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Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating
resistance to toxic compounds in several life forms. In bacteria, these elements are involved
in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally
acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps
belong to the core of bacterial genomes and thus have evolved over millions of years.
The selective pressure stemming from the use of antibiotics to treat bacterial infections
is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements
have evolved in response to antibiotics. In the last years, several studies have identified
numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review
we present some examples of these functions that range from bacterial interactions with
plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance
of cellular homeostasis.
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INTRODUCTION
Multidrug resistance (MDR) efflux pumps are relevant elements
that contribute to both intrinsic and acquired resistance to toxic
compounds in diverse life forms, including humans where they
have a role in resistance to anti-cancer drugs (Wu et al., 2011),
to bacteria, where they are involved in resistance to antibiotics
(Webber and Piddock, 2003; Li and Nikaido, 2004, 2009; Poole,
2005, 2007). Unlike well-known horizontally acquired antibi-
otic resistance determinants, MDR efflux pumps are usually
chromosomally encoded and the structural components of dif-
ferent systems are highly conserved in all members of a given
bacterial species (Saier et al., 1998; Paulsen et al., 2001; Saier
and Paulsen, 2001; Paulsen, 2003; Baquero, 2004; Andam et al.,
2011). MDR systems are ancient elements, present in bacterial
genomes long before the use of antibiotics for the treatment
of human infections (Martinez et al., 2009a). This, along with
their ubiquity in different organisms, suggests that the main
function of these elements goes beyond providing resistance to
antibiotics. The fact that quinolones, a family of synthetic antibi-
otics, constitute a common substrate of MDR efflux pumps
supports this notion (Alonso et al., 1999; Hernandez et al., 2011b).
These observations also suggest that the recent selective pres-
sure imposed by the use of antibiotics is not the main evoluti-
onary driver for MDR efflux pumps (Alonso et al., 2001; Martinez
et al., 2009b).

Bacterial MDR efflux pumps can be grouped into five different
structural families: the adenosine triphosphate (ATP)-binding cas-
sette (ABC) superfamily (Lubelski et al., 2007), the multidrug and
toxic compound extrusion (MATE) family (Kuroda and Tsuchiya,
2009), the major facilitator superfamily (MFS) (Pao et al., 1998),
the small multidrug resistance (SMR) family (Chung and Saier,
2001), and the resistance/nodulation/division (RND) superfam-
ily (Murakami et al., 2006; Nikaido and Takatsuka, 2009; Nikaido,

2011). The activity of an efflux pump depends on the different
types of energy source each system uses: ABC transporters are
fueled by ATP hydrolysis; MFS, RND, and SMR use the proton-
motive force and MATE transporters consist of Na+/H+ drug
antiport systems (Piddock, 2006a).

The RND family includes several members that are relevant to
antibiotic resistance in Gram-negative bacteria, whereas the MATE
family has been mainly associated to resistance in Gram-positive
microorganisms (Piddock, 2006a; Vila and Martinez, 2008). This
review will focus exclusively on RND efflux systems.

The crystallographic analysis of AcrB, a model member of
the RND family, revealed that this protein forms a homotrimer
(Murakami et al., 2002; Nakashima et al., 2011), that associates
into a tripartite complex along with an outer membrane protein
(OMP, TolC) and a periplasmic membrane-fusion protein (MFP,
AcrA; Figure 1). Usually the genes encoding for these proteins are
found in a single operon, however, the gene encoding for the OMP
can also be found elsewhere in the chromosome, as it happens with
TolC in Escherichia coli (Koronakis et al., 2000, 2004); or is part of
an operon encoding for a different efflux pump (Figure 2). The
Pseudomonas aeruginosa RND efflux pump MexXY is an example
of the latter, where the system uses the OprM porin encoded in
the mexAB-OprM operon (Figure 2; Mine et al., 1999).

In this review we will address the different functional roles that
RND efflux pumps may have in addition to mediating antibi-
otic resistance. Exhaustive information on structure, regulatory
aspects, and antibiotic resistance can be found elsewhere (Saier
et al., 1998; Paulsen et al., 2001; Saier and Paulsen, 2001; Paulsen,
2003; Webber and Piddock, 2003; Li and Nikaido, 2004, 2009;
Poole, 2004, 2007; Piddock, 2006a; Blair and Piddock, 2009;
Nikaido, 2009, 2011; Nikaido and Takatsuka, 2009).

Some of the most relevant roles so far identified include involve-
ment in bacterial virulence (Piddock, 2006b), plant–bacteria
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FIGURE 1 | Structure of an RND efflux pump. The figure shows a scheme
of the structure of the E. coli AcrAB-TolC system. As shown, the system is a
tripartite complex formed by the inner membrane AcrB protein, the outer
membrane protein TolC and the membrane fusion protein AcrA. The activity of

the AcrB RND protein is coupled to the proton gradient. It has been
shown that these efflux pumps can extrude different compounds
form the bacterial cytoplasm and the periplasm. Adapted from Blair and
Piddock (2009).

interactions (Maggiorani Valecillos et al., 2006), trafficking of
quorum sensing molecules (Evans et al., 1998; Kohler et al., 2001),
and detoxification processes from metabolic intermediates, and
toxic compounds such as heavy metals, solvents, or antimicro-
bials produced by other microorganisms (Aendekerk et al., 2002,
2005; Ramos et al., 2002; Nies, 2003; Sekiya et al., 2003; Burse et al.,
2004a). A comprehensive review of all potential functions identi-
fied to date for all RND efflux pumps is beyond the scope of this
review. Instead, we would like to discuss some selected examples
of the ecological role that these systems may have in the absence
of antibiotics. As stated above, we believe that the evolution of
bacterial RND efflux pumps has been primarily driven by their
physiological functions and not by the selective pressure imposed
by the relatively recent human use of antibiotics. We consider
the important role RND efflux pumps currently play in antibi-
otic resistance to be an evolutionary novelty stemming from the
aforementioned use of antibiotics by humankind (Martinez, 2008;
Baquero et al., 2009).

REGULATION OF RND EFFLUX SYSTEMS BY NATURAL
EFFECTORS
The regulation of bacterial RND efflux systems is often mediated
by global and local regulators, resulting in a multilayered control
to optimize gene expression in response to specific cues. A number
of positive and negative regulators along with their known mecha-
nism of action have been reviewed elsewhere (Grkovic et al., 2002;
Li and Nikaido, 2009).

In most cases a transcriptional regulator (typically a repres-
sor) is encoded upstream the operon coding for the efflux pump

(Figure 2). This local regulator usually keeps expression of
the efflux pump at a very low-level. High-level expression can
be achieved either through an effector-mediated release of the
repressed state or through mutations in one or more regulators
(Hernandez et al., 2009, 2011a). Activation may occur at differ-
ent levels: (1) By inactivation of the local repressor that blocks
the expression of the pump’s structural genes such as AcrR in E.
coli (Ma et al., 1996), MexR in P. aeruginosa (Poole et al., 1996;
Sanchez et al., 2002c), or SmeT in Stenotrophomonas maltophilia
(Sanchez et al., 2002a); (2) By activation of a global transcriptional
regulator like SoxS, RobA, or RamA in E. coli (Martin et al., 2008;
Zhang et al., 2008; Perez et al., 2012); (3) By switching on–off one
or more steps that interlink regulatory cascades such as MtrR of
Neisseria gonorrhoeae (Johnson et al., 2011); and (4) Through the
emergence and selection of mutations in key genes like mexT in P.
aeruginosa (Kohler et al., 1999).

Multidrug efflux pumps extrude a wide range of substrates.
However, the number of effectors regulating them is lower in com-
parison. Understanding the mechanisms of regulation may help in
deciphering the function of RND efflux pumps, since it is expected
that different effectors trigger expression only when a given pump
is required. RND efflux systems whose expression is controlled by
natural inducers normally encountered during the course of infec-
tive processes have been studied in detail. Induction of expression
by bile salts and fatty acids in enteric bacteria are perhaps the best
studied examples of substances capable of modulating expression
of these systems.

Expression of the acrAB system in E. coli is induced by
decanoate and unconjugated bile salts usually encountered by the
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FIGURE 2 | Representative examples of transcriptional regulation

and genetic organization of RND efflux systems. Local regulators
can be either transcriptional activators, such as MexT (a) or transcriptional
repressors, such as MexR, MexZ, AcrR, or AcrS (b, c, d, and e). The three
structural components may be organized in a single operon, such as in the
MexEF-OprN (a) or MexAB-OprM (b) systems; alternatively, a given system

may use the OMP from another system, such as in the MexXY system
using OprM (c). The OMP component may be located elsewhere in the
chromosome, such as TolC (f) and can be used by one or more different
systems as in the case of AcrAB (d) and AcrEF (e). MexEF-OprN,
MexAB-OprM, and MexXY belong to P. aeruginosa; AcrAB and AcrEF
belong to E. coli.

organism in the intestinal tract (Ma et al., 1995). The mechanism
involves binding of these effectors to the Rob transcriptional reg-
ulator (Rosenberg et al., 2003). Bile salts also induce expression
of acrAB in Salmonella, however, in this case the effector binds
the RamA transcriptional regulator (Nikaido et al., 2008). Inter-
estingly, in both cases the inductor is also a substrate for the
efflux system, thus allowing the cell to respond quickly to dele-
terious environmental substances. Additional examples of bile
salts-mediated induction include the cmeABC system in Campy-
lobacter jejuni, the vexD gene in Vibrio cholerae and various
RND-type efflux system genes in Bacteroides fragilis (Lin et al.,
2005b; Pumbwe et al., 2007). These examples strongly suggest that
these systems are relevant to bacterial adaptation for surviving in
the gut and that this may be their original function.

In this regard, it has been suggested that some efflux pumps
from human commensals and pathogens have evolved to overcome
the innate immunity of the host (Blair and Piddock, 2009). For
instance, the susceptibility to vertebrate antibacterial peptides in
N. gonorrhoeae depends on the activity of the MtrCDE RND efflux
pump (Shafer et al., 1998). Notably, this efflux pump is required to
achieve mutation-driven resistance to penicillin in N. gonorrhoeae
(Veal et al., 2002) and overexpression mutants present reduced
susceptibility to several antibiotics and show an increase in in vivo
fitness (Warner et al., 2007). MtrCDE (Jerse et al., 2003), enhances
experimental gonococcal genital tract infections in female mice,

whereas the FarAB-MtrE efflux pump (Lee and Shafer, 1999) is
not needed to colonize this environment. It has been suggested
that FarAB-MtrE is important for the resistance of N. gonorrhoeae
to certain long-chained fatty acids that are present in the rectum
(Lee and Shafer, 1999). Altogether these studies indicate that N.
gonorrhoeae harbors efflux pumps each one responding to dif-
ferent environmental cues that enable adaptation for survival in
different ecosystems.

Metal cations are another example of natural compounds capa-
ble of inducing expression of RND efflux pumps. Metals are
required as cofactors in several bacterial processes. However, they
are toxic at high concentrations. Consequently, bacteria harbor
systems to maintain the cellular metal homeostasis. In some cases,
this regulation implies that the efflux pump is involved in the
extrusion of these toxic effectors (Nies, 2003). However, in other
cases the situation is more complex and the effector is simply
an environmental cue that indicates the type of ecosystem sur-
rounding the organism. The cusCBA system in E. coli and mtrCDE
system in N. gonorrhoeae constitute two of the most studied exam-
ples of metal-induced regulation among pathogenic bacteria. The
CusCBA system confers tolerance to copper and silver ions (Franke
et al., 2001; Grass and Rensing, 2001). Both substrates serve
as natural inducers for cusCBA expression (Franke et al., 2001;
Yamamoto and Ishihama, 2005), suggesting that this RND efflux
pump may have been first selected to overcome the toxicity of these
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metals. As stated above, the MtrCDE system is involved in resis-
tance to host-derived antibacterial peptides (Shafer et al., 1998).
It was recently reported that mtrCDE expression is indirectly reg-
ulated by free levels of iron through the regulation of its major
transcriptional repressor, MtrR, by the MpeR transcriptional
regulator (Mercante et al., 2012). Under the proposed model,
expression of the efflux system would increase under iron-limited
conditions, a situation that bacteria can encounter over the course
of the infection process (Martinez et al., 1990). The P. aeruginosa
CzcABC efflux system confers tolerance to zinc, cadmium, and
cobalt and constitutes another example of metal-induced expres-
sion. The regulation occurs through the metal-inducible CzcRS
two-component system that is activated in the presence of the
system’s substrates or indirectly in the presence of copper (Caille
et al., 2007; Dieppois et al., 2012).

THE ROLE OF EFFLUX PUMPS IN PLANT–BACTERIA
INTERACTIONS
The rhizosphere is a complex ecosystem characterized by a high
microbial activity that results in a bacterial population density that
can be two orders of magnitude higher than in bulk soil (Matilla
et al., 2007). The structure of the rhizosphere’s microbiota is gov-
erned by the release of nutrients through plant root exudates and
by the ecological relationships of the microorganisms present in
this ecosystem. A transcriptomic analysis of Pseudomonas putida
grown in the rhizosphere of maize revealed that the expression
of different efflux pumps is induced in this ecosystem (Matilla
et al., 2007), thus suggesting a relevant function for the coloniza-
tion of this environment. Plant exudates have been identified
as good effectors of RND efflux pumps, and it has been shown
that these secondary metabolites bind regulators of RND efflux
pumps such as TtgR (Alguel et al., 2007), the local repressor of
the TtgABC system in P. putida (Teran et al., 2003). Some com-
pounds produced by plants have antibacterial effects and it has
been described the RND efflux pumps are required from the first
steps of bacterial plant colonization (Espinosa-Urgel et al., 2000)
to survival in plant tissues (Barabote et al., 2003), possibly due to
their involvement in protection against these compounds. This is
the case of Erwinia amylovora, the cause of fire blight disease in
rosaceous plants (Eastgate, 2000). The plantlet toxic metabolites
naringenin and phloretin are good inducers of the efflux pump
acrAB in this bacterial species, and E. amylovora acrAB mutants
are much less virulent that their wild-type counterpart (Burse
et al., 2004b). A similar situation occurs in Agrobacterium tume-
faciens. Coumestrol, an antimicrobial root-exudated flavonoid,
is both a substrate and an inducer of expression of the ifeABR
efflux system (Palumbo et al., 1998). The fact that this system
is needed for effective root colonization indicates that it plays
an important role in A. tumefaciens resistance to plant-produced
antimicrobials.

Comprehensive analyses on Erwinia chrysanthemi RND efflux
pumps revealed that each system may differentially contribute
to host specificity. Mutants defective in each of the pumps were
differently affected in their virulence in diverse hosts and the sus-
ceptibility to plant-produced antimicrobials was specific for each
pump (Maggiorani Valecillos et al., 2006). As discussed in the case
of N. gonorrhoeae, this suggests that each of the several efflux

pumps encoded in the genome of a given bacterial species may
have a different function. This adaptation does not rely exclu-
sively on the extrusion of toxic antimicrobial plant exudates. For
instance, salicylic acid, an important signaling molecule produced
by plants (Loake and Grant, 2007), induces the expression of the
E. chrysanthemi efflux pumps acrAB and emrAB (Ravirala et al.,
2007). This indicates that RND efflux pumps are relevant ele-
ments mediating bacteria/plant interactions at different levels that
include the response to toxic compounds, host specificity and
interspecies signal trafficking. This functional role is not confined
to plant-infective bacteria. Mutants of the mutualistic symbiont
Rhizobium etli lacking the RmrAB efflux pump form fewer nodules
on its host Phaseolus vulgaris than the corresponding wild-type
strain (Gonzalez-Pasayo and Martinez-Romero, 2000). Similarly,
the SmeAB efflux pump plays an important role in the nodulation
competitiveness in Sinorhizobium meliloti (Eda et al., 2011). The
effect of efflux pumps on plant–bacteria interactions can be host-
specific. For instance, BdeAB from Bradyrhizobium japonicum is
needed for the symbiotic nitrogen-fixation activity on soybean,
but not on other host plants such as mung bean and cowpea
(Lindemann et al., 2010).

THE ROLE OF EFFLUX PUMPS IN BACTERIAL VIRULENCE
From a clinical point of view, antibiotic resistance could be consid-
ered as a colonization factor since only those organisms surviving
within a treated patient will be able to cause an infection (Mar-
tinez and Baquero, 2002). However, in this section we would like
to address the direct role that RND efflux pumps play in the viru-
lence of different human pathogens. As mentioned in a previous
section, the expression of different RND efflux pumps is trig-
gered by human-produced compounds, and they contribute to
the colonization of different environments in the human host.
Although the role of efflux pumps on virulence has been studied
for several organism (Piddock, 2006b), only in a few cases compre-
hensive studies including different systems from a single bacterial
species have been performed. Below we discuss some of these
examples

Vibrio cholerae RND EFFLUX PUMPS AND VIRULENCE
Vibrio cholerae possesses six different operons encoding for RND-
type efflux systems: vexAB, vexCD (breAB), vexEF, vexGH, vexIJK,
and vexLM (Kitaoka et al., 2011). While different RND efflux sys-
tems often share an OMP, it is rather common that operons encode
for a cognate OMP for each system (Figure 2). In the case of V.
cholerae, it seems that all six different RND efflux systems operate
with the same OMP, encoded by the tolC gene (Bina et al., 2008;
Cerda-Maira et al., 2008).

During the course of V. cholerae infections, bacteria colonize
primarily the small intestine, where they penetrate the mucus
lining coating the intestinal epithelium. In addition to factors pro-
duced by the innate immune system, the intestinal environment
is rich in substances such as bile salts and organic acids that are
capable of inhibiting bacterial growth (Reidl and Klose, 2002).
Predictably, four V. cholerae RND efflux systems have been impli-
cated in in vitro resistance to bile salts and detergents similar to
detergent-like molecules the organism is likely to encounter during
colonization of the intestinal epithelium.
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Susceptibility studies with single and multiple mutant com-
binations revealed that VexB has broad substrate specificity and
that it is the primary RND efflux system responsible for resis-
tance to bile salts in vitro (Bina et al., 2008). VexD, VexK, and
VexH have also been implied in resistance to bile salts, which
denotes redundancy among the different RND efflux systems (Tay-
lor et al., 2012). Moreover, the expression of vexD is induced in
the presence of bile salts (Cerda-Maira et al., 2008). The VexK
and VexH contribution to bile salts resistance is only evident in a
ΔvexBD double mutant background, which suggests a supportive
role for VexK and VexH. However, as Taylor et al. (2012) point
out, this hierarchy might be limited to their in vitro experimen-
tal conditions. In fact, the increasing attenuation levels displayed
by combination mutants in in vivo colonization experiments
(ΔvexBDK < ΔvexBDH < ΔvexBDHK < ΔRND), suggest that
VexH plays a more relevant role than VexK during the infection
process.

RND efflux systems are also required for optimal expression
of the genes encoding for two of the most important V. cholerae
virulence factors: cholera toxin (CT) and the toxin-coregulated
pilus (TCP). A ΔRND mutant exhibited decreased transcription
of the tcpA and toxT genes, the latter encoding for a transcriptional
activator responsible for transcription of the genes encoding for
CT, and a concomitant decrease in CT and TCP production (Bina
et al., 2008). While VexB is able to complement this phenotype, a
vexBDHK still exhibits a decrease in CT and TCP, thus suggesting a
role for VexM and VexF in virulence factor production (Bina et al.,
2008; Taylor et al., 2012).

The mechanism through which the V. cholerae RND efflux sys-
tems modulate the production of virulence factors has not been
elucidated. However, it has been proposed that deletion of sys-
tems with redundant functions could lead to the accumulation
of a low molecular weight molecule that normally functions as a
negative effector molecule involved in fine-tuning the expression
of the affected virulence factors (Taylor et al., 2012). V. cholerae
inhabits aquatic environments where it normally grows associ-
ated with zooplankton or egg masses (Reidl and Klose, 2002). It is
possible that some of the RND efflux systems have dedicated func-
tions specific to this portion of the organism’s life cycle. This may
be particularly true for VexM and VexF, for which no function
in resistance to bile salts and antimicrobials has been identified
to date.

Mycobacterium tuberculosis RND EFFLUX PUMPS AND
VIRULENCE
The M. tuberculosis genome possesses 13 different genes encod-
ing for RND proteins (Cole et al., 1998). Several domains in
these proteins are unique to mycobacteria and are thus desig-
nated as MmpL (Mycobacterial membrane protein Large). Four
mmpL genes appear to be in operons also containing an mmpS
gene. The latter are predicted to encode for proteins equi-
valent to the MFPs in other bacterial RND systems (Domenech
et al., 2005).

In spite of the documented M. tuberculosis resistance against
first and second line antimicrobial therapy, none of the RND sys-
tems have been associated with antibiotic efflux to date, the only
possible exception being MmpL7, which is capable of conferring

isoniazid resistance when overexpressed in Mycobacterium smeg-
matis (Pasca et al., 2005; De Rossi et al., 2006; da Silva et al., 2011).
Moreover, deletion mutants created in 11 mmpL genes failed to
exhibit significantly altered drug susceptibility in M. tuberculosis
(Domenech et al., 2005).

The primary role of most MmpL proteins appears to be
the transport of lipids to be incorporated on the cell enve-
lope. The complex mycobacterial cell wall is composed of
peptidoglycan, arabinogalactan, and mycolic acids, the surface
of which is covered by non-covalently associated lipids that
include trehalose monomycolate (TMM), trehalose dimycolate
(TDM), sulfolipids, phenolic glycolipids, and phthiocerol dimyco-
cerosates (PDIMs; Tahlan et al., 2012). These lipids play important
roles in protection against host-derived toxic molecules, bear
an immunomodulatory activity and contribute to M. tuberculo-
sis pathogenicity (Neyrolles and Guilhot, 2011). Lipid transport
functions have been ascribed to MmpL3, MmpL7, and MmpL8,
and in some cases deletion mutants have demonstrated the con-
tribution of additional MmpL proteins to host survival and
pathogenicity.

The inability to create an mmpL3 deletion mutant combined
with its absence in transposon mutant collections suggests that
this gene is essential to M. tuberculosis (Domenech et al., 2005;
Lamichhane et al., 2005). A recent study aimed at identifying the
target of a novel M. tuberculosis antibiotic found data that suggests
that MmpL3 transports TMM out of the cell and that its inhibition
prevents the incorporation of de novo-synthesized mycolic acids
into the cell envelope (Tahlan et al., 2012).

MmpL7 is required for PDIM transport to the cell surface and
was the first MmpL protein implicated in lipid transport in M.
tuberculosis (Cox et al., 1999). In addition, MmpL7 appears to
function as a scaffold for the PpsE polyketide synthase required
for the final step of phthiocerol synthesis, thus coupling trans-
port and synthesis (Jain and Cox, 2005). At least two different
studies have determined that mmpL7 mutants display an atten-
uation phenotype in murine virulence models (Cox et al., 1999;
Domenech et al., 2005). MmpL8 has been implicated in the trans-
port of the SL-N, a precursor of the SL-1 sulfolipid, with a
similar mechanism to that of MmpL7 where synthesis and trans-
port appear to be coupled (Converse et al., 2003; Domenech
et al., 2004). mmpL8 mutants also display attenuated lethality in
murine virulence models (Converse et al., 2003; Domenech et al.,
2004, 2005).

Domenech et al. (2005) determined that an mmpL4 mutant
has both impaired growth kinetics and impaired lethality in a vir-
ulence murine model. The same study determined that while an
mmpL11 mutant shows a growth pattern similar to that of the
wild-type during the active growth phase, the mutant is attenu-
ated during the course of chronic infections in an in vivo model.
No substrate has been identified for these transporters. A role in
heme uptake has been recently proposed for MmpL11 and such a
function would be in line with the attenuated virulence phenotype
observed with an mmpL11 mutant (Tullius et al., 2011). Further-
more, a role in extrusion of host-derived antimicrobials similar to
that observed for V. cholerae RND efflux systems cannot be ruled
out for those MmpL proteins that appear to be involved in the M.
tuberculosis infection process.
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Helicobacter pylori RND EFFLUX PUMPS AND VIRULENCE
The gastric colonizer Helicobacter pylori possesses three different
operons encoding for RND efflux systems (Tomb et al., 1997).
Over the years the systems have received different nomenclatures
that may often lead to confusion when revising the literature:
hp0605–hp0607 is also referred to as hefABC; hp0969–hp0971
was originally denominated as hefFDE and is currently known
as cznABC; finally, the system encoded by hp1329–hp1327 was
originally named hefIHG and currently hp1329 and hp1328 are
known as czcA and czcB, respectively, while hp1327 is known
as crdB.

Bina et al. (2000) initially assessed in vitro and in vivo expres-
sion profiles of each system as well as the individual contribution to
intrinsic antibiotic susceptibility. The study revealed that hp0607
(hefC) and hp0969 (hefF) are expressed both in in vivo and in vitro,
while hp1329 (hefI) is only expressed in vivo. Knockouts in each
system failed to identify a contribution to intrinsic antibiotic sus-
ceptibility with 19 different compounds. However, overexpression
of selected components has been associated with antibiotic resis-
tance and different studies revisiting the contribution of each
system to antibiotic susceptibility determined that hp0607 (hefC)
and hp0605 (hefA) are involved in intrinsic antibiotic resistance to
diverse antibiotics (Kutschke and de Jonge, 2005; Liu et al., 2008;
Hirata et al., 2010; Tsugawa et al., 2011).

H. pylori is exposed to bile salts resulting from reflux into the
human stomach; bile salts have an inhibitory effect on H. pylori
growth, yet the ability to thrive in the presence of a bile gradient
suggests that this organism has bile resistance mechanisms in place
(Worku et al., 2004; Shao et al., 2008). HefC was recently found to
play a role in resistance to bile salts and ceragenins (synthetic bile
salt derivatives with antimicrobial activity; Trainor et al., 2011).
A hefC mutant exhibited increased susceptibility to deoxycholate,
cholate, glycodeoxycholate, taurodeoxycholate, taurocholate and
to ceragenin 11(CSA 11); while no changes in susceptibility were
observed with mutants in the other two efflux systems. Moreover,
HefC appears to have substrate specificity for bile salts, since no
change in susceptibility was observed with detergents. Although
direct efflux of bile salts through HefC has not been experimen-
tally demonstrated yet, it is likely that this system contributes
to H. pylori successful colonization of bile-containing envi-
ronments.

During the course of gastric colonization, H. pylori is exposed
to additional environmental stresses, including low pH gradi-
ents (4.0–6.0) and acid shock. Acidic environments impact the
bioavailability of metals like iron and nickel, which play an essen-
tial role in bacterial metabolism. In addition, environmental
metal fluctuations are expected to arise from damaged epithelium
and diffusion from ingested food (Stoof et al., 2008). Maintain-
ing a cytoplasmic metal homeostasis is crucial to bacteria, as
excessive concentrations can lead to severe cellular damage. The
other two H. pylori RND efflux systems are involved in metal
efflux.

The system encoded by hp1327–1329 (crdB, czcB, and czcA)
constitutes a novel copper efflux pump. Expression of hp1329
is induced in the presence of copper and growth of hp1327
and hp1328 mutants is inhibited in the presence of this metal
(Waidner et al., 2002). The same study found that expression of

hp1326 (renamed as crdA), encoding for a secreted protein, is
strongly induced in the presence of copper and growth of an
hp1326 mutant was also impaired in the presence of copper.
hp1326 is transcribed as a monocistronic unit, but is believed
to constitute a copper resistance system along with hp1327–1329.
A follow up study revealed that copper-mediated expression of
hp1326 requires the CrdRS two-component system (Waidner et al.,
2005); the study did not address expression of hp1327–1229.
Mutants lacking the CrdRS system are unable to colonize the stom-
ach of mice (Panthel et al., 2003). This suggests that hp1326 and
hp1327–1329 might play an important role during the infective
process of H. pylori.

The RND efflux system encoded by hp0969–0971 (renamed as
cznABC) has been implicated in cadmium, zinc, and nickel resis-
tance (Stahler et al., 2006). Stahler et al. (2006) showed growth
inhibition of individual mutants in the presence of these metals.
The H. pylori urease, a nickel-containing enzyme, is an essen-
tial colonization factor that enables survival in acidic conditions.
Urease activity and expression is regulated in response to nickel
availability (van Vliet et al., 2001), accordingly, cznC and cznA
mutants exhibited enhanced urease activity (Stahler et al., 2006).
The authors propose that the cznABC system plays an impor-
tant role in fine-tuning urease activity, as nickel efflux reduces
activity, while cadmium and zinc efflux prevents inhibition of
this enzyme. High urea concentrations are toxic at neutral pH,
therefore, untimely activation of this enzyme resulting from per-
turbations in metals homeostasis can be detrimental to the cell
(Meyer-Rosberg et al., 1996; Rektorschek et al., 1998). The inabil-
ity of cznA, cznB, and cznC mutants to achieve gastric colonization
in a gerbil animal model and the failure of a cznA mutant to sur-
vive in acidic conditions might be linked to urease activity (Bijlsma
et al., 2000; Stahler et al., 2006).

EFFLUX PUMPS AND GLOBAL BACTERIAL PHYSIOLOGY
One of the putative functions of RND efflux pumps is detox-
ification from detrimental intermediates derived from bacterial
metabolism (Neyfakh, 1997). Studies on this subject have been
mainly performed using mutants that overproduce RND efflux
pumps. It is conceivable that overexpression of these elements
might cause a metabolic burden on bacterial populations (Mar-
tinez et al., 2007, 2011; Andersson and Hughes, 2010). Indeed,
different publications have shown that overproduction of RND
efflux pumps may impact bacterial physiology (Sanchez et al.,
2002b; Ruiz-Diez et al., 2003; Alonso et al., 2004; Linares et al.,
2005; Lertpiriyapong et al., 2012; Olivares et al., 2012). Moreover,
the uncontrolled production of these elements can affect the abil-
ity of pathogenic bacteria to infect experimental animal models,
seriously impairing their virulence (Cosson et al., 2002; Hirakata
et al., 2002; Warner et al., 2007; Lertpiriyapong et al., 2012; Perez
et al., 2012).

The energy expenditure required to constantly maintain the
activity of an efflux pump could lead to a fitness reduction
upon overproduction of these elements. However, our group has
recently shown that overproduction of the P. aeruginosa MexEF-
OprN efflux system does not produce a fitness cost as measured in
classical competition tests, although it alters several physiological
aspects, including elements relevant for P. aeruginosa virulence
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such as Type III and Type VI secretion (Tian et al., 2009a,b; Oli-
vares et al., 2012). Notably, this effect is specific to each pump and
might be associated to their functional role, as overexpression of
either MexAB-OprM of MexXY does not produce the same effect
(Linares et al., 2005).

As mentioned before, efflux pumps might be involved in the
elimination of endogenous toxic compounds. The P. aeruginosa
MexGHI-OpmD efflux system might be implicated in the extru-
sion of anthranilate, a toxic intermediate of the Pseudomonas
quinolone signal (PQS) synthetic pathway (Aendekerk et al., 2002,
2005; Sekiya et al., 2003), whereas MexEF-OprN extrudes kynure-
nine, another intermediate in the same pathway (Olivares et al.,
2012). A recent study has shown that kynurenine and its deriva-
tives have relevant effects in different human diseases, including
modulation of the activation of glutamate and nicotinic receptors,
the modification of the immune response in situations of inflam-
mation and infection, and the generation and removal of reactive
oxygen species (Stone et al., 2012). Any potential impact that the
constant extrusion of kynurenine by a MexEF-OprN overexpres-
sion mutant may have on the pathogenic behavior of P. aeruginosa
remains to be established.

Pseudomonas quinolone signal is one of the quorum sensing
(QS) signals produced by P. aeruginosa (Mcknight et al., 2000).
Strains overexpressing MDR efflux pumps capable of extruding
QS signals or their intermediates are likely to be impaired in the QS
response. Indeed, overexpression of MexEF-OprN impairs the QS
response of P. aeruginosa (Kohler et al., 2001; Olivares et al., 2012).
Previous studies also showed that MexAB-OprM likely extrudes
the 3O12-HSL QS signal (Evans et al., 1998; Pearson et al., 1999),
and that overproduction of this efflux pump reduced the expres-
sion of selected QS-regulated genes. The P. aeruginosa QS regulon
comprises approximately 5% of this organism’s genome (Schuster
et al., 2003); including several genes involved in virulence. Expres-
sion of some of these genes might be energetically costly. However,
once the QS signals reach a specific threshold, expression of the
regulon is maintained. It has been suggested that being signal-
blind can be a good adaptive strategy to avoid this energetic burden
(Haas, 2006). Whether the efflux pump-mediated extrusion of QS
signals may be beneficial to P. aeruginosa under specific conditions
remains to be determined.

Efflux pumps may also compensate for the effects that other
bacterial elements may have on the organism. This might be
the case of C. jejuni, a leading cause of food-borne enterocol-
itis worldwide (Ruiz-Palacios, 2007). As an intestinal pathogen
this bacterium must overcome the antimicrobial effects of the
bile salts secreted into the intestinal tract (Hofmann and Eck-
mann, 2006). The RND-type efflux pump CmeABC confers
resistance to a broad range of antibacterial substances includ-
ing bile salts, fatty acids, and detergents (Lin et al., 2005a). On
the other hand, it has been demonstrated that the type VI secre-
tion system (T6SS) plays a key role in the colonization of the
intestinal tract (Lertpiriyapong et al., 2012). The activation of the
T6SS may enable bile salts to enter inside the bacterium through
the open secretion channel (Bidlack and Silverman, 2004); and
this can compromise bacterial viability and infective capability.
Bile salts trigger the expression of the CmeABC efflux pump;
which extrudes the bile salts immediately outside the cell thus

alleviating the entrance through the T6SS (Lin et al., 2005b). The
functional interaction between the T6SS and CmeABC might be
crucial for intestinal colonization by C. jejuni, thus playing a
key role in the virulence of this bacterial pathogen (Lertpiriyapong
et al., 2012).

Given the integration of RND efflux systems in bacterial
metabolic networks, it is not surprising that their regulation is
also incorporated in global regulatory networks. Global regula-
tors such as MarA, RamA, and SoxS can activate the expression
of efflux pumps such as AcrAB-TolC in E. coli and in addi-
tional Enterobacteriaceae (Davin-Regli et al., 2008). Similarly, the
pleiotropic regulator MgrA (Luong et al., 2006) controls autol-
ysis, virulence, biofilm formation, and efflux pump activity
in Staphylococcus aureus (Ingavale et al., 2003, 2005; Truong-
Bolduc et al., 2003, 2005; Trotonda et al., 2008). The control of
efflux pumps by this global regulator is specific for each pump.
Increased expression of mgrA in vivo in a subcutaneous abscess
model upregulates expression of the norB and tet38 efflux pumps,
whereas expression of norA and norC is downregulated (Ding
et al., 2008). The relevance of these pumps for the in vivo growth
of S. aureus has been studied; norB and tet38 defective mutants
present a growth defect in a mice abscess model and the pheno-
type was not attributable to a staphylococcal stress response (Deng
et al., 2012).

MexT, the transcriptional activator of MexEF-OprN in P. aerug-
inosa (Figure 2), constitutes another example of global regulation.
MexT regulates the expression of several P. aeruginosa genes
(Tian et al., 2009a). A portion of this regulation is mediated
by the activity of the pump through the extrusion of a pre-
cursor of the PQS QS signal, and the concomitant impairment
of the QS response (Olivares et al., 2012). However, the expres-
sion of other genes is directly regulated by MexT (Tian et al.,
2009a). A recent study demonstrated that MexT functions as a
redox-responsive regulator (Fargier et al., 2012), indicating that
it might be involved in controlling cellular redox homeostasis.
The fact that a local transcriptional regulator of an efflux pump
behaves as a global regulator further supports the involvement of
these elements in general processes of bacterial physiology and
not simply as a response to the presence of antibiotics in the
environment.

CONCLUDING REMARKS
The emergence of antibiotic resistance in bacterial human
pathogens is a very recent process in the evolutionary timescale.
It is often assumed that resistance genes have been mainly origi-
nated in antibiotic producers where they play a detoxification role
(Benveniste and Davies, 1973; Webb and Davies, 1993; Davies,
1997). However, in the few cases where the origin of resistance
genes has been tracked, the original hosts are not antibiotic
producers. The QnrA gene from Shewanella algae constitutes a
prime example, as it confers resistance to quinolones, which are
synthetic antibiotics (Poirel et al., 2005). This indicates that, at
least in some cases, antibiotic resistance would be an emergent
function that has been recently selected due to the use of antibi-
otics for treating infections (Martinez, 2008, 2009a,b; Baquero
et al., 2009; Fajardo et al., 2009). As we have seen in this review,
MDR efflux pumps also fall within this category, since they
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exhibit multiple functions relevant to bacterial physiology in addi-
tion to mediating antibiotic resistance. A complete understanding
of these functions is important in order to define the networks
that connect antibiotic resistance with other basic physiologi-
cal processes (Linares et al., 2010; Martinez and Rojo, 2011),
both during the course of infections and in natural, non-clinical
ecosystems.
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