) leading to further augmen-
tation of VCAM-1 and ICAM-1, with subsequent adhesion 

Fig. 9  Major risk factors incre-
menting ADMA levels with 
subsequent nitric oxide synthase 
inhibition and concomitant con-
sequences. ADMA, asymmetric 
dimethylarginine; MMPs, 
metalloproteinases; NOS, nitric 
oxide synthase; VSMCs, vascu-
lar smooth muscle cells
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of leukocytes to the endothelium and recruitment and 
migration of inflammatory cells. In macrophages, in vitro, 
endocan treatment stimulated NO and ROS production and 
increased iNOS and CRP expression [196].

Endocan is an important predictor of progression and 
prognosis of cardiovascular events [195, 197].

Myeloperoxidase and reactive oxygen species

Myeloperoxidase (MPO), an enzyme belonging to the heme 
peroxidases superfamily, is produced by activated neutro-
phils, monocytes, and tissue macrophages. Once activated 
it catalyses the formation of ROS (such as hypochlorous 
acid, tyrosyl radical, and nitrogen dioxide) leading to oxida-
tive damage of lipids and proteins in the body [141]. This 
enzyme is useful combating infectious diseases and can also 
be used to predict the onset and progression of atherosclero-
sis [198, 199]. MPO attaches to glycosaminoglycans in vas-
culature and impairs endothelial-derived NO release leading 
to endothelial dysfunction [198].

High MPO levels are linked to endothelial dysfunction 
and coronary artery disease, whereas low plasma levels and 
some MPO polymorphisms are cardioprotective [141, 199]. 
In turn, oxidative stress can promote endothelial dysfunction 
through various mechanisms; the most prominent involves 
the reduction of NO bioavailability [6]. The vicious cycle 
associated with the production of ROS can exceed the anti-
oxidant defences, and ultimately, an increment in oxidized 
biomolecules and tissue damage may happen. Oxidative 
stress plays a central role in the development of endothelial 
dysfunction and atherogenesis [5, 6].

Pentraxin‑3

Pentraxin 3 (PTX3), an inflammatory biomarker, belongs to 
the C-reactive protein family. PTX3 is considered a predic-
tor of functional recovery in cardiac surgery patients [200].

Proinflammatory stimuli, injury, or infection, proinflamma-
tory cytokines, toll-like receptor engagement, and microbial 
moieties induce PTX3 production by various cell types of the 
myeloid lineage, fibroblasts, epithelial cells, mesangial cells, 
vascular and lymphatic ECs, smooth muscle cells, adipocytes, 
astrocytes, and cells of microglia. PTX3 involved in matrix 
remodelling, plays a role in the resistance to some pathogens, 
and has a regulatory role in inflammation and in fertility. Once 
released, PTX3, a biomarker of inflammation and tissue dam-
age, has a potential role in the diagnostic and prognostic of 
cardiovascular disease. In addition, PTX3 is a crucial player 
in innate immunity, interacting with various microbial or 
endogenous ligands, regulating inflammation as well as tissue 
remodelling and repair. The multiple functional properties of 
PTX3 relate to the ability to interact with diverse ligands.

Others

Atherothrombotic events are characterised by an increment 
in oxidative stress, endothelial cell activation, increment in 
several pro-inflammatory cytokines/chemokines, platelet acti-
vation, increment in acute phase proteins, angiogenic growth 
factors, among other systemic biomarkers (Fig. 10). Oxidized 
LDL (oxLDL) is pro-inflammatory molecules implicated in 
several atherosclerotic events. oxLDL is involved in early pro-
cesses (increment in adhesion molecule expression and acti-
vation of the immune system) and late events (platelet aggre-
gation and destabilization of atherosclerotic plaque) [198]. 
Oxidative stress modifies LDL particles during the migration 
in the blood vessel wall; oxLDL are a proposed marker of 
endothelial dysfunction and atherogenesis [143].

Free fatty acids promote increment in ROS levels and 
promote activation of nuclear factor-κB proinflammatory 
pathways being considered an early biomarker for endothe-
lial damage and atherosclerosis [141].

Increased homocysteine levels and endothelin 1 over-
production are also linked with endothelial dysfunction and 
increment in vascular stiffness suggesting a major role in 3P 
medicine [64, 201, 202].

Following endothelial cell activation, an unbalance 
between tissue plasminogen activator and its endogenous 
inhibitor, plasminogen activation inhibitor-1, promotes 
a pro-coagulant state. In addition, von Willebrand factor, 
a glycoprotein released by ECs, nurtures coagulation and 
platelet activation. Fibrinogen, a glycoprotein and biomarker 
of endothelial function, is synthesised mainly in liver cells 
and megakaryocytes. Fibrinogen can attach to the surface of 
glycoprotein (GP) IIb/IIIa, linking platelets between them. 
Fibrinogen promotes platelet aggregation and smooth mus-
cle cell migration, and enhances blood viscosity, and early 
events in the atherosclerotic process [5].

Increased renalase serum levels were recently linked with 
symptomatic coronary microvascular disease in patients 
with acute chest pain and suggested as a novel biomarker of 
coronary microvascular disease [203].

In COVID-19 patients, markers of endothelial activation 
as von Willebrand factor, thrombomodulin [204], angiopoi-
etin-2 [151, 205], and endoglin, a transforming growth factor 
β receptor, have been described.

Cellular biomarkers

Circulating endothelial cells and endothelial microparticles

Endothelial function reveals the equilibrium between vas-
cular endothelial damage and repair. There are several 
techniques to quantify the detachment of mature ECs and 
derived microparticles as an index of endothelium dam-
age. Endothelial cell activation or injury fosters circulating 
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endothelial cells (CEC) detachment leading to its increment 
in the circulation. Flow cytometry or fluorescence micros-
copy can be used to quantify CEC. The increment in CEC 
in the peripheral circulation is directly associated with 
the extent of endothelial damage in patients with vascular 
inflammation, atherosclerosis, and COVID-19 [162, 206].

Microparticles, the membrane vesicles (0.1 to 1 µm) 
released by different cell types and CEC, are novel biomark-
ers of endothelial injury, linked with atherosclerosis and 
related vascular complications (inflammation, thrombosis, 
and apoptosis). Microparticles are potential biomarkers of 
vascular damage and inflammation [207]. The number of 
circulating microparticles may provide a crucial clinical data 
in healthy individuals or patients with cardiovascular disease 
as a surrogate marker of vascular function [207, 208].

Endothelial microparticles (EMP) are small vesicles 
originated and released by the plasma membrane of acti-
vated or damaged ECs [162]. EMP carries adhesion mol-
ecules, enzymes, and their surface receptors, in addition to 
expressing a variety of constitutive antigens [209]. High 
levels of EMP occur when endothelial cells are activated 
and apoptotic and are directly related to thrombogenesis and 
atheromatous plaque formation [210], also participating in 
the processes of inflammation, vascular damage, and angio-
genesis [211]. EMPs derived from activated endothelial cells 

may regulate monocyte/macrophage function stimulating the 
production of pro-inflammatory cytokines [212]. High EMP 
levels have been linked with endothelial dysfunction in coro-
nary artery disease patients [212, 213].

Platelet microparticles

Platelet microparticles (PMP) are very abundant in human 
plasma [214]. Numerous studies have described a relation 
between PMP and inflammation [215], blood coagulation 
[216], thrombosis, and tumour progression [217]. They have 
a role in tissue regeneration and angiogenesis [218]. Their 
levels are high in myocardial infarction, type 2 diabetes, or 
pulmonary hypertension [25, 219, 220].

Monocyte microparticles

Microparticles derived from monocytes (MMP) are related 
to endothelial dysfunction [221]. MPM can activate endothe-
lial cells, due to IL-1β increasing inflammation [222]. Treat-
ment of ApoE − / − mice with MPM led to the accumulation 
of macrophages in the vascular wall and promoted athero-
sclerotic plaque formation. The interaction between MPM 
and inflammatory cells fosters the atherosclerotic disease in 
ApoE − / − mice [223].

Fig. 10  Biomarkers of athero-
thrombotic events. CCL2, 
CC-chemokine ligand 2; COX, 
cyclooxygenase; CRP, C-reac-
tive protein; HGF, hepatocyte 
growth factor; IL, interleu-
kin; Lp-PLA2, lipoprotein-
associated phospholipase A2; 
MMPs, metalloproteinases; 
MPO, myeloperoxidase; NOX, 
NADPH oxidases; oxLDL, 
oxidized low density lipo-
protein; PAPP-A, pregnancy-
associated plasma protein-A; 
PIGF, placental growth factor; 
PPAR receptors, peroxisome 
proliferator-activated receptors; 
sCD40L, soluble CD40 ligand; 
sFasL, soluble Fas ligand; 
sICAM-1, soluble intercellular 
adhesion molecule 1; sVCAM-
1, soluble vascular cellular 
adhesion molecule 1; TGF-β, 
transforming growth factor β; 
TIMP1,2, tissue inhibitor of 
metalloproteinases 1, 2; TNF-α, 
tumor necrosis factor α; VEGF, 
vascular endothelial growth fac-
tor; vW, von Willebrand factor
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Conclusions and expert recommendations

The importance of endothelial dysfunction for the develop-
ment and progression of cardiovascular disease is unques-
tionable. Endothelial function can be evaluated in vivo, 
in vitro, with invasive, or non-invasive methodologies. It is 
noteworthy that these techniques are widely used in clinical 
research, but they are still not used in diagnosis, because 
they are too invasive, too expensive, or difficult to be stand-
ardised. We emphasize, therefore, the importance of further 
studies and investments in the area to make them applicable 
in clinical practice and, therefore, minimize public health 
problems related to cardiovascular diseases, through early 
diagnosis of endothelial dysfunction.

Endothelial dysfunction predicts the severity of car-
diovascular diseases, and pharmacological and lifestyle 
changes can reverse it. Monitoring endothelial function can 
provide information regarding the efficacy of therapeutics, 
and progression of a vascular disease effectively contrib-
utes to the paradigm shift from reactive medical services 
to 3P medicine. However, the determination of endothelial 
function routinely is difficult, technically demanding, and 
not generally available in the clinical practice. Blood-based 
biomarkers of endothelial function are a minimally invasive 
diagnosis and a mean of predict response to therapies and an 
opportunity for early intervention to avoid the development 
of more life-threatening diseases. Novel, non-invasive, and 
more reliable techniques to evaluable endothelial function 
will be a helpful tool for the clinical in the process of early 
diagnosis, stratification, and follow-up of the patients.

Limitations

The present article is a narrative review and, therefore, does 
not present an established and reproducible method of pro-
duction, leaving the authors responsible for identifying and 
selecting studies, analysing, and interpreting them. Note-
worthy, the purpose of this review is to provide an update 
on the methods currently used to assess endothelial function, 
and to highlight new viewpoints in this area of knowledge 
that may effectively contribute towards a shift from reactive 
medical services to predictive, preventive, and personalised 
medicine.
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