
Citation: Azzaz, F.; Yahi, N.;

Chahinian, H.; Fantini, J. The

Epigenetic Dimension of Protein

Structure Is an Intrinsic Weakness of

the AlphaFold Program. Biomolecules

2022, 12, 1527. https://doi.org/

10.3390/biom12101527

Academic Editors: Philippe Urban

and Denis Pompon

Received: 22 September 2022

Accepted: 16 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

The Epigenetic Dimension of Protein Structure Is an Intrinsic
Weakness of the AlphaFold Program
Fodil Azzaz, Nouara Yahi, Henri Chahinian and Jacques Fantini *

Department of Biology, INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France
* Correspondence: jacques.fantini@univ-amu.fr

Abstract: One of the most important lessons we have learned from sequencing the human genome
is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made
up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore,
multiple functions, depending on the ligands with which they interact. Under these conditions,
one can wonder about the value of algorithms developed for predicting the structure of proteins,
in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a
recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on
this observation, we have proposed a paradigm, referred to as “Epigenetic Dimension of Protein
Structure” (EDPS), which takes into account all environmental parameters that control the structure
of a protein beyond the amino acid sequence (hence “epigenetic”). In this new study, we compare
the reliability of the AlphaFold and Robetta algorithms’ predictions for a new set of membrane
proteins involved in human pathologies. We found that Robetta was generally more accurate than
AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which
control the structural dynamics of membrane protein structure through chaperone effects, were
identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of
a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially
AlphaFold, which warrants further development.

Keywords: alphafold; AI; protein structure; lipid rafts; ganglioside; membrane; therapy; molecular
modeling; pathology

1. Introduction

The elucidation of protein structures has been considered, for decades, to be the
Grail of biology [1]. The major role played by proteins in biological mechanisms, and the
assumption that the function of a protein is dependent on its three-dimensional structure,
explains why this quest is one of biology’s major issues. The central dogma of molecular
biology [2] includes a conceptual background, according to which, the structure of a
protein is fully determined by its amino acid sequence, which is itself encoded in the
genome [3]. Taking a dizzying shortcut, we can consider that the DNA sequence coding
for a protein contains all the information required for its 3D structure, and thus, for
its biological function [4]. In other words, protein structure is fully determined by its
amino acid sequence [5]. If this assumption is correct, then with sufficient calculation
capabilities, an artificial intelligence would be able to predict the 3D structure of a protein
from sequence data. This is precisely what AlphaFold, a machine learning method, has
recently announced [6]. Indeed, AlphaFold has made available the entire human proteome,
and the 3D structure of any human protein can be downloaded freely from the European
Bioinformatics Institute database (https://www.ebi.ac.uk, accessed on 1 September 2022)
and from the Uniprot server (https://www.uniprot.org, accessed on 1 September 2022).

But can we really say that “the problem of protein structure has been solved”, as was
announced by many media, social networks, and even top scientific journals (https://www.
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science.org/content/article/game-has-changed-ai-triumphs-solving-protein-structures,
accessed 1 September 2022) following the publication of AlphaFold’s results on the hu-
man proteome?

The success of AlphaFold is generally illustrated by the superposed images of a
selected protein structure determined experimentally and predicted by AlphaFold [6]
(https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-
in-biology, accessed 1 September 2022). Although these images are very impressive, only
an independent analysis of the protein structures made accessible by the algorithm can
determine the value of the algorithm. Among the proteins with the most difficult 3D
structures to elucidate, we can mention that the proteins localized in biological membranes
are notoriously difficult to solve with x-ray crystallography [3]. However, these proteins
are central to many human diseases; therefore, an accurate prediction of their structure is
of high interest for drug design strategies. As AlphaFold is also claimed to excel at solving
the 3D structure of membrane proteins [6], it is important to assess the reliability of the
algorithm for this category of proteins.

We have already accomplished such analytical work with a first set of proteins compris-
ing several membrane proteins [3]. This first study allowed us to observe that AlphaFold
did not always give reliable results, revealing several inconsistencies in the location of
the transmembrane domains controlling the typical topology of these membrane proteins.
Additionally, we also observed that AlphaFold had difficulty in correctly predicting the
structure of certain intra- and extracellular domains of several membrane proteins.

In this new study, we continue our analysis with a new sample of membrane proteins.
We compare the results obtained by AlphaFold [6] with those of Robetta [7,8], another 3D
structure prediction algorithm. We refine our study by showing that in most of the cases
studied, the structures predicted by AlphaFold cannot be used as starting conditions for
molecular docking analyses. These new results are discussed in light of the concept we
developed in our previous publication, the “epigenetic dimension of protein structure”
(EDPS) [3], which explains why AlphaFold fails to correctly predict the structure of mem-
brane proteins. In contrast, we show that Robetta (which also provides an improved deep
learning based modeling method, RoseTTAFold) [8] is generally superior to AlphaFold2 for
the prediction of the structure of this particular class of proteins, and that Robetta structures
are directly usable for molecular docking.

2. Methods
2.1. Membrane Proteins Study

The models of the membrane proteins predicted by AlphaFold2 for the epidermal
growth factor receptor (EGFR), human synaptic vesicle glycoprotein C (h-SV2C), human
synaptotagmin 1 (h-SYT1) and amyloid-beta precursor model (APP) were retrieved from
uniprot (https://www.uniprot.org/, accessed on 1 September 2022) using the uniref codes
#P00533 for EGFR, #Q496J9 for h-SV2C, #P21579 for h-SYT1 and #P05067 for APP. The
ab-initio models were generated using the web-based service Robetta (https://robetta.
bakerlab.org/, accessed on 1 September 2022). To make sure that the membrane proteins
predicted by Robetta can be inserted into a planar lipid bilayer, each membrane protein
was loaded on CHARMM-GUI and analyzed with the “bilayer builder” tool [9,10].

2.2. Structural and Functional Study of the Luminal Domain of h-SV2C

To compare the structural reliability of the luminal domain of h-SV2C predicted by
Robetta and AlphaFold2, we performed a structural alignment of each model with the
luminal domain of h-SV2C resolved by Xray diffraction (PDB: 4JRA). Then, we merged the
coordinates of botulinum neurotoxin A1 (BoNT/A1) with each model to obtain a complex
BoNT/A1-h-SV2C for each h-SV2C structure predicted by Robetta and AlphaFold2. The
complexes were submitted to energy minimization with the Polak-Ribière algorithm of
HyperChem (CHARMM force field, 0.1 kcal/mol as the gradient conditions) in order
to optimize the inter and intra-molecular contacts of the proteins. The energy of inter-
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action of the minimized complexes were measured on Molegro Software using the tool
“ligand energy inspector” (http://molexus.io/molegro-molecular-viewer/, accessed on
1 September 2022).

2.3. Soluble Proteins Study

AlphaFold2 predicted models for botulinum neurotoxin A (BoNT/A), botulinum
neurotoxin B (BoNT/B) and complex factor H (CFH) were obtained from uniprot sequence
data using the uniref #P0DPI0 for BoNT/A, #P10844 for BoNT/B and #P08603 for CFH. To
compare the inter-molecular contacts of each neurotoxin model in initial interaction with
their membrane receptors, we docked them with their protein receptor, and we inserted
the receptor into a lipid bilayer that mimics a lipid-raft environment.

2.4. Docking of BoNT/B with its Membrane Receptors

The synaptotagmin binding pocket surface of the crystal structure of BoNT/B (PDB:
2NP0) was manually docked to the surface of h-SYT1 in an initial orientation compatible
with the membrane topology of h-SYT1 and surrounding ganglioside cofactors [11]. These
initial conditions take into acccount the experimental data that identify the BoNT/B do-
mains that bind to h-SYT1 and to the ganglioside cofactor [12–14]. Molecular details of
these initial conditions are given in Figure S1.

2.5. TM-Score and Root-Mean-Square Deviation

The measurements of TM-score and Root-mean-square deviation (RMSD) for the com-
parison of the global structures were performed using the online tool “TM-score” available
on Zhong Lab website (https://zhanggroup.org/TM-score/, accessed on 5 October 2022)
by taking the experimental structure of the corresponding model as reference. Similar
calculations were performed for the domain comparison by using the domain structure
of AlphaFold2 and Robetta models as reference. Additionally, we computed the values of
RMSD for the comparison of each global structure and each protein domain structure using
PyMOL software (https://pymol.org/2/, accessed on 5 October 2022).

3. Results
3.1. EGFR

In this first section, we compared the structure of four different membrane proteins
predicted by AlphaFold2 and Robetta. Our first example is the epidermal growth factor
receptor (EGFR), a signalling membrane receptor involved in several types of cancers [15].
The models generated by these algorithms are significantly different. Robetta could predict
the correct spatial organization of the extra-cellular, transmembrane, and intra-cellular
regions of EGFR whereas the structure predicted by AlphaFold2 is clearly not membrane
compatible, but rather looks like a soluble protein (Figure 1A). One of the major challenges
of predicted models is to know if they could be used for further molecular modeling work.
To assess the reliability of EGFR, we attempted to insert this receptor into a membrane.
The Figure 1B shows that the topology of EGFR predicted by Robetta is sufficiently ac-
curate to insert this membrane protein in a lipid bilayer. The extracellular part of EGFR
was previously solved by Cryo-EM from residues 25 to 638 (Figure 1C). The comparison
of the crystal structure with Robetta and AlphaFold2 models revealed that the experi-
mental structure matched better the prediction of Robetta (Figure 1D) than AlphaFold2
(Figure 1E). Additionally, we can see that AlphaFold2 has predicted that the unstructured
1151–1185 region of EGFR, which belongs to the intracellular domain of the receptor, is
positioned extracellularly (Figure 1E, arrow). This could explain why AlphaFold2 failed to
predict an accurate structure of EGFR that matches the spatial organization revealed by the
experimental approach.

http://molexus.io/molegro-molecular-viewer/
https://zhanggroup.org/TM-score/
https://pymol.org/2/
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vironment (B). Comparison of the structure of the epidermal growth factor receptor resolved by 

Figure 1. Comparison of the structure of the epidermal growth factor receptor retrieved from
Alpha Fold (depicted as cartoon colored in blue) or modelized via Ab-initio calculation on Robetta
(red) (A). Molecular model of the insertion of the receptor obtained by Robetta in a lipid membrane
environment (B). Comparison of the structure of the epidermal growth factor receptor resolved by
Cryo-EM (PDB: 7SYD, resolved from the residue 25 to 638) ((C), green) with the structure obtained by
Robetta ((D), red) and AlphaFold2 ((E), blue). In (E), the arrow points to an unstructured region that
was predicted and inserted by the AlphaFold2 algorithm between the two extra-cellular domains.
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3.2. h-SV2C

Next, we challenged AlphaFold2 and Robetta to predict the structure of synaptic
vesicle protein h-SV2C, a complex membrane protein with 12 transmembrane domains
which plays a role in dopamine neurotransmission and Parkinson’s disease [16], and is
also used as a receptor by botulinum neurotoxins [17]. The models are shown in Figure 2.
Both AlphaFold2 and Robetta successfully modelized the luminal domain of h-SV2C and
the 12 transmembrane regions. However, only Robetta was able to correctly predict the
intracellular domain of h-SV2C. In contrast, AlphaFold2 predicted it to be a long alpha
helix that crosses the membrane, which then makes it impossible to insert in a lipid bilayer
as the Robetta model does (Figure 2A). Studies using the luminal domain of h-SV2C are
of high interest because this structure serves as a membrane receptor for the botulinum
neurotoxin BoNT/A1 [17], which is the most potent microbial neurotoxin in humans, with
a lethal dose of 1 ng/kg [18,19]. The luminal domain of h-SV2C in complex with BoNT/A1
was previously resolved by Xray diffraction (Figure 2B). Topologically, both the AlphaFold2
and Robetta models proposed a structure similar to the experimental structure (Figure 2C).
To study which of the AlphaFold2 or Robetta models is the most accurate for interacting
with BoNT/A1, we docked the neurotoxin near the interaction site of each h-SV2C model
and we submitted them to energy minimization. The energy of interaction of the major
amino acid residues interacting with the BoNT/A1 are presented in Figure 2D.
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Figure 2. Comparison of the structure of human synaptic vesicle glycoprotein C (h-SV2C) predicted
by AlphaFold2 (blue) and Robetta (red). Insertion of the model predicted by Robetta into a lipid
bilayer (A). Crystal structure of the luminal domain of h-SV2C in complex with BoNT/A1 (B).
Structural alignment of h-SV2C predicted by AlphaFold2 and Robetta with the crystal structure of
h-SV2C (C). Comparison of the energy of interactions of each h-SV2C-BoNT/A1 complex (D).

Snapshots of the complexes before and after energy minimization are presented in
Figure 3. The analysis of the energy of interaction obtained for each minimized complex
suggests that the Robetta model is generally more accurate than the AlphaFold2 model
because the Robetta model displayed a slightly higher energy of interaction for residue
K558, and, to a lesser extent, for the residues E556, F557, C560 and F562 (Figure 2D). These
differences are in good agreement with the structural details of each complex. Indeed,
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the C-terminal extremity of the luminal domain of h-SV2C of the Robetta model adapts
its structure to interact with the beta strand structure of BoNT/A1, a conformational
rearrangement that is not observed in the AlphaFold2 model (Figure 3).

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 18 
 

Snapshots of the complexes before and after energy minimization are presented in 

Figure 3. The analysis of the energy of interaction obtained for each minimized complex 

suggests that the Robetta model is generally more accurate than the AlphaFold2 model 

because the Robetta model displayed a slightly higher energy of interaction for residue 

K558, and, to a lesser extent, for the residues E556, F557, C560 and F562 (Figure 2D). These 

differences are in good agreement with the structural details of each complex. Indeed, the 

C-terminal extremity of the luminal domain of h-SV2C of the Robetta model adapts its 

structure to interact with the beta strand structure of BoNT/A1, a conformational rear-

rangement that is not observed in the AlphaFold2 model (Figure 3). 

 

Figure 3. Structural conformational changes of BoNT/A1-h-SV2C complex involving the Robetta 

model (red) or the AlphaFold2 model (blue) after energy minimization. 

3.3. h-SYT1 and APP 

Our third and fourth examples are human synaptotagmin-1 (h-SYT1), which is also 

known to interact with BoNT/A1 [13] and the Alzheimer’s amyloid precursor protein 

(APP), which, upon proteolytic cleavage, produces the Alzheimer’s β-amyloid peptide 

[20]. Both proteins have a single transmembrane domain. As in the case of EGFR, the Al-

phaFold2 models for h-SYT1 and APP looked more like globular proteins than membrane 

proteins (Figure 4). In contrast, Robetta predicted a spatial organization that was compat-

ible with a membrane protein insertion in a lipid bilayer, and the clearcut presence of a 

luminal domain and an intracellular domain. 

Figure 3. Structural conformational changes of BoNT/A1-h-SV2C complex involving the Robetta
model (red) or the AlphaFold2 model (blue) after energy minimization.

3.3. h-SYT1 and APP

Our third and fourth examples are human synaptotagmin-1 (h-SYT1), which is also
known to interact with BoNT/A1 [13] and the Alzheimer’s amyloid precursor protein
(APP), which, upon proteolytic cleavage, produces the Alzheimer’s β-amyloid peptide [20].
Both proteins have a single transmembrane domain. As in the case of EGFR, the AlphaFold2
models for h-SYT1 and APP looked more like globular proteins than membrane proteins
(Figure 4). In contrast, Robetta predicted a spatial organization that was compatible with
a membrane protein insertion in a lipid bilayer, and the clearcut presence of a luminal
domain and an intracellular domain.

Taken together, these data suggested that Robetta is more accurate than AlphaFold2
for the prediction of membrane protein structure and topology.

3.4. BoNT/A1 and BoNT/B1

Since the AlphaFold2 algorithm suffers from obvious deficiencies concerning the
relative spatial organization of the domains of a protein, we were interested in investi-
gating the case of large soluble proteins that have several domains. For this purpose,
we selected the microbial neurotoxins BoNT/A1 and BoNT/B1, and factor H of human
complement (a regulatory cofactor for the protease factor I in the breakdown of C3b in the
complement system of immune defence) [21]. For each selected protein, we compared the
models obtained by AlphaFold2 and Robetta with the experimental structure solved by
X-ray diffraction.
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(bottom panel) retrieved from AlphaFold2 (blue) or generated by ab-initio modeling with Ro-
betta (red).

Botulinum neurotoxins are composed of three domains, a light chain (LC) which has
a metalloprotease activity, a translocation domain (HN) and a C-terminus heavy chain
(HC) [22]. HC is the most studied domain because it is responsible for the recognition of
toxin receptors on the extracellular surface of neural membranes. In the case of BoNT/A1,
the spatial organization of the pattern predicted by the AlphaFold2 is different from that
proposed by X-ray diffraction, while the Robetta model suggests a structure that is quite
the same as the experimental one (Figure 5). It is known that BoNT/A1 uses, as membrane
receptor, a complex between gangliosides (which form lipid raft domains in the plasma
membrane) [23] and the luminal domain of synaptic vesicle glycoproteins h-SV2C [17,24,25].
To evaluate if these different structural organizations can induce a bias in the initial binding
of BoNT/A1 with its membrane receptor, we docked each structure to the luminal domain
of h-SV2C embedded in a lipid raft. As indicated by a red frame in Figure 5, a large surface
of the HN domain of BoNT/A1 interacts with the sugar moiety of gangliosides, while this
is not the case for the Robetta model and the experimental structure.

Next, we were interested in performing a similar evaluation for BoNT/B1, since this
serotype is the second most potent in humans, just after BoNT/A1. To this end, we docked
BoNT/B1 to its protein receptor h-SYT1 [26] and we inserted the complex into a lipid
bilayer that mimics a lipid raft context. As for BoNT/A1, the structural organization of
the HN and LC domains in the AlphaFold2 model are different from the experimental
structure, while the Robetta model displays a similar spatial organization (Figure 6). As a
result, the extremity of the HN domain of the AlphaFold2 model is wrongly positioned
within the 5Å distance (red frame in Figure 6), which could allow an interaction with
the sugar moiety of gangliosides, compared to the Robetta model and the experimentally
determined structure, for which this option is not possible.
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A obtained from Xray diffraction (PDB: 3BTA) (left), AlphaFold2 (middle) and Robetta (right)
and molecular modeling of each structure with its membrane receptor human synaptic vesicle
glycoprotein C (h-SV2C) in a neural membrane context. The toxin receptor h-SV2C is depicted as a
cartoon colored in black. The phosphate atom of each POPC lipid is shown as brown spheres. GT1b
molecules are represented as orange sticks and the lipid tail of POPC molecules are shown as thin
blue lines.

Finally, we compared the models of the complement factor H, a protein which adopts
a typical serpentine shape [21], as illustrated by the experimental model solved by solu-
tion scattering (PDB: 1HAQ) (Figure 7). The Robetta algorithm managed to propose an
elongated serpentine folding for this protein, while AlphaFold2 proposed a condensed
wool ball structure similar to those proposed for EGFR and APP (Figure 7). These data
indicated that the AlphaFold2 algorithm has difficulties in predicting elongated structures,
which is an important feature for the prediction of a correct spatial organization of proteins,
such as botulinum neurotoxin and membrane proteins, as we show across our examples.
Interestingly, the failure of AlphaFold2 in this case was not due to a low confidence in its
prediction, since the pLDDT [6] of this model was in the 70–90 range (Figure S2). In any
case, this deficiency significantly impacts the prospect of using the AlphaFold2 model to
perform molecular modeling of such flexible proteins.

3.5. TM-Score and Root-Mean-Square Deviation of AlphaFold2 and Robetta Models

The reliability of Robetta and AlphaFold2 predictions can be estimated, respectively,
by the Å error estimate and pLDDT values. The data for the set of proteins analyzed in
the present study are available in Figures S2–S4. As expected, the level of confidence of
both programs was higher for structured vs. unstructured regions. Overall, all the proteins
had high pLDDT values, so that the diffences between the predictions of AlphaFold and
Robetta are not due to a bias in the selection of the models. Moreover, to further compare
the predictions of AlphaFold2 and Robetta with the available experimental structures, we
performed a systematic analysis of the TM-score and RMSD values (Table 1).
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We specifically assessed the spatial organization of each protein by comparing the
structures predicted by AlphaFold2 and Robetta, using the extracellular region of EGFR
(Figure S5), the intracellular region of h-SYT1 (Figure S6), full length BoNT/A (Figure S7),
full-length BoNT/B (Figure S8) and APP (Figure S9) as corresponding references. In this
analysis, each individual domain predicted by AlphaFold2 or Robetta was compared with
the corresponding experimental structure.
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Table 1. Root mean square deviation (RMSD) and template-modeling score (TM-score) values for
each AlphaFold2 and Robetta model according to their corresponding experimental structures. The
RMSD is the measure of the average distance (in Å) between the backbone atoms of superimposed
proteins. TM-score lies between 0 and 1, where 1 indicates a perfect match between two structures
(thus the closer to 1 the better).

Protein Template
PDB

RMSD
Robetta

RMSD
AlphaFold2

TM-Score
Robetta

Tm-Score
AlphaFold2

EGFR (25–638) 7SYD 21.1 27.085 0.29 0.23
EGFR (25–309) 7SYD 2.64 2.36 0.86 0.91
EGFR (366–492) 7SYD 0.88 0.44 0.96 0.99
h-SYT1 (141–419) 2R83 12.19 17.482 0.44 0.41
h-SYT1 (143–265) 2R83 1.31 1.27 0.93 0.95
h-SYT1 (274–419) 2R83 0.88 0.47 0.95 0.97
APP (30–123) 1MWP 1.08 0.6 0.90 0.92
APP (290–342) 1APP 1.2 0.57 0.85 0.95
BoNT/A (whole
protein) 3BTA 4.327 25.47 0.77 0.61

BoNT/A LC (0–441) 3BTA 2 0.7 0.92 0.97
BoNT/A HN
(442–850) 3BTA 2.46 1.58 0.9 0.95

BoNT/A HC
(851–end) 3BTA 2.02 1.55 0.92 0.96

BoNT/B (whole
protein) 2NP0 5.298 22.558 0.78 0.684

BoNT/B LC (0–441) 2NP0 1.75 1.41 0.96 0.97
BoNT/B HN (442–850) 2NP0 2.56 1.98 0.91 0.95
BoNT/B HC
(851–end) 2NP0 2.37 1.65 0.91 0.96

The data in Table 1 indicated that Robetta models match the spatial organization of
experimental structure domains better than AlphaFold2 models, as demonstrated by a
lower RMSD and a higher TM-score. However, when each domain is taken individually, Al-
phaFold2 models present a lower RMSD and a higher TM-score value than Robetta models,
suggesting that AlphaFold2 is more accurate for predicting the folding of protein domains.

3.6. A Chaperone Activity in Lipid Rafts

Lipid rafts contain different sphingolipid species, which have been shown to control
the conformation of proteins, so that they are considered to be lipid chaperones [27]. A
typical example of this chaperone activity is presented in Figure 8. It concerns synaptotag-
mins, which, like SV2 glycoproteins, can be used as membrane receptors by botulinum
neurotoxins [13]. Synaptotagmins are associated with lipid rafts in synaptic vesicles and
on the plasma membrane of neural cells [28–30]. When the protein interacts with small
raft lipids, such as the regulatory signal transduction molecule ceramide, its extracellular
domain remains disordered. In this case, the polar head group of ceramide has a small
area of interaction with the protein, and thus, has a limited effect on its shape. In contrast,
the ganglioside GT1b has a large saccharidic polar head group that establishes numerous
contacts with the protein and drives the α-helix folding of the first part of its extracellular
domain. Thus, despite the fact that this part of synaptotagmin is predicted to adopt a
helical shape by both Robetta and AlphaFold2 (Figure 4), this α-helix structure can collapse
under the reversible control of chaperone raft lipids, which have the power to transform a
functional protein (α-helix conformer) into a nonfunctional one (disordered conformer). In
fact, only the synaptotagmin-GT1b complex behaves as a functional receptor for botulinum
toxin [11], which obviously cannot be predicted on the sole basis of the amino acid sequence
of synaptotagmin.
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it acquires a α-helix structure when bound to ganglioside GT1b. Both models were obtained with
Hyperchem and submitted to energy minimization with the Polak–Ribière algorithm according to
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structures have been schematized for clarity. The global shape and volume of these lipids are directly
responsible for these typical chaperone effects. This mechanism accounts for the critical role played
by raft lipids on protein structure, illustrating the EDPS paradigm. TM, transmembrane domain.

4. Discussion

The prediction of the 3D structure of proteins based on their amino acid sequence has
made considerable progress in recent years with the advent of methods based on deep
learning [1]. However, despite these advances, we should take into account that many
problems still need to be solved [3]. First of all, the working hypothesis according to which
all proteins necessarily have a three-dimensional structure has been contradicted by the
results of the sequencing of the human genome [31]. In fact, there is a very large part
of the human proteome comprising intrinsically disordered proteins (IDPs), i.e., proteins
having no ordered structure, or having at least one disordered part [32]. Thanks to genome
sequencing data and prediction algorithms, it has been estimated that IDPs represent about
40% of all proteins in eukaryotes, constituting the “unfoldome”, which corresponds to
the set of disordered proteins [31]. IDPs are involved in the regulation of key biological
functions including signal transduction, gene expression, cell division, differentiation and
inflammation [33]. An intriguing aspect of IDPs is their capacity to adapt their conforma-
tion to their environment [34]. In this case, the Anfisen rule “one amino acid sequence,
one structure, one function” becomes “one amino acid sequence, numerous structures, nu-
merous functions”. Among the disease-associated proteins that contain chameleon [35] or
discordant sequences [36], and thus, that can adopt distinct structures [37], Aβ, α-synuclein
and tau are of critical importance, since their conformational plasticity is directly related to
the pathological mechanisms of neurological disorders [38]. Not surprisingly, the case of
these proteins has been identified as serious limitation of AlphaFold [3,37].

The case of synaptotagmin (Figure 8) is also emblematic, since the extracellular part
of this membrane protein can remain disordered or be partially structured as an α-helix,
depending on the nature of the membrane lipid with which it interacts [11]. The conse-
quence of this structuring is critical for the binding of botulinum neurotoxin which uses
synaptotagmin as a membrane receptor. It is therefore very clear that in this case, the
amino acid sequence alone does not provide all the information necessary to be able to
predict a 3D structure. It is precisely this limitation of prediction algorithms that led us
to develop the concept of “epigenetic dimension of protein structure” (EDPS) [3]. This
paradigm takes into account the influence of the protein environment, which, in addition
to the amino acid sequence, imposes folding constraints. However, it excludes common
post-translational modifications of proteins, such as phosphorylation, glycosylation or
lipidation, that can be predicted from consensus amino acid motifs [3]. Membrane pro-
teins are a perfect example of this paradigm, as specific lipids act as key cofactors (i.e.,
chaperones) for protein folding and stability [27,38–42]. The existence of protein-lipid



Biomolecules 2022, 12, 1527 12 of 16

“co-structures” have been identified as an issue for the heterologous expression of mem-
brane proteins [43]. Indeed, injecting the information of an amino acid sequence into a
heterologous cell does not warrant correct expression and folding of a membrane protein
if the specific lipid requirements of this particular protein are not respected. Yet, in some
instances, water can play a similar role as membrane lipids on protein folding. In the
aqueous extracellular space, the initially disordered amyloid protein A β1-42, folds into a
typical β-structure, consistent with the propensity of its amino acid sequence, to adopt
a secondary β-strand organization [36]. Then, in a lipid environment, the same protein
may be forced to adopt a helical structure [44–47], which is thus non-“natural”, but rather
induced by the environment, consistent with the EDPS paradigm. A similar mechanism
applies for the cellular prion protein, a typical α/β discordant protein [20,36] which is
stabilized by raft lipids in a physiological α-helical structure [20,38], whereas it can switch
to the pathological β-structure when those protective lipids detach from the protein [38].
Clearly, these proteins pose a serious problem to AI-based prediction methods of protein
structure based on the amino acid sequence.

The intrinsic environmental limitations highlighted by the EDPS paradigm [3] are
illustrated in the present study by numerous examples of membrane proteins for which
AlphaFold does not provide correct structures. On the other hand, we find that Robetta’s
results take much better account of membrane topology, at least for the set of proteins
analyzed. At this point, we have not clearly identified what gives Robetta this advantage
over AlphaFold, the latter stumbling on the difficulty of predicting a realistic membrane
topology, but also having a problem for loop structures [48]. Both algorithms are based on
the functioning of neural networks. In a recent comparative study focused on G-protein-
coupled receptors (GPCR), Lee et al. [49] concluded that the popular template-based method
Modeler is superior to both AlphaFold and Robetta (RosseTTAfold) when good templates
are available. The best AlphaFold models matched closely to crystal structures, but Robetta
was generally more accurate. In any case, we hope that our study will allow the developers
of AlphaFold to take into account new parameters for membrane proteins and improve
the algorithm accordingly. The stakes are very high because many human pathologies
involve membrane proteins, including receptors and ion channels. The design of molecules
binding to these proteins using in silico docking approaches can only be done if reliable 3D
structures are available. If we consider the case of the APP protein, which is the precursor
of the β-amyloid peptide of Alzheimer’s disease, we cannot use the 3D structure proposed
by AlphaFold2 because it absolutely does not respect membrane topology (Figure 4).
Another difficulty appears if we now consider alpha-synuclein, the protein responsible for
Parkinson’s disease. α-Synuclein is an IDP [50] that can be secreted by nerve cells [51,52]. A
part of secreted α-synuclein can be attracted by selected gangliosides in lipid rafts domains,
which, with the assistance of cholesterol, triggers the structuration and oligomerization
of Ca2+ permeable pores (amyloid pores) [45,46,53]. A similar molecular mechanism
also applies for Alzheimer’s Aβ1–42, a typical IDP which also forms amyloid pores once
inserted in the plasma membrane of brain cells [45,46,54]. For both α-synuclein and Aβ1-42,
structure predictions are necessarily inaccurate, since these proteins can exist in a myriad
of conformations and various oligomeric assemblies [37], until they reach the plasma
membrane, where gangliosides and cholesterol have the opportunity to force them to adopt
a precise structure, making the formation of a calibrated amyloid pore possible [20]. To
circumvent this difficulty, which complicates the implementation of a therapeutic strategy,
Fantini and Yahi have created a therapeutic peptide (AmyP53) targeting gangliosides, and
thus, preventing any interaction of α-synuclein or Aβ at the membrane level [55]. The
design of this peptide took into account the concept of IDPs by adapting it to a synthetic
molecule. This was possible by applying the EDPS paradigm, and more precisely, by
considering the chaperone role of membrane lipids on the structure of proteins, beyond the
single amino acid sequence [56]. However, the whole process first required the elucidation
of α-synuclein and Aβ1-42 binding to brain gangliosides at the molecular level [38,57,58].
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Another major outcome of the present study concerns the reliability of structure protein
prediction for molecular docking. We took the example of SV2, which, like synaptotagmin,
is also used as membrane receptor by botulinum neurotoxins. The design of inhibitors
of this toxin requires deciphering, at the molecular level, the mechanisms involved in
the toxin-cell interaction. X-ray diffraction studies are incomplete, as they can only be
performed with the extracellular part of the receptors. It is, therefore, crucial to obtain
structural data of these proteins in their entirety and in their membrane environment. Our
study has highlighted inconsistencies in Alpha-Fold predictions which do not provide a
correct initial structure for docking the toxin on SV2.

Overall, although performed on a limited set of proteins, our study shows that the
Achilles heel of 3D membrane protein structure prediction algorithms is indeed the mode
of interaction of these proteins with the membrane bilayer. This intrinsic limitation requires
reconsidering the global paradigm that links the amino acid sequence of a protein and its
3D structure. All proteins do not necessarily have a 3D structure, and the environment
brings its own set of parameters that must be integrated into the algorithms. Indeed,
it would be illusory to think that a single algorithm could predict the structure of all
proteins. This would amount to considering that the folding of membrane proteins and
their topology in biological membranes obeys the same rules as those which structure water-
soluble proteins. On the opposite of this deterministic view of biology, the EDPS paradigm
considers water and membrane lipids as key parameters that act “beyond the genetic code”
(hence “epigenetic”) and give a degree of conformational freedom for distinctive proteins.
Until now, the only parameter implicitly considered, and therefore not mentioned, was
water. A fundamental mistake in biology has been to think for too long that this parameter
applied to the entire proteome of a living organism. Indeed, protein secondary structure
predictions have been established from the structure of water-soluble proteins and then
extrapolated to any type of protein [59]. This confusion seems to be reproduced with
AlphaFold, which, without diminishing its performance, cannot achieve the impossible,
i.e., assign a structure to proteins which do not have one, or extrapolate the parameters
controlling the structure of a water-soluble protein to a membrane protein.

We are of course aware that the parameters controlling the 3D structure of proteins,
apart from the amino acid sequence, have been identified several years ago [3]. The data
accumulated on amyloid proteins, alpha/beta transitions and IDPs are all exceptions to
Anfinsen’s dogma according to which the amino acid sequence of a protein contains all the
information necessary for its folding. Nevertheless, we want to draw the attention of non-
experts to the fact that these data call into question the very principle on which AlphaFold
is based, i.e., the predictions of 3D structure from sequence data. Under these conditions,
grouping together all these exceptions to the dogma under the same term EDPS seems, to
us, to be an important clarification of the scientific value of programs such as AlphaFold.
The above-mentioned chaperone activity, gangliosides, is a perfect illustration of the need
to introduce this paradigm. According to the scientific literature, this conformational
effect can be either α-helix [60,61] or β-sheet [62,63] structuration, depending on the protein
concerned. Additionally, even for the same protein, the type of secondary structure induced
by gangliosides can vary dramatically from α to β, according to the protein-ganglioside
ratio [62,64,65]. By grouping all these phenomena under the same term, EDPS, we clearly
limit the field of application of AlphaFold to proteins having a stable 3D structure based on
an architectural organization built on a predictable secondary structure, a field in which
AlphaFold generally excels [6]. However, when it comes to applying the rules established
for soluble proteins to membrane proteins [59], it is difficult for AlphaFold to achieve
success. Indeed, proline and glycine, which are very rare in the helices of water-soluble
proteins, are overrepresented in helical transmembrane domains, giving these domains
possibilities of regulation that exist only in membrane proteins [66]. These are, therefore,
indeed functional epigenetic phenomena, in the sense that these phenomena depend on the
environment of the proteins, and not only on the amino acid sequence coded in the genes.
The living retains a share of anarchy, which, for the moment, remains totally unpredictable.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom12101527/s1, Figure S1: Close view into the molecular mechanism
of interaction of the HC domain of BoNT/B with its membrane receptor after molecular docking
process; Figure S2: Angstrom error estimate for Robetta models and pLDDT score for AlphaFold2
models for soluble proteins BoNT/A, BoNT/B and CFH; Figure S3: Angstrom error estimate for
Robetta models and pLDDT score for AlphaFold2 models for the membrane protein EGFR and
h-SV2C; Figure S4: Angstrom error estimate for Robetta models and pLDDT score for AlphaFold2
models for h-SYT1 and APP; Figure S5: RMSD and TM-score values of AlphaFold2 and Robetta
models for EGFR taking as template the Cryo-EM structure in PDB file 7SYD; Figure S6: TM-score
and RMSD values of AlphaFold2 and Robetta models for h-SYT1 taking as template the coordinates
of the Xray structure stored in PDB file 2R83; Figure S7: TM-score and RMSD values of AlphaFold2
and Robetta models for BoNT/A taking as template the coordinates of the Xray structure in PDB:
3BTA; Figure S8: TM-score and RMSD values of AlphaFold2 and Robetta models for BoNT/B taking
as template the coordinates of the Xray structure in PDB: 2NP0; Figure S9: TM-score and RMSD
values of AlphaFold2 and Robetta models for APP taking as template the coordinates of the Xray
structure stored in PDB files 1MWP for residues 30 to 123 or 1APP for residues 290 to 342.
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