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Abstract

Endothelium, the gatekeeper of our blood vessels, is highly heterogeneous and a crucial physical barrier with the ability
to produce vasoactive and protective mediators under physiological conditions. It regulates vascular tone, haemostasis,
vascular inflammation, remodelling, and angiogenesis. Several cardio-, reno-, and cerebrovascular diseases begin with the
dysfunction of endothelial cells, and more recently, COVID-19 was also associated with endothelial disease highlighting the
need to monitor its function towards prevention and reduction of vascular dysfunction. Endothelial cells are an important
therapeutic target in predictive, preventive, and personalised (3P) medicine with upmost importance in vascular diseases.
The development of novel non-invasive techniques to access endothelial dysfunction for use in combination with existing
clinical imaging modalities provides a feasible opportunity to reduce the burden of vascular disease.

This review summarises recent advances in the principles of endothelial function measurements. This article presents an over-
view of invasive and non-invasive techniques to determine vascular function and their major advantages and disadvantages.
In addition, the article describes mechanisms underlying the regulation of vascular function and dysfunction and potential
new biomarkers of endothelial damage. Recognising these biomarkers is fundamental towards a shift from reactive to 3P
medicine in the vascular field. Identifying vascular dysfunction earlier with non-invasive or minimally invasive techniques
adds value to predictive diagnostics and targeted prevention (primary, secondary, tertiary care). In addition, vascular dys-
function is a potential target for treatments tailored to the person.

Keywords Vascular function and endothelium - Predictive preventive personalised medicine - Invasive and non-invasive
techniques - Biomarkers - Individualised patient profile - Improved individual outcomes

Introduction

Predictive, preventive, and personalised (3P) medicine is
increasingly important to reduce cardiovascular events and
increase life expectation worldwide [1]. The endothelium
comprises a monolayer of endothelial cells (ECs) facing the
lumen of blood and lymphatic vessels. It has an extension
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of more than 1000m? covering the vasculome. ECs display a
marked phenotypic heterogeneity, with specific receptors, a
transcriptome and different functions tailored to each region
of the organism [2, 3]. Despite this diversity, key features
typical of many ECs can be summarised in Fig. 1.
Traditional and emergent risk factors for cardiovascular
disease foster the damage of ECs monolayer conducting to
endothelial cell activation and dysfunction (Fig. 2).

Pathophysiology of endothelium

Endothelial dysfunction has a major role in the initial phases
and in the progression of several diseases as cardiovascu-
lar disease, some types of cancer and infection diseases as
COVID-19 [4]. The aetiology is diverse and ranges from
genetic, environmental, and metabolic factors [5].
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Fig. 1 Various endothelial cells functional properties. VSMCs, vascu-
lar smooth muscle cells

Due to several risk factors, ECs became activated and
reduce the production or availability of vasodilators in par-
ticular nitric oxide (NO) and increase the number of vaso-
constrictors such as endothelin 1, angiotensin II, thrombox-
ane A, (TxA,), and prostaglandin (PGH,) in the vasculature
[6]. The vascular permeability barrier becomes impaired
with glycocalyx disruption [syndecans (SDC 1-4), endo-
can], the decrement in vascular endothelial-cadherin, ECs
sloughing and apoptosis and basement membrane degrada-
tion [7-9]. The pro-oxidant (increased expression of nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase
and reactive oxygen species (ROS)), pro-coagulant (von
Willebrand factor, tissue factor, TxA,), and pro-inflam-
matory milieu enriched with cytokines, chemokines, cell
adhesion molecules (CAMs, E- and P-selectins), and the
leukocyte recruitment to the subintima region constitute the
early stages of atherosclerosis and promote vascular dys-
function. A pro-proliferative state with increased levels of
platelet-derived growth factor, insulin-like growth factor-1,
interleukins (Fig. 2) can foster the increment of media layer
leading to hypertension [6, 10].

In larger arteries, the major vasodilator in the vascular
wall is NO while in smaller vessels, depending on the local,
it is more heterogeneous (endothelial-derived hyperpolar-
izing factors or prostacyclin (PGI,) [10]).

Under physiological conditions, NO is atheroprotective, a
potent vasodilator, inhibits proliferation of vascular smooth
muscle cells (VSMCs), platelet aggregation and reduces
inflammation. In the vascular wall NO production in ECs,
platelets, VSMCs, and activated macrophages is dependent
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on the activities of endothelial nitric oxide synthase (eNOS)
and inducible NOS (iNOS). A reduction in NO bioavailabil-
ity due to oxidative stress or/and eNOS uncoupling leads to
atherosclerosis and other vascular abnormalities [6] (Fig. 3).
Higher levels of NO, due to increased expression of iNOS
in activated macrophages, are associated with inflamma-
tory vascular responses and very high levels are related with
infections, systemic inflammatory stress response, septicae-
mia, and lead to septic shock [11] (Fig. 3).

Vascular barrier impairment is common in various infec-
tious or inflammatory diseases [12, 13]. In animal models,
several compounds have been shown the ability to enhance
endothelial barrier properties such as activated protein C,
angiopoietins, anti-vascular endothelial growth factor, cor-
ticosteroids, histamine receptor blockades, protein kinase
C inhibitors, RhoA inhibitors, sphingosine 1-phosphate,
and vasopressin type la agonists [9, 14—17] although not
all demonstrate clinical efficacy [18]. Novel therapeutic
approaches and clinical trials are needed to unravel the
key pathways to barrier structure and function in vascular
diseases.

Importantly, the damaged endothelium can be repaired,
mobilizing endothelial progenitor cells from bone marrow
[19]. Endothelial dysfunction is reversible, and its early
identification could help to prevent irreversible vascular
disease and improve individual outcomes.

Assessment of endothelial function

Endothelial function determination is difficult due to its
diversity and heterogeneity. Several techniques have been
used to measure endothelial function based on the quantifi-
cation of decreased endothelial-dependent vasodilation com-
pared with endothelial-independent vasodilation (Fig. 4), in
an invasive or non-invasive fashion. The most suitable tech-
nique should be non-invasive, safe, repeatable, reproducible,
inexpensive, and standardised [5].

Invasive methods

Vascular function can be measured using invasive techniques
involving the intra-arterial infusion of vasoactive substances
that lead to increase NO release, promoting the dilation of
the VSMC:s (Fig. 4).

Quantitative coronary angiography with intracoronary
infusion of vasoactive agents

One of the most accurate and reliable method to evaluate
endothelium in coronary arteries is through the quantitative
coronary angiography (QCA) with intracoronary infusion of
vasoactive agents [20]. QCA remains the gold standard and
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Fig.2 At left, some physiologic endothelial functions are summa-
rised. In the middle, the main changes that occur when endothelium
is activated and becomes dysfunctional leading to several cardiovas-
cular diseases are illustrated. Ang II, angiotensin II; BM, basement
membrane; CAMSs, cellular adhesion molecules; CD40L, CD40
ligand; CVA, cerebrovascular accident; ECs, endothelial cells; EDHF,
endothelial-derived hyperpolarizing factor; ET1, endothelin 1; IGF,
insulin-like growth factor; MI, myocardial infarction; NADPH, nico-

most direct method for the functional evaluation of coronary
arteries [21]. Measurement of vascular diameter changes in
response to intracoronary infusion of vasoactive compounds
is performed in addition with the evaluation of coronary
blood flow, vascular resistance, and coronary flow reserve
(typically after infusion of adenosine or stimulus such as
pacing or exercise). More recently, several authors have
developed three-dimensional (3D) QCA to overcome some
of the limitations of two-dimensional (2D) QCA enabling
a more accurate measurement of real vessel size due to the
fusion of two angiographic views [22-24].

The advantage of this method is the evaluation of the
coronary artery vascular bed through dose response curves
to agonists and antagonists of ECs and the study of the basal
endothelial function with infusion of eNOS antagonists. The
major drawbacks are the invasive nature of the methodol-
ogy, the costs, the risks associated with the catheterization
of arteries (myocardial infraction, stroke, infection) imped-
ing its use on a wide scale as a screening method of large
asymptomatic populations [25].
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tinamide adenine dinucleotide phosphate; NO, nitric oxide; PAI-1,
plasminogen activator inhibitor 1; PDGF, platelet-derived growth fac-
tor; PGH2, prostaglandin H2; PGI,, prostacyclin; ROS, reactive oxy-
gen species; SDC 1-4, syndecans 1-4; TFPI, tissue factor pathway
inhibitor; TM, thrombomodulin; tPA, tissue plasminogen activator;
TxA,, thromboxane A,; uPA, urokinase plasminogen activator; VE-
cadherin, vascular endothelial cadherin; vW, von Willebrand factor

Intravascular ultrasound

Intravascular ultrasound (IVUS) is a Doppler technique
that in association with acetylcholine (ACh) or other vaso-
active infusions can be used to evaluate coronary blood
flow velocity using a Doppler-guided wire to obtain vessel
measurements. [IVUS provides a full assessment of lumen
morphology and lesion severity when compared to visual
estimation on 2D-QCA [26]. In contrast, 3D-QCA may be
analogous to IVUS in recognizing functionally important
coronary stenosis, as evaluated by fractional flow reserve
[5, 23].

IVUS is excellent for the characterization of an athero-
sclerotic plaque (evaluates plaque burden and composi-
tion). The drawbacks of the method are associated with its
invasive nature and limited availability, the need to use an
iodinated contrast agent for catheter positioning, and does
not evaluate the adventitia [27].
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Fig. 3 Physiological and pathological functions of nitric oxide. Nitric
oxide (NO) plays a significant role in maintaining the optimum physi-
ological function within the cardiovascular system. The levels of
NO vary depending on the tissue and intracellular conditions, rang-
ing from subpicomolar to micromolar concentrations. In endothelial
cells (ECs), vascular smooth muscle cells and activated macrophages,
endothelial nitric oxide synthase (eNOS), and inducible nitric oxide
synthase (iNOS) enzyme activities contribute to maintain the fine

Fig.4 Scheme summariz-

ing the basis to endothelial
function evaluation (left panel)
and the used of acetylcholine

as a stimulus for endothelial '
cells (ECs, right panel) with
subsequent nitric oxide (NO)
production and relaxation in
vascular smooth muscle cells.
ECs, endothelial cells; M1, M3,
muscarinic receptors; NO, nitric
oxide; VSMCs, vascular smooth

muscle cells Invasive

Venous occlusion plethysmography with intrabrachial
infusion of vasoactive agents

Venous occlusion plethysmography (VOP) is a methodology
used for more than a century to evaluate blood flow [28].
This method is suitable to study the endothelial function,
the vasodilator response to different stimuli in both healthy
and pathologic situations, and the regulation of blood flow
by autonomic nervous system [29, 30].

The underlying principle of VOP is that during occlu-
sion of venous return, the rate of forearm distension can
be used to determine the rate of arterial blood flow. A cuff
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balance of NO. At physiological levels, NO regulates the local vas-
cular tone and is atheroprotective. A shift to both lower and higher
concentrations of NO contribute to pathological conditions within the
cardiovascular system. DM, diabetes mellitus; ECs, endothelial cells;
eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide
synthase; IUGR, intrauterine growth restriction; NO, nitric oxide;
VSMCs, vascular smooth muscle cells

Acetylcholine

Relaxation

surrounding the arm (Fig. 5) is inflated applying a pressure
lower than the diastolic pressure (i.e. 40 mmHg) for a short
period of time (5-10 s), occluding venous return but unaf-
fecting arterial inflow. The rate of forearm distension distally
can be assessed measuring forearm circumference by a strain
gauge. A lower cuff is placed around the wrist and inflated
to suprasystolic pressure (i.e. 200 mmHg) just before the
measurement to ensure that the circulation to the hand does
not interfere with the results [31].

This stimulus can be mechanical, promoting reac-
tive hyperaemia, or chemical and invasive, through the
administration of intra-arterial infusion of vasoactive
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substances. Endothelium-independent vasodilation is
determined through the infusion of precursors of NO,
such as sodium nitroprusside. This method measures
blood flow, not arterial diameter, depends on conditions
at baseline and lacks standardization between laborato-
ries. Despite these limitations, VOP using intra-arterial
infusion of vasoactive compounds is regarded the gold
standard for the evaluation of vascular function [32].

An advantage of this method is that the brachial artery
is more accessible and easier to cannulate. Despite the
need for arterial cannulation, it provides useful and repro-
ducible surrogate measures in a less invasive manner than
3D-QCA enabling dose response curves to agonists and
antagonists of ECs and the study of the basal endothelial
function with infusion of antagonists of eNOS. The major
drawbacks are the invasive nature of the methodology, the
risks associated with the catheterization of the artery, the
possibility of damage or injection of median nerve, and
the variability due to several individual subject charac-
teristics making it unsuitable for large clinical trials and
requiring repetitive measurements.

Functional studies ex vivo

Functional assessment of endothelial function has been
available for several decades in organ bath systems and myo-
graphic recordings enabling the detection of the endothe-
lium-dependent and endothelium-independent relaxation of
arterial rings, in response to known agonists such as ACh
and sodium nitroprusside, respectively [33]. Endothelial-
derived vasodilators include NO and PGI, are produced in
response to several agonists of ECs enabling the functional
evaluation of endothelium [34].

Isolated organ bath is an ex vivo method that evalu-
ates vascular reactivity of biological preparations creating
dose—response curves to agonists and antagonists to study
the physiological and pharmacological responses of ECs,
VSMC s, and others. Tissues and organs typically studied
include rings of arteries, veins, intestine (duodenum, jeju-
num, and ileum), or strips of atrium, ventricle, or papillary
muscle, among others. The evaluation of these samples in
the appropriate physiological environment (nutrient solution,
controlled temperature, aeration) enables its characterization
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through cumulative doses of vasoactive agents or electrical
stimulation (the organ is fixed between two platinum elec-
trodes connected to an electrical stimulator), which result
in the contraction or relaxation of the muscle under evalua-
tion. From the experimental results, dose—response curves
are generated, and endothelial dependent and independent
evaluation is performed [33-36].

Advantages of this technique include the evaluation of
multiple preparations in simultaneous, an accurate control
of the experimentation conditions as well as a precise quan-
tification of the responses. In addition, it enables isolating
components of endothelial function pharmacologically (for
instance, using inhibitors of the eNOS enzyme). A major
drawback of this method is that its use is generally limited
to animal experiments, due to ethical considerations that
restrain the availability and quantity of human samples and
the variability of responses in patients. In human studies,
sampling is often opportunistic or from subcutaneous fat
[37, 38]. Another disadvantage is the inability to evaluate

vessels with smaller diameters (< 60 mm). Being the most
widely used method for the study of endothelial function in
animal models, it has the limitation of not distinguishing
the biological events that occur in the lumen and outside the
blood vessel, not studying the impact of perivascular tissues
usually removed in these studies [39].

Non-invasive methods

The development and utilization of non-invasive meth-
ods is always preferred to evaluate vascular function [40].
Most imaging techniques are non-invasive and provide the
structural evaluation of blood vessels given no indication
about their function. In the last decade, major technologic
advances enabled the detection of early atherosclerosis
with these techniques as carotid intima-media thickness
(cIMT), computed tomography (CT) angiography, IVUS,
and 18-fluorodeoxyglucose positron emission tomography
(FDG-PET). The latter associated with CT imaging can

Inflammation Fatty streaks

Endothelial dysfunction

hsd\P sE-selectin  ICAM-1

Biomarkers
ADMA CCL2 VCAM-1
PAT
FMD
PWV; CAVI
FDG-PET/CT

Coronary IVUS

Coronary or aortic MRI
NaF-PET/CT

Coronary CT angiography

Fig.6 The progression of atherosclerosis accompanied by different
imaging modalities capable of monitoring the events. In this figure,
it is represented the beginning of the atherosclerotic process starting
with endothelial dysfunction, followed by an increment in the expres-
sion of cellular adhesion molecules that response to hypertension or
dyslipidaemia with monocyte recruitment. The monocytes can incor-
porate lipids and become foam cells. In addition, smooth muscle
cells migrate from the media into the intima, producing elastin and
collagen that forms the fibrous cap. Plaque growth can downgrade
blood flow to distal regions, leading to peripheral arterial disease or
stable angina. Otherwise, erosion of the fibrous cap can uncover its
prothrombotic content, causing clot formation and infarction, either
in the brain or the myocardium. Imaging modalities for the various
stages should be chosen in accordance with the physiological modi-
fications anticipated to a given stage of the process. ADMA, asym-
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detect and localize the increased metabolic uptake of radi-
olabelled glucose. FDG-PET signal is increased in early
atherosclerotic process and when endothelial inflammation
occurs (Fig. 6) [27, 41].

Assessment of carotid intima-media thickness

Ultrasound image of the common carotid artery obtained
with an echocardiograph using a 12L linear probe is the
most validated imaging biomarker for prediction of athero-
sclerotic risk and follows specific international guidelines
[42-44]. For this examination, participants are placed in the
supine position, with the neck slightly hyperextended and
rotated away from the transducer. In the two-dimensional
images obtained from the neck vessels, the distal common
carotid artery should be capture along its longitudinal path
to the carotid bifurcation. The cIMT is typically measured
on the posterior wall, at a distance of at least 5 mm from the
bifurcation. The arterial segment under analysis must have
the lumen/intima and media/adventitia interfaces clearly
visible, along a length of at least 1 cm. The evaluation is
carried out in telediastole, coinciding with the R wave of
the electrocardiogram tracing. A semi-automatic image pro-
cessing method performed at least 50 to 60 measurements
of the cIMT on the selected segment, then presenting a final
value that corresponded to the average of the measurements
performed [45, 46].

A large meta-analysis with 37,197 patients showed that
for every 0.1 mm increase in cIMT adjusted risk of future
myocardial infraction or stroke enhances by approximately
10% and 13%, respectively [47]. Studies in paediatric age
confirm the existence of a pro-atherosclerotic environment
correlated with the increase in carotid intima-media thick-
ness [46, 48].

The main advantages are the relative simplicity, accu-
racy, and reproducibility. Indeed, cIMT provides a non-
invasive reliable tool for evaluating vessel wall structural

Fig. 7 Flow-mediated dilation
procedures. NO, nitric oxide

BASELINE

. i

Brachial artery

Increases <5%

modification at the macrovascular level. One disadvantage
is that is operator dependent, and it does not measure adven-
titial thickness, an important contributor for atherosclerotic
development [49].

Flow-mediated dilation

Flow-mediated dilation (FMD) is a non-invasive method that
enables the determination of endothelial dysfunction in the
brachial artery in response to reactive hyperaemia [40]. A
pneumatic cuff placed at the upper arm or wrist occludes
(200-250 mmHg) arterial flow for 5 min, followed by rapid
cuff deflation that induces reactive hyperaemia leading to
shear stress and subsequent release of vasodilators as NO
and PGI, [29, 50]. Classically, an ultrasonography system
equipped with a high-resolution linear artery transducer
(7.5-12 MHz) is used for the measurement of brachial
artery diameter (monitoring baseline measurements, at rest,
and during reactive hyperaemia). In response to a transient
physiologic stimulus (increase in blood flow), vasodilators
are released and arteries, including brachial artery dilate and
increase in diameter (Figs. 5 and 7). The FMD is the percent
increment of the diameter value of the artery with respect
to the baseline. FMD is calculated as FMD = (peak diame-
ter—baseline diameter)/baseline diameter. Intraarterial infu-
sion of eNOS inhibitors (i.e. Ng-mono-methyl-L-arginine)
clearly showed that this process is dependent on the release
of NO from the endothelium. Endothelium-independent
vasodilation is assessed through sublingual administration
of sodium nitroprusside or nitroglycerin [51].

Impaired FMD is an important tool to detect endothe-
lial dysfunction and has the potential to predict and identify
risk factors for cardiovascular events, even in asymptomatic
patients [52]. In addition, FMD enables stratification of indi-
viduals for upcoming cardiometabolic events, and impaired
FMD has long-term prognostic value in cardiovascular
patients [53, 54].

1. Baseline measurement~ 1 min

2. Inflate cuff

3. Blood flow occlusion =5 min

4. Cuffrelease

5. Dramatic increase in blood flow

6. Shear stress

7. Endothelium releases vasodilators (ie.
POST OCCLUSION NO)

8. Healthy artery dilates

=Endothelial dysfunction
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FMD is a gold-standard method, extensively validated
that strongly correlates with coronary artery function.
Moreover, there are several disadvantages associated with
FMD. First, the lack of standardization and variations in
the placement of cuffs in the wrists/arms and in vessel
diameters make it difficult to compare the results between
laboratories. In addition, alterations in blood vessel struc-
tures and impaired dilation can act as limiting factors.
The lack of resolution compared with the relative size
of the artery, the inter-measurement variability, the poor
reproducibility, and the operator dependence are the main
disadvantages of this methodology. It is imperative that
well-trained and experienced operators perform the tech-
nique in addition with several precautions to obtain more
accurate results. Indeed, strict recommendations must be
considered to reduce the variability associated with this
methodology (Table 1) [55].

More recently, a novel approach, based in an oscil-
lometric method, was used to quantify flow-mediated
dilation—enclosed zone FMD (ezFMD) [56]. Blood pres-
sure can be measured by an oscillometric method using
and automatic instrument and in simultaneous oscillation
amplitude can also be quantified. There is a proportional
relation between oscillation amplitude and volumetric
change with pulse pressure in brachial artery. The change
in peak oscillation amplitude after a 5-min occlusion of
the artery reflects a volume change instigated by reactive
hyperaemia. Classic FMD is based in changes in vascular
diameter determined by ultrasonography, whereas ezFMD
is based in changes in vessel volume indirectly deter-
mined by oscillation amplitude. ezFMD = (peak ampli-
tude—baseline amplitude)/baseline amplitude. ezFMD is
an operator independent method, automatically performed
after the placement of a blood pressure cuff around the
upper arm [56, 57].

Arterial stiffness

Pulse wave velocity Arterial stiffness is an independent
biomarker of cardiovascular disease. It is associated with
modification in functional (regulation of vascular tone due
to contraction/relaxation of VSMCs) and structural (elastin,
collagen fibres, extracellular matrix components) properties
of the arteries. Several methods have been used to measure
arterial stiffness, non-invasively: (1) vascular imaging tech-
niques, such as ultrasound and magnetic resonance imaging
(MRI) allowing the measurement of arterial compliance with
sonographic stiffness indices (i.e., augmentation index) and
(2) recording of the pulse wave by tonometry or ultrasound
Doppler. After left ventricular contraction, a pressure wave
is generated travelling along the arterial tree. The velocity of
this wave is called pulse wave velocity (PWV) and reflects
the rigidity of the arteries. PWV is calculated by dividing
the travelled distance by expended time [58, 59]. The lower
the PWYV, the more elastic and healthier the vessel is. How-
ever, when the vessel has a high level of rigidity, there is an
increase in the propagation of pulse waves in the aorta artery
and great vessels, in addition to causing an early return of
pulse waves reflected from the periphery [60]. The pulse
wave is normally reflected at any point of discontinuity in
the arterial tree, causing a retrograde wave in the ascending
aorta. This early return, even at the end of systole, promotes
an overload in cardiac work [61].

Age, hypertension, diabetes, increased homocysteine levels,
and diastolic dysfunction are associated with arterial stiff-
ness [62, 63]. Impaired homocysteine metabolism, recently
recognised as a target in 3P medicine [64], may lead to
an increment in homocysteine levels, fostering vascular
dysfunction.

Carotid-femoral PWV (cfPWV) is the gold standard, non-
invasive assessment for arterial stiffness [65-67]. The evalu-
ation is done with the individual in supine position, and two

Table 1 There are several conditions that need to be performed to obtain a significant decrease in variability in studies with flow-mediated dila-

tion

- Evaluations should be performed with the subject fasting for at least 6 h

- Tests with repeated evaluations must be done on the same day

- Vasoactive medication (when possible) must be avoided (4 half-lives before the measurements) and the results evaluated accordingly

- Anti-inflammatory medication such as NSAIDs must be withdrawn 1 and 3 days before

- Abstinence of physical activity at least 12 h before the test

- Caffeine and other stimulatory drugs must be avoided 12 h before the examination

- No smoking or exposition to cigarette smoke at least 12 h before the test

- Vitamin supplementation must be withdrawn at least 72 h before the examination

- Women in fertile phase must be evaluated in the follicular phase of the menstrual cycle

- The measurements must be performed in a calm environment, with a room temperature between 20 and 25 °C

NSAIDs Non-steroid anti-inflammatory drugs
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transducers are positioned, one in the right common carotid
artery and the other in the right femoral artery. PWV is cal-
culated by dividing the distance between the transducers and
the difference in time between the onset of the carotid pulse
wave and the onset of the femoral pulse wave [66, 68]. The
method is reproducible but the accuracy of recording the
pulse waveform is not reliable in patients with atrial fibril-
lation or peripheral artery disease [69].

The major drawback of PWYV is that is strongly influenced
by blood pressure and, to a lesser extent, by heart rate.

Cardio-ankle vascular index Cardio-ankle vascular index
(CAVI) reflects the general stiffness of elastic and muscular
arteries from the beginning of the aorta to the ankle. It deliv-
ers operator-independent information regarding changes in
structural and functional arteriosclerotic processes. CAVI is
less influenced by short-term blood pressure changes com-
pared with PWV and a mathematical correction can further
improve this limitation [70].

Peripheral arterial tonometry

Reactive hyperaemia peripheral artery tonometry (RH-PAT)
is a non-invasive technique that combines flow-mediated
dilation with disposable pneumatic finger-tip probes to
measure arterial pulse wave amplitude and obtain the reac-
tive hyperaemia index that reflects microvascular endothelial
function [71, 72] (Fig. 5).

Shortly, the individuals are placed in a supine and com-
fortable position with the hands at the level of the heart.
Disposable modified pneumatic probes on the index fingers
record pulse wave amplitudes. After baseline measurement,
arterial flow to the arm is occluded for 5 min using a blood
pressure cuff inflated to 40 mmHg above systolic pressure.
At the end, the cuff is rapidly deflated, and a transient incre-
ment in blood flow occurs. The ratio between the post- and
pre-occlusion pulse wave amplitude values is used to calcu-
late the RH-PAT index. The value is normalised using the
data from the opposite finger to correct for modifications in
systemic vascular tone [72].

RH-PAT and FMD evaluate distinct aspects of vascular
function (Table 2, Fig. 7), and most studies do not show
a correlation between these methodologies and defend a
more complementary association [73-75]. Several studies

describe that RH-PAT correlates with coronary microvascu-
lar function, predicts cardiovascular events, and is associated
with classic cardiometabolic risk factors [76—79]. Notewor-
thy, digital microvessel dilatation during hyperaemia is only
partially dependent on NO bioavailability [80], functioning
as a biomarker of peripheral microvascular capacity. More
recently, PAT was described to be a predictor of stroke inci-
dence. RH-PAT index may suggest early subclinical cer-
ebrovascular remodelling and damage, atherosclerosis, or
autonomic nervous system abnormalities [81].

RH-PAT is a non-invasive, safe, and rapid, operator inde-
pendent technique that can reflect basal endothelial function.
The main disadvantages are the sensitivity to the autonomic
tone, the prognosis value, the low reproducibility, the lack
of correlation with FMD, and the influence of structural vas-
cular aspects (Table 3) [82, 83].

Microvascular endothelial function assessment

The endothelial function in microvascular blood vessels can
also be evaluated noninvasively by different methodologies
with direct and indirect approaches (Table 4) [84].

Direct methods enable the observation of the vessels (e.g.
shallow capillaries, arterioles, and venules in skin, sublin-
gual mucosa, bulbar conjunctiva, and in the retina) using
microscopy in combination with photo/video recording.
More recently, optical coherence tomography imaging has
been introduced into the microvascular research to visualize
microvessels in the skin or capillaries in the retina [§5-89].
Obtaining and analysing large datasets of microvascular
measurements is challenging and time consuming [90]. For
some measurements, (semi-)automated applications have
been developed to analyse images improving reproducibility,
saving time and being user independent. Computer-assisted
analyses of microvascular datasets including machine learn-
ing, and deep learning [91, 92] are proving its value in epi-
demiological research and clinical trials, an example already
established is the retinal dynamic vessel analyzer [93-95].

Indirect methods enable the specific characterization of
function in small blood vessels. In animal models, in vivo,
intravital microscopy is the most frequent and reliable
approach. This technique monitors vascular dynamic events
such as vascular permeability and tonus, blood flow [96],
or the arterial glycocalyx [97-99]. Evaluation of dynamic

Table 2 Comparison between

. ’ Vascular test FMD RH-PAT cfPWV baPWV
several non-invasive vascular
tests: FMD, RH-PAT, and PWV Vascular layer evaluated  Endothelium Media
Vascular bed Brachial artery Finger arterioles  Aorta Aorto-muscular

Parameter

Endothelial function

Arterial stiffness

baPWV, brachial-ankle pulse wave velocity; ¢cfPWV, carotid-femoral pulse wave velocity; FMD, flow-medi-
ated dilation; RH-PAT, reactive hyperaemia peripheral arterial tonometry
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Table 3 Advantages and disadvantages of different endothelial dysfunction assessment techniques

Method

Advantages

Disadvantages

Quantitative coronary angiography

Venous occlusion plethysmography

Doppler ultrasound

o Directly quantifies endothelial function in the
vascular bed of interest

o Allows to establish the relationship between ago-
nists and antagonists

o Allows to examine basal endothelial function after
administration of NOS antagonists

e More accessible

o High reproducibility, validity

o Allows to establish the relationship between ago-
nists and antagonists

o Allows to examine basal endothelial function after
administration of NOS antagonists

o Non-invasive

o Possible to measure blood flow velocity
Continuous wave Doppler

o Simpler hardware implementation

o Ability to measure high blood flow velocity

e Invasive

e Expensive

o Risks related to coronary artery catheterization:
stroke, MI, infection

e Semi-Invasive

o Indirect measure of blood flow

e Time consuming

o Limited applications in exercise

o Risks: median nerve injury, infections, vascular
injury

e Precise positioning over a large blood vessel at an
appropriate angle

e Expensive

o Contact gel

Continuous wave Doppler

e Wide depth range
Pulse wave Doppler
e Measurement range definition

o Non-invasive
o Safe and rapid

Arterial tonometry

o Less operator dependent than FMD
o Accurately records the arterial blood pressure

waveform

e Can reflect basal endothelial function

o Non-invasive
e Safe, rapid

Flow-mediated dilation

e Well correlated with coronary endothelial function
o Blood flow is a physiological stimulus of vasodila-

tion, like agonists
e Gold-standard method
Intravascular ultrasound
composition

o Excellent for evaluation of plaque burden and

e Measurement range ambiguity

Pulse wave Doppler

o For use by qualified personnel only

e “Aliasing” artefacts at high blood flow velocities
e Measurement depth limitations

o Influenced by structural vascular aspects and less
by the endothelium

e Sensitivity to the autonomic tone

o Temperature dependent

e Requires clipping of long fingernails

o Movement artefacts

o [Low resolution influenced by the vessel size
o Inter-measurement variability

e Operator dependence

o Poor reproducibility

e Lack of strict protocols

o Invasive

e Limited availability

o Jodinated contrast agent required (for catheter
positioning)

FMD, Flow-mediated dilation; M1, myocardial infarction; NOS, nitric oxide synthase

functions include for instance blood flow/perfusion meas-
urements using laser-Doppler flowmetry (LDF; skin) or
plethysmography (skin and muscle), blood oxygenation
and hemodynamic measurements using near-infrared spec-
troscopy (brain, muscle, skin) [100, 101], transcutaneous
oxygen pressure determinations (tcpO,; skin), and tissue
microvascular blood flow and blood volume measurements
using contrast-enhanced ultrasonography (adipose tissue,
muscle, kidney, liver, heart) [102]. The last method is inva-
sive since it involves the infusion of a contrast agent. The
other techniques use non-invasive assessment of microvas-
culature. In addition, RH-PAT (discussed above) also reflects
microvascular endothelial function [103].

Other methodologies that indirectly monitor microvas-
cular function include measuring microalbuminuria [33,
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104]; determining biomarkers of acute kidney damage [105];
measuring skin mottling over the anterior surface of the knee
[101]; measuring protein concentrations in alveolar fluid lav-
age; and haemostasis-related biomarkers (von Willebrand
factor, factor VIII, partial thromboplastin time, international
normalised ratio, and platelet count) [106].

Different stimuli may be used to evaluate dynamically
the microvasculature. For instance, flicker light exposure
promotes reactive hyperaemia in the retinal microves-
sels. This response implicates neurovascular coupling
and is partially mediated by endothelial NO production
[107]. In skin, reactive hyperaemia can be induced during
local skin heating or after ischaemia promoted by arte-
rial occlusion and evaluated with laser Doppler—based
techniques (see the “Laser Doppler flowmetry” section).
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Table 4 Advantages and disadvantages of different microvascular endothelial function assessment techniques

Method Advantages

Disadvantages

Arterial glycocalyx

mance

Near-infrared spectroscopy e Non-invasive, portable

o Tissue oxygen consumption measurement

e Recordings during exercise

Laser Doppler flowmetry e Simple, non-invasive

o Continuous blood flow measurement during exer-

cise
e Coupling with reactivity tests

Laser speckle contrast analysis e Simple, non-invasive

e Real-time recording of blood flow changes

o Tracer dilution method: direct measure
e OPS + SDF: simple, non-invasive, bedside perfor-

o Tracer dilution method: invasive and time-consuming
e OPS + SDF: indirect measures

o Affected by adipose tissue thickness
e Myoglobin may interfere

e Expensive equipment

e Requires experienced operator for high accuracy and
low variability over time

e Susceptible to changes in autonomic nervous system
and vasomotor tone

o Temperature dependent

e Expensive equipment

e Requires experienced operator for high accuracy and
low variability over time

e Movement artefacts

e No recordings in absolute flow units

OPS, orthogonal polarization spectral; SDF, sidestream darkfield

These responses are dependent on endothelial vasorelax-
ant factors (e.g., NO, endothelial derived hyperpolarizing
factor, prostaglandins) [108]. Systemic or local infusion
of vasoactive substances, or via iontophoresis, can stim-
ulate ECs (e.g. acetylcholine,) or VSMCs (e.g. sodium
nitroprusside). The following outcomes (vasodilation/
constriction and augmented/reduced perfusion) can be
observed with different methodologies. Some devices
can even combine several techniques like LDF and tcpO,
[109] or charge-coupled device and laser speckle contrast
imaging [108].

Noteworthy, it is vital to recall that the phenotype
of the endothelium is heterogeneous along the vascular
tree [3]. The endothelium exhibits different responses to
stimuli producing different vasoactive substances depend-
ing on the location (i.e., venules or arterioles of different
size). Therefore, the results obtained in microvascular
function are difficult to compare since they measure dif-
ferent vessel types within the microcirculation or evaluate
distinct areas. Obtaining and combining information from
different areas may be important and complementary, for
instance, improving the diagnosis of a disease [110].

Moreover, the control of microvascular function varies
considerably among different tissues, depending on their
function, and nourishing requirements. The retinal micro-
circulation does not possess sympathetic innervation, and
the brain and kidney microvasculature typically display
low impedance in contrast to that of skin or muscle [111].
All these details need to be considered when determining
and analysing microvascular function.

Arterial glycocalyx

One of the diagnostic methods to evaluate endothelial
function is grounded on the measurement of the glycoca-
lyx integrity and thickness by intravital microscopy or by
orthogonal polarization spectral (OPS) imaging [112].

Intravital microscopy using sidestream darkfield (SDF)
imaging is a non-invasive method utilised to analyse the sub-
lingual microcirculation. The technique monitors red blood
cells within the microvasculature when light emitted by a
diode probe is reflected by haemoglobin and monitored by
a SDF camera [113]. Total vessel density, perfused vessel
density, proportion of perfused vessels, and microvascular
flow index are predicted, and more recently using validated
automatic software platforms, the operator-dependent limi-
tations are minimised [114]. SDF imaging detection of red
blood cells is used as a marker of microvascular perfusion,
and measurement of the distance between the endothelium
and red blood cells in circulation represents the thickness
or dimension of the glycocalyx that correlates with levels
of classical cardiovascular risk biomarkers such as blood
glucose, low-density lipoprotein (LDL), high-density lipo-
protein, and body mass index.

Multiple studies have shown, in critically ill patients,
sublingual microvascular glycocalyx impairment [115-118].
The exactness of in vivo glycocalyx determination has been
analysed further with an in vitro approach using atomic
force microscopy [118, 119]. Consensus European Society
of Intensive Care Medicine guidelines released recommen-
dations for acquisition and interpretation of microcirculatory
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images obtained with hand-held vital microscopes for
assessment of the microcirculation in critically ill patients
[97].

Arterial glycocalyx can be evaluated using direct meas-
urement with dilution tracers, but they are invasive and time-
consuming methods. OPS and SDF are simple, non-invasive,
bedside performance, indirect methods to measure arterial
glycocalyx [120].

Laser Doppler flowmetry

Laser Doppler flowmetry is an excellent non-invasive tech-
nique to evaluate skin microvasculature function after a
stimulus [121, 122]. It is based on diffusion and refraction
of a laser beam light through moving blood cells related
with the concentration and velocity of measured [108].
LDF determines modifications in the skin microcirculation
in real time after stimuli, such as post-occlusion reactive
hyperaemia, the infusion of vasoactive substances or the
iontophoresis of small, charged molecules. For instance,
intradermal administration of ACh by iontophoresis induces
endothelium-dependent dilatation that, in association with
LDF, enables quantification of the regional blood flow [123].
Microvascular reactivity obtained with LDF proved to be
an impartial predictor of atherosclerotic disease in diabetic
conditions [124].

LDF is a relatively simple, non-invasive method that
monitors continuous blood flow measurement during exer-
cise and can be coupled with reactivity tests. It has good
accuracy for quantifying rapid modifications in cutaneous
blood flow. Tough, the characteristic heterogeneity of this
tissue, due to differences in its anatomy, promotes spatial
variability that contributes to a relatively low reproducibility
[122, 125]. The use of integrated probes helps to reduce spa-
tial variability enabling to increase the reproducibility [108].
Another advantage of this technique, when coupled with
intradermal infusion, is the safety, given the small amount
of drug infused. The main limitations involve an equipment
very expensive requirement of an experienced operator for
high accuracy and low variability over time. In addition, it is
an indirect method unable to determine the local blood flow,
but it provides an index of skin perfusion [120].

Laser speckle contrast analysis

Laser speckle contrast analysis is a novel, fast, non-invasive
technique that enables continuous measurement of skin
blood flow. The main principle relies on the backscattered
light from a tissue lit with laser light creates a random inter-
ference pattern on the detector (i.e. ‘speckle pattern’). This
method can be combined with reactivity tests such as local
thermal hyperaemia, and post-occlusive reactive hyperae-
mia enhancing reproducibility when compared with the LDF
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[126]. The method has been performed to evaluate distinct
vascular beds [127, 128] in patients with type 1 diabetes
mellitus [129], chronic kidney disease [130], and coronary
artery disease [131]. Laser speckle contrast analysis is a sim-
ple, non-invasive real-time recording of blood flow changes.
The equipment is expensive and requires experienced opera-
tors for high accuracy and low variability over time. It is
sensitive to movement artefacts, and no records in absolute
flow units can be obtained [132].

Index of microvascular resistance in coronary arteries

The index of microvascular resistance (IMR), the product
of hyperaemic distal coronary pressure and hyperaemic
transit time, is currently thought the standard of microvas-
cular (dys)function. IMR has been shown to be specific for
microvascular function [133] and has been correlated to
outcome. However, it is an invasive method that depends on
the injection technique of the operator (adenosine-induced
hyperaemia is obligatory for both coronary flow reserve or
coronary flow velocity reserve and IMR).

Recently, Konst and co-workers [134] performed an inva-
sive investigational protocol with acetylcholine testing (for
endothelium-dependent epicardial microvascular spasm),
adenosine testing (for endothelium independent dysfunc-
tion), and measurement of absolute coronary blood flow
and microvascular resistance as an innovative method for
quantitative assessment of microvascular disease in patients
with suspects of ischaemia with nonobstructive coronary
arteries [135] and used fractional flow reserve testing to
evaluate functionally epicardial disease. Absolute flow and
resistance measurement, in the study by Konst et al. [134],
does not require pharmacological stimuli since the saline
infusion itself induces a maximum hyperaemia very rapidly.
In contrast to coronary flow reserve or coronary flow veloc-
ity reserve and IMR, it is completely operator independent
[135, 136]. Thus, evaluations of absolute flow and resistance
are predictable to be of complementary importance to IMR.

Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a novel, non-inva-
sive method that determines local tissue oxygenation pro-
viding crucial information about tissue oxygen consump-
tion and blood flow [120]. A portable device produces
near-infrared light irradiating the examined tissue and
detecting and measuring changes in absorbance of oxy-
gen carrier compounds (i.e. haemoglobin and myoglobin)
based on their oxygenation state [137]. The ‘modified
Beer-Lamberts law’ is the basis for this methodology
[137] that allows the evaluation of microvascular reac-
tivity and skeletal muscle oxygenation at rest and during
exercise, via non-stop recording of functional alterations
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in oxygenated haemoglobin dissociation [138]. Moreover,
using post-occlusion reactive hyperaemia, NIRS provides
information on microvascular function and muscle’s oxi-
dative capacity and oxygenation, both at rest and during
exercise [138].

The main advantages of NIRS are that is a portable,
non-invasive technique and measures the tissue oxygen
consumption, at rest and during exercise. The major draw-
backs are that the measurements are affected by adipose
tissue thickness and myoglobin content [137].

Biomarkers

The application of serum biomarkers to monitor endothe-
lial function has countless advantages given the relative
simplicity of the procedures. Indeed, venous blood sam-
ples are commonly used in clinical laboratories and could
be an accessible way to measure systemic biomarkers
of vascular disease. The use of these biological markers
(Fig. 8, Table 5) to assess the prognosis and/or diagnosis
of vascular disorders is continuously growing due to its
clinical relevance [106, 139, 140]. Identifying biomarkers
is fundamental towards the shift from reactive to 3P medi-
cine in the vascular field helping to obtain an individual-
ised patient profile and improve individual outcomes.

ADMA,

endothelial
asymmetric dimethylarginine; ED, endothelial dysfunction; EMP,
Endothelial microparticles; EPCs, Endothelial progenitor cells;
SICAM-1, soluble intercellular adhesion molecule 1; sSVCAM-1, solu-
ble vascular cellular adhesion molecule 1

Fig.8 Systemic dysfunction biomarkers.

Serum biomarkers

Endothelial activation is triggered by several inflammatory
stimuli such as toxins, inflammatory markers such as C-reac-
tive protein, CD40 ligand (CD40L), interleukins (such as
IL-1p, IL-18), CC-chemokine ligand 2 (CCL2), pentraxin-3,
and sortilin (Table 5) [141-143]. In addition, inflammation
is a vital feature in the development and progression of ath-
erosclerosis and its complications. The inflammatory cas-
cade is present in endothelial dysfunction and throughout
the process of atherosclerosis [144].

Cell adhesion molecules

Endothelial cells are major players regulating the perme-
ability and transport of molecules between the blood and
the interstitial space and controlling the signalling pathways
associated with innate immunity. Due to inflammation, ECs
are activated, and the expression of adhesion molecules is
incremented. Cell adhesion molecules are considered early
markers of endothelial activation and systemic inflamma-
tion [141].

Soluble CAMs (i.e. intercellular adhesion molecule-1
(ICAM-1), E-selectins, and vascular cell adhesion mol-
ecule-1 (VCAM-1)) regulate the transmigration of leuko-
cytes. ICAM-1 and VCAM-1 belong to the immunoglobulin
superfamily and are ligands for P integrins on leukocytes
and mononuclear cells, respectively [145, 146]. ICAM-1 is
highly expressed in ECs and subendothelial macrophages
[147] while VCAM-1 is predominant to ECs and is not pre-
sent in healthy endothelium [147]. ICAM-1 participates in
the adhesion and transmigration of leukocytes in the vas-
cular endothelial wall and leads to endothelial cell acti-
vation and inflammation, early steps in the initiation and
progression of atherosclerosis [148]. VCAM-1 expression
probably results from endothelial activation, as it enhances
local recruitment of monocytes and its interaction with ECs
during the early phases of the atherosclerotic process [149].

E-selectin, belongs to the C-type lectin family, is one of
the most specific markers of endothelial activation [5, 150].
Its expression is limited to the ECs and induced by inflam-
matory cytokines. E-selectin recruits leukocytes mediating
its rolling to the site of inflammation [150].

Elevated levels of soluble adhesion molecules, as VCAM-
1, P-selectin, and ICAM-1 have also been reported in
COVID-19 patients [151, 152].

C-reactive protein
C-reactive protein (CRP) is a pentraxin with a crucial
role in the innate human immune response [153]. CRP,

traditionally consider a biomarker of inflammation, has
pro-atherogenic properties, increasing the expression of
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Table 5 Summary of the most frequent circulating biomarkers to monitor endothelial dysfunction in human studies

Method Characteristics

Advantages

Disadvantages

Serum markers
NOS inhibitors
ADMA, SDMA
Inflammatory biomarkers
ET1
hsCRP, IL-6, IL-8, IL-18,
TNF-a, CCL2,
TWEAK, PTX3, CD40L

Cell adhesion molecules

sICAM-1, sVCAM-1, sE-selec-
tin, sP-selectin

Competitive inhibitor of NOS

Proinflammatory peptide

Inflammatory biomarkers

Adhesion molecules

Coagulation pathway molecules
vWEF, tPA, PAI-1, TM, fibrino-
gen, ADAMTS13

Glycocalyx damage

Thromboembolic markers

Endocan, syndecan 1; Endothelial glycocalyx

Oxidative stress

MPO Activated neutrophils and
macrophages increment
MPO and increase ROS

oxLDL

Cellular markers

cEPCs Circulating endothelial
progenitor cells promoting
vasculogenesis

CEC, EMP

Some prospective clinical data

Some prospective clinical data
Widely available; many data in CVD

Some prospective clinical data

vWF is widely available

Biomarker of oxidative stress

Blood drawn

Not widely available

Not widely available

May be high in inflammation/

and ED infection

Not widely available
Expensive

Not a lot of data on ED

Not widely available

Not widely available

Good correlation with CAD and ED  Expensive, not widely available

Good correlation with CAD and ED  Not widely available

ADMA, asymmetric dimethylarginine; CAD, coronary artery disease; CCL2, CC-chemokine ligand 2; CEC, circulating endothelial cells; cEPCs,
endothelial progenitor cells; CVD, cardiovascular disease; ED, endothelial dysfunction; EMP, endothelial microparticles; ET1, endothelin 1;
hsCRP, high sensitive C-reactive protein; IL-1f, interleukin 1§, IL-6, interleukin-6, IL-8, interleukin-8, MPO, myeloperoxidase; NOS, nitric
oxide synthase; oxLDL, oxidized low-density lipoprotein; PAI-I, plasminogen activator inhibitor 1; PTX3, pentraxin 3; SDMA, symmetric
dimethylarginine; sE-selectin, soluble E-selectin; sICAM-1, soluble intercellular adhesion molecule; sP-selectin, soluble P-selectin; sVCAM-1,
soluble vascular cellular adhesion molecule; TM, thrombomodulin; TNF-a, tumour necrosis factor a; TWEAK, TNF-like weak inducer of apop-

tosis; tPA, tissue plasminogen activator; vWF, von Willebrand factor

adhesion molecules, reducing NO bioavailability, promot-
ing vasoconstriction and endothelial dysfunction [144,
154]. CRP promotes endothelial activation through the
expression of ICAM-1, VCAM-1, E-selectins, and CCL2
and activates macrophages that express cytokines and
tissue factors [154]. CRP leads to a reduction in vaso-
active factors derived from the endothelium, mainly NO,
affecting vascular homeostasis. This process may promote
apoptosis in ECs and reduce compensatory mechanisms
important for angiogenesis [155].

Concomitantly, CRP increases the production of endothe-
lin 1, a potent endothelium-dependent vasoconstrictor, and
IL-6, a key pro-inflammatory cytokine [156]. CRP is consid-
ered a predictor of atherosclerosis and vascular dysfunction.
This protein is able to modify the endothelial cell phenotype
and contributing to lesion formation, plaque rupture, and
coronary thrombosis. CRP is an inflammatory biomarker
and a mediator of vascular disease [141].
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CD40 ligand

The CDA40L, belongs to the TNF superfamily, is a type II
transmembrane soluble protein that comprises a pathophysi-
ological pathway linked to inflammation and atherogenesis
[157]. CD40L is primarily produced in platelets being fun-
damental in haemostasis and in the inflammatory response in
the vascular wall [158]. Activated platelets express CD40L
on their surface stimulating the secretion of chemokines
and expression of adhesion molecules in ECs leading to
the recruitment and mobilization of leukocytes to the lesion
location [159].

CDA40L can rapidly detach from the platelet membrane,
appearing systemically. CD40L has proinflammatory,
pro-oxidant and prothrombotic activity, increasing plate-
let activation and aggregation, and platelet-leukocyte and
leukocyte-endothelial coupling both in the soluble form
and in the platelet [160]. Indeed, CD40L leads to chronic
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inflammation, contributing to endothelial dysfunction and
atherogenesis [157].

CC-chemokine ligand 2

The increased expression of CCL2 attracts monocytes
from the vessel lumen into the subendothelial space and in
association with adhesion molecules facilitates monocytes
binding to the ECs and transmigration to the intima layer.
The monocyte recruitment and migration are mediated by
CCL2 [161, 162]. Inside the intima, monocytes differenti-
ate into macrophages and start to express receptors such as
macrophage scavenger receptor (SR-A), lecitin-like oxidized
LDL receptor 1 (LOX-1), and CD36 that internalize modi-
fied LDL beginning the atherosclerotic process [162].
Endothelial damage triggers the increased expression of
CCL2. The measurement of systemic levels of CCL2 is con-
sidered a biomarker of endothelial dysfunction [162].

Asymmetric dimethylarginine

Asymmetric dimethylarginine (ADMA) is an endogenous
inhibitor of NO synthase [163] and a biomarker of NO
impairment and atherosclerosis [164, 165]. ADMA levels
independently correlate with endothelial function measure-
ments [166, 167]. Elevated plasma levels of ADMA are
related with hyperlipidaemia, hypertension, coronary artery
disease, unstable angina, end-stage renal disease, myocardial
infarction, stroke, and diabetes (Fig. 9) [168—174]. Type 2

Fig. 9 Major risk factors incre-
menting ADMA levels with
subsequent nitric oxide synthase
inhibition and concomitant con-
sequences. ADMA, asymmetric
dimethylarginine; MMPs,
metalloproteinases; NOS, nitric
oxide synthase; VSMCs, vascu-
lar smooth muscle cells
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diabetes has been associated with elevated ADMA levels.
ADMA and NO are crucial determinants of insulin resist-
ance [175]. Metformin reduced serum levels of ADMA by
30% in type 2 diabetic patients [176]. Similarly, rosiglita-
zone reduced ADMA levels in insulin-resistant non-diabetic
hypertensive individuals [177]. Increased levels have been
reported in COVID-19 patients [178].

Endocan

Endocan, a soluble chondroitin/dermatan sulphate proteo-
glycan, is expressed and secreted mostly by the activated
endothelium. Several pro-inflammatory cytokines and pro-
angiogenic factors upregulate its synthesis and secretion
[179]. Elevated levels of endocan have been associated with
various cardiometabolic disorders, such as hypertension
[180-182], chronic kidney disease [183], coronary artery
disease [184—186], fatty liver disease [187], type 2 diabe-
tes [188—190], and atherosclerosis [190-192]. In hyperten-
sion, endocan levels are positively correlated with cIMT,
high-sensitivity CRP levels [180, 193], and arterial stiffness
[194]. It has recently been implicated in the early phases of
atherosclerosis in patients with type 2 diabetes [190].
Endocan is involved in atherosclerosis through endothe-
lial dysfunction by promoting inflammation, cell adhesion,
and oxidative stress [195]. Endocan enhances under proin-
flammatory conditions (i.e. increment in IL-1p, TNF-a, and
other pro-inflammatory factors) leading to further augmen-
tation of VCAM-1 and ICAM-1, with subsequent adhesion
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of leukocytes to the endothelium and recruitment and
migration of inflammatory cells. In macrophages, in vitro,
endocan treatment stimulated NO and ROS production and
increased iNOS and CRP expression [196].

Endocan is an important predictor of progression and
prognosis of cardiovascular events [195, 197].

Myeloperoxidase and reactive oxygen species

Myeloperoxidase (MPO), an enzyme belonging to the heme
peroxidases superfamily, is produced by activated neutro-
phils, monocytes, and tissue macrophages. Once activated
it catalyses the formation of ROS (such as hypochlorous
acid, tyrosyl radical, and nitrogen dioxide) leading to oxida-
tive damage of lipids and proteins in the body [141]. This
enzyme is useful combating infectious diseases and can also
be used to predict the onset and progression of atherosclero-
sis [198, 199]. MPO attaches to glycosaminoglycans in vas-
culature and impairs endothelial-derived NO release leading
to endothelial dysfunction [198].

High MPO levels are linked to endothelial dysfunction
and coronary artery disease, whereas low plasma levels and
some MPO polymorphisms are cardioprotective [141, 199].
In turn, oxidative stress can promote endothelial dysfunction
through various mechanisms; the most prominent involves
the reduction of NO bioavailability [6]. The vicious cycle
associated with the production of ROS can exceed the anti-
oxidant defences, and ultimately, an increment in oxidized
biomolecules and tissue damage may happen. Oxidative
stress plays a central role in the development of endothelial
dysfunction and atherogenesis [5, 6].

Pentraxin-3

Pentraxin 3 (PTX3), an inflammatory biomarker, belongs to
the C-reactive protein family. PTX3 is considered a predic-
tor of functional recovery in cardiac surgery patients [200].
Proinflammatory stimuli, injury, or infection, proinflamma-
tory cytokines, toll-like receptor engagement, and microbial
moieties induce PTX3 production by various cell types of the
myeloid lineage, fibroblasts, epithelial cells, mesangial cells,
vascular and lymphatic ECs, smooth muscle cells, adipocytes,
astrocytes, and cells of microglia. PTX3 involved in matrix
remodelling, plays a role in the resistance to some pathogens,
and has a regulatory role in inflammation and in fertility. Once
released, PTX3, a biomarker of inflammation and tissue dam-
age, has a potential role in the diagnostic and prognostic of
cardiovascular disease. In addition, PTX3 is a crucial player
in innate immunity, interacting with various microbial or
endogenous ligands, regulating inflammation as well as tissue
remodelling and repair. The multiple functional properties of
PTX3 relate to the ability to interact with diverse ligands.
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Others

Atherothrombotic events are characterised by an increment
in oxidative stress, endothelial cell activation, increment in
several pro-inflammatory cytokines/chemokines, platelet acti-
vation, increment in acute phase proteins, angiogenic growth
factors, among other systemic biomarkers (Fig. 10). Oxidized
LDL (oxLDL) is pro-inflammatory molecules implicated in
several atherosclerotic events. oxLDL is involved in early pro-
cesses (increment in adhesion molecule expression and acti-
vation of the immune system) and late events (platelet aggre-
gation and destabilization of atherosclerotic plaque) [198].
Oxidative stress modifies LDL particles during the migration
in the blood vessel wall; oxLLDL are a proposed marker of
endothelial dysfunction and atherogenesis [143].

Free fatty acids promote increment in ROS levels and
promote activation of nuclear factor-xB proinflammatory
pathways being considered an early biomarker for endothe-
lial damage and atherosclerosis [141].

Increased homocysteine levels and endothelin 1 over-
production are also linked with endothelial dysfunction and
increment in vascular stiffness suggesting a major role in 3P
medicine [64, 201, 202].

Following endothelial cell activation, an unbalance
between tissue plasminogen activator and its endogenous
inhibitor, plasminogen activation inhibitor-1, promotes
a pro-coagulant state. In addition, von Willebrand factor,
a glycoprotein released by ECs, nurtures coagulation and
platelet activation. Fibrinogen, a glycoprotein and biomarker
of endothelial function, is synthesised mainly in liver cells
and megakaryocytes. Fibrinogen can attach to the surface of
glycoprotein (GP) IIb/IIIa, linking platelets between them.
Fibrinogen promotes platelet aggregation and smooth mus-
cle cell migration, and enhances blood viscosity, and early
events in the atherosclerotic process [5].

Increased renalase serum levels were recently linked with
symptomatic coronary microvascular disease in patients
with acute chest pain and suggested as a novel biomarker of
coronary microvascular disease [203].

In COVID-19 patients, markers of endothelial activation
as von Willebrand factor, thrombomodulin [204], angiopoi-
etin-2 [151, 205], and endoglin, a transforming growth factor
p receptor, have been described.

Cellular biomarkers
Circulating endothelial cells and endothelial microparticles

Endothelial function reveals the equilibrium between vas-
cular endothelial damage and repair. There are several
techniques to quantify the detachment of mature ECs and
derived microparticles as an index of endothelium dam-
age. Endothelial cell activation or injury fosters circulating
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Fig. 10 Biomarkers of athero-
thrombotic events. CCL2,
CC-chemokine ligand 2; COX,
cyclooxygenase; CRP, C-reac-
tive protein; HGF, hepatocyte
growth factor; IL, interleu-
kin; Lp-PLAZ2, lipoprotein-
associated phospholipase A2;
MMPs, metalloproteinases;
MPO, myeloperoxidase; NOX,
NADPH oxidases; oxLLDL,
oxidized low density lipo-
protein; PAPP-A, pregnancy-
associated plasma protein-A;
PIGF, placental growth factor;
PPAR receptors, peroxisome
proliferator-activated receptors;
sCD40L, soluble CD40 ligand;
sFasL, soluble Fas ligand;
SICAM-1, soluble intercellular
adhesion molecule 1; sVCAM-
1, soluble vascular cellular

'Angiogenic growth factors:

VEGF, PIGF, HGF

Oxidative stress:
oxLDL, Lp-PLA2; MPO, NOX

Endothelial activation:

VW, sFasL, sICAM-1, sVCAM-1,
E-selectin

Atherothrombotic
events

adhesion molecule 1; TGF-f,

transforming growth factor f; Proteolysis: / .
TIMP1,2, tissue inhibitor of /MMPS, TIMP1,2, PAPP-A /Acute phase proteins
metalloproteinases 1, 2; TNF-a, \

tumor necrosis factor a; VEGF,
vascular endothelial growth fac-
tor; vW, von Willebrand factor

endothelial cells (CEC) detachment leading to its increment
in the circulation. Flow cytometry or fluorescence micros-
copy can be used to quantify CEC. The increment in CEC
in the peripheral circulation is directly associated with
the extent of endothelial damage in patients with vascular
inflammation, atherosclerosis, and COVID-19 [162, 206].
Microparticles, the membrane vesicles (0.1 to 1 um)
released by different cell types and CEC, are novel biomark-
ers of endothelial injury, linked with atherosclerosis and
related vascular complications (inflammation, thrombosis,
and apoptosis). Microparticles are potential biomarkers of
vascular damage and inflammation [207]. The number of
circulating microparticles may provide a crucial clinical data
in healthy individuals or patients with cardiovascular disease
as a surrogate marker of vascular function [207, 208].
Endothelial microparticles (EMP) are small vesicles
originated and released by the plasma membrane of acti-
vated or damaged ECs [162]. EMP carries adhesion mol-
ecules, enzymes, and their surface receptors, in addition to
expressing a variety of constitutive antigens [209]. High
levels of EMP occur when endothelial cells are activated
and apoptotic and are directly related to thrombogenesis and
atheromatous plaque formation [210], also participating in
the processes of inflammation, vascular damage, and angio-
genesis [211]. EMPs derived from activated endothelial cells

CRP, amyloid A /
\\\

Platelet activation:
P-selectin, sCD40L

may regulate monocyte/macrophage function stimulating the
production of pro-inflammatory cytokines [212]. High EMP
levels have been linked with endothelial dysfunction in coro-
nary artery disease patients [212, 213].

Platelet microparticles

Platelet microparticles (PMP) are very abundant in human
plasma [214]. Numerous studies have described a relation
between PMP and inflammation [215], blood coagulation
[216], thrombosis, and tumour progression [217]. They have
a role in tissue regeneration and angiogenesis [218]. Their
levels are high in myocardial infarction, type 2 diabetes, or
pulmonary hypertension [25, 219, 220].

Monocyte microparticles

Microparticles derived from monocytes (MMP) are related
to endothelial dysfunction [221]. MPM can activate endothe-
lial cells, due to IL-1f increasing inflammation [222]. Treat-
ment of ApoE —/—mice with MPM led to the accumulation
of macrophages in the vascular wall and promoted athero-
sclerotic plaque formation. The interaction between MPM
and inflammatory cells fosters the atherosclerotic disease in
ApoE —/—mice [223].
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Conclusions and expert recommendations

The importance of endothelial dysfunction for the develop-
ment and progression of cardiovascular disease is unques-
tionable. Endothelial function can be evaluated in vivo,
in vitro, with invasive, or non-invasive methodologies. It is
noteworthy that these techniques are widely used in clinical
research, but they are still not used in diagnosis, because
they are too invasive, too expensive, or difficult to be stand-
ardised. We emphasize, therefore, the importance of further
studies and investments in the area to make them applicable
in clinical practice and, therefore, minimize public health
problems related to cardiovascular diseases, through early
diagnosis of endothelial dysfunction.

Endothelial dysfunction predicts the severity of car-
diovascular diseases, and pharmacological and lifestyle
changes can reverse it. Monitoring endothelial function can
provide information regarding the efficacy of therapeutics,
and progression of a vascular disease effectively contrib-
utes to the paradigm shift from reactive medical services
to 3P medicine. However, the determination of endothelial
function routinely is difficult, technically demanding, and
not generally available in the clinical practice. Blood-based
biomarkers of endothelial function are a minimally invasive
diagnosis and a mean of predict response to therapies and an
opportunity for early intervention to avoid the development
of more life-threatening diseases. Novel, non-invasive, and
more reliable techniques to evaluable endothelial function
will be a helpful tool for the clinical in the process of early
diagnosis, stratification, and follow-up of the patients.

Limitations

The present article is a narrative review and, therefore, does
not present an established and reproducible method of pro-
duction, leaving the authors responsible for identifying and
selecting studies, analysing, and interpreting them. Note-
worthy, the purpose of this review is to provide an update
on the methods currently used to assess endothelial function,
and to highlight new viewpoints in this area of knowledge
that may effectively contribute towards a shift from reactive
medical services to predictive, preventive, and personalised
medicine.
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