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ABSTRACT
Background: ROS are pivotal in maintaining periodontal tissue health due to their dual role in physiological and pathological

states. At physiological levels, ROS are essential for host defense, effectively eliminating pathogenic bacteria during inflam-

mation and sustaining the homeostasis of the periodontal microenvironment. However, excessive ROS production disrupts the

balance between oxidative activity and antioxidant defenses, leading to oxidative stress (OS). This imbalance exacerbates

inflammation, damages cellular components, and drives periodontal tissue destruction. Recognizing the dual role of ROS

underscores the importance of studying their regulatory mechanisms, which is crucial for advancing understanding and

therapeutic strategies in periodontitis management.

Objective: This review summarizes the latest research advancements on the molecular mechanisms linking ROS to the

progression of periodontitis and explores related therapeutic strategies.

Results: This review focuses on the pivotal role and specific mechanisms of periodontal tissue destruction by excess ROS,

which mediate signaling pathways such as nuclear factor kappa B (NF‐κB) and mitogen‐activated protein kinase (MAPK), as

well as the activation of OS response‐associated proteins, including thioredoxin‐interacting protein (TXNIP) and mitochondrial

antiviral signaling protein (MAVS). Additionally, we provide a concise summary of emerging therapeutic strategies for

periodontitis, including the use of antioxidants, photodynamic therapy (PDT), and nanomaterials. Gaining a more profound

comprehension of these mechanisms may pave the way for the formulation of enhanced therapeutic strategies for periodontitis.

Conclusion: Understanding the interplay between ROS and periodontal tissue destruction is essential for advancing

periodontitis research. Targeting the NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome with an-

tioxidant and ROS‐modulating therapies presents a promising strategy to mitigate both inflammation and OS, thereby reducing

periodontal degradation.

1 | Introduction

Periodontitis ranks among the most widespread inflammatory
conditions, which affects nearly half of the global population
[1]. Clinically, it manifests as gingival bleeding, formation of
periodontal pockets, alveolar bone loss, and, in severe cases,

tooth loss [2]. The primary pathogen behind the inflammatory
lesions in periodontal tissues is subgingival dental plaque biofilm,
which mainly consists of Gram‐negative anaerobic or facultative
anaerobic pathogens, such as Porphyromonas gingivalis (P. gingi-
valis), Aggregatibacter actinomycetemcomitans (Aa), and Fuso-
bacterium nucleatum (Fn) [3]. Polymorphonuclear leukocytes
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(PMNs) and macrophages, key immune players, release anti-
microbial substances, engulf bacteria, and promote an inflamma-
tory response [4]. Neutrophils, in particular, release large amounts
of ROS, which play essential roles in immune defense during
pathological conditions [5]. ROS are oxygen‐containing chemical
species that are generally classified into two main types [1]: free
radical ROS, including superoxide anion (O2·‐), hydroxyl radical
(·OH), alkoxyl (OOR), and peroxyl radical (OOH); and [2] non‐
radical ROS, such as hydrogen peroxide (H2O2), singlet oxygen
(O2), ozone (O3), and hypochlorite anion (OCl−) [6, 7]. The con-
centration of ROS is closely linked to periodontal health, and
prolonged oxidative stress (OS) is a key driver in the onset and
progression of periodontitis [8].

With the growing prevalence of periodontitis and its associa-
tions with systemic conditions, understanding ROS‐driven
processes is critical for developing targeted treatments. Specif-
ically, this knowledge can guide the creation of antioxidant
therapies, photodynamic therapy (PDT), ROS‐modulating
drugs, and innovative biomaterials designed to not only miti-
gate oxidative damage but also promote tissue regeneration and
clinical outcomes in patients suffering from periodontitis.
Therefore, this review aims to bridge the gap between funda-
mental research and clinical application, providing a compre-
hensive framework for advancing treatment strategies in
periodontal disease management.

2 | Sources of ROS in Periodontitis

ROS play an instrumental role in periodontitis progression,
originating from both endogenous and external sources

(Table 1). Endogenously, ROS are predominantly produced by
inflammatory cells, such as neutrophils and macrophages, in
response to periodontal pathogens [9]. These immune cells
generate ROS to combat invading pathogens, but elevated levels
of ROS levels can lead to tissue damage and exacerbate
inflammation [10]. Additionally, mitochondrial dysfunction in
these cells can exacerbate ROS production. Exogenous factors
encompass the presence of periodontal pathogens such as P.
gingivalis, which not only generate ROS directly but also stim-
ulate host cells to augment ROS production [11]. Additionally,
smoking and alcohol use exacerbate OS in periodontal tissues
[12]. Understanding these sources of ROS is vital for developing
therapeutic strategies to mitigate OS in periodontitis.

2.1 | Periodontal Pathogens

Common periodontal pathogens encompass P. gingivalis, Aa,
and Fn. These microorganisms, which reside in the oral cavity,
are pivotal in the etiology and progression of periodontitis [13].
These microorganisms persist on tooth surfaces, in the gingival
epithelium, and within the oral cavity, gradually forming
complex dental plaque biofilms [14]. The relationship between
periodontal pathogens and ROS is intricate. Periodontal path-
ogens induce mitochondrial dysfunction, leading to an upre-
gulation in ROS production [15]. ROS, in turn, influence plaque
biofilm composition, establishing an environment that fosters
the proliferation of pathogenic bacteria and enhances their
virulence [16].

P. gingivalis, frequently found in the subgingival plaque of
periodontitis patients, produces numerous virulence factors,

TABLE 1 | Sources of ROS in periodontitis.

Source Mechanism Effect on periodontitis

Periodontal pathogens
[16, 19, 20, 26]

P. gingivalis: Impair neutrophil functionality, inhibit
phagocytosis, exacerbate inflammatory damage and

immune evasion
Fn: Augment key periodontal pathogens pathogenic

potential
Aa: Synthesize leukotoxin A (LtxA), which eradicates
neutrophils while inducing the release of ROS from

cells

Promote periodontal pathogen growth and
increase ROS production

Hyper‐reactive PMNs
[35, 36]

PMNs are recruited and activated in the damaged
area to clear the periodontal pathogens by

releasing ROS

Activated PMNs produce excessive ROS,
causing oxidative stress and periodontal

tissue damage

Mitochondrial
dysfunction
[38]

Mitochondrial dysfunction triggers an
overproduction of ROS, and mitochondrial oxidative

stress damage

Aggravate oxidative stress, intensifying
periodontal tissue destruction

Unhealthy lifestyle
factors
[56, 57, 59, 62]

High‐fat and high‐protein diets: the increased
amounts of electrons transferred to the electronic

respiratory chain causes a sharp increase in
superoxide anions production

Smoking: nicotine causes elevation in the respiratory
burst of PMNs, triggers the generation of ROS
Alcohol: ROS are generated during all phases of

alcohol metabolism

Both factors lead to increased oxidative
stress and periodontal tissue damage
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including lipopolysaccharides (LPS), proteases, and fimbriae
[17]. LPS activates NADPH oxidase in neutrophils and macro-
phages, leading to elevated ROS production and the release of
pro‐inflammatory cytokines, such as interleukin‐1 beta (IL‐1β),
interleukin‐6 (IL‐6), interleukin‐8 (IL‐8), and tumor necrosis
factor‐alpha (TNF‐α) [18]. More significantly, P. gingivalis de-
grades complement components, impairs neutrophil function-
ality, and inhibits phagocytosis, thereby exacerbating
inflammatory damage and immune evasion. This cascade of
effects leads to a perturbation in microbial homeostasis and
accelerates the progression of periodontal inflammation [19].
Fn, a bridging microorganism, facilitates the translocation of
key pathogens like P. gingivalis to periodontal infection sites,
enhancing their pathogenicity [20]. In human gingival fibro-
blasts (hGFs) infected with Fn, NADPH oxidase isoforms
NADPH oxidase 1 (NOX1) and NADPH oxidase 2 (NOX2) are
activated, generating ROS [21]. Furthermore, what was for-
merly known as aggressive periodontitis is now classified as
periodontitis with a rapid rate of progression (Grade C), which
predominantly affects systemically healthy adolescents or
young adults [22]. It is characterized by rapid periodontal
attachment loss and severe alveolar bone destruction that is
often disproportionate to the amount of dental plaque [23]. Aa,
a facultative anaerobic Gram‐negative coccobacillus, is widely
regarded as a key pathogen in this condition [24]. To establish
infection, trigger host tissue damage, and ensure survival, Aa
produces leukotoxin A (LtxA), which specifically targets the
LFA‐1 receptor on neutrophils. This interaction leads to mem-
brane disruption, calcium influx, and ultimately, neutrophil
lysis [25]. Before cell death, neutrophils release large quantities
of ROS and matrix metalloproteinases (MMPs), exacerbating
local tissue destruction [26]. Beyond leukotoxin activity, Aa
expresses cytolethal distending toxin (CDT), which induces
DNA damage and cell cycle arrest in macrophages [27]. CDT is
strongly associated with aggressive forms of periodontitis and
contributes to alveolar bone degradation by upregulating
receptor activator of nuclear factor kappa‐B ligand (RANKL), a
key regulator of osteoclastogenesis [28]. Moreover, Aa‐derived
LPS has been shown to elevate inducible nitric oxide synthase
(iNOS) expression and stimulate nitric oxide (NO) production
in osteoblast‐like cells. Excessive NO generation in response to
microbial challenge may further accelerate bone loss [29].

Taken together, the interplay between ROS and periodontal
pathogens encompasses immune defense mechanisms, patho-
gen evasion strategies, and resultant OS, all of which collect-
ively facilitate the pathogenesis of periodontal disease.

2.2 | Hyper‐Reactive PMNs

PMNs are the most common inflammatory cells in periodontal
tissues, essential for maintaining periodontal homeostasis [30].
However, over‐activated PMNs produce excessive ROS, leading to
tissue destruction in periodontitis [31]. The amount and activity of
neutrophils during phagocytosis influence the extent of ROS pro-
duction in the oral cavity [32]. NOX2, the most common NOX
enzyme complex, is found in neutrophils and macrophages [33]. It
mediates electron transfer from intracellular NADPH to the cell
membrane, where it reacts with oxygen to form superoxide anions,
a type of ROS, in a process called respiratory burst [34].

In periodontitis development, when early periodontal patho-
gens invade, a large number of PMNs are recruited and acti-
vated in the damaged area to clear the periodontal pathogens by
releasing ROS [35]. However, with prolonged stimulation of
chronic periodontal inflammation, PMNs reach a highly acti-
vated state, leading to excessive ROS production [36]. Carina
et al. have already demonstrated that neutrophils in periodon-
titis patients are overreactive and produce higher levels of ROS
in both spontaneous and stimulated situations compared to
healthy individuals [3]. This induces OS, causing irreversible
damage to the periodontal tissues [37].

2.3 | Mitochondrial Dysfunction

Mitochondrial dysfunction is a significant contributor to peri-
odontitis, driving excessive ROS accumulation, OS, and dysre-
gulated mitochondrial dynamics [38]. Mitochondrial ROS
(MtROS) are primarily produced by Complex I and Complex III
of the electron transport chain (ETC) located on the inner
mitochondrial membrane [39]. Complex I generate O2‐ in the
mitochondrial matrix, where superoxide dismutase 2 (SOD2)
converts it to H2O2 [40, 41]. Complex III generates O2‐ both in
the matrix and intermembrane space (IMS), from where it can
translocate into the cytoplasm [42, 43]. During oxidative phos-
phorylation, electrons from intermediate metabolites are
transferred through the ETC to reduce oxygen to water [44].
However, approximately 1%–3% of these electrons can prema-
turely leak, particularly from Complexes I and III, resulting in
the formation of superoxide anions even under resting condi-
tions [45]. Under normal circumstances, endogenous anti-
oxidant systems—including SOD2, catalase, and glutathione
peroxidase—effectively neutralize ROS and maintain redox
balance [46]. Under pathological conditions such as periodon-
titis, bacterial pathogens such as P. gingivalis and chronic
inflammatory stimuli can aggravate mitochondrial dysfunction,
enhancing electron leakage and overwhelming antioxidant
defenses [47]. MtROS, when accumulated, not only serve as
deleterious oxidants but also function as critical secondary
messengers that activate redox‐sensitive signaling cascades such
as the NF‐κB pathway, thereby promoting the transcriptional
upregulation of pro‐inflammatory mediators including TNF‐α,
IL‐1β, and IL‐6 [48]. Furthermore, the cytosolic release of
mitochondrial DNA (mtDNA), acting as a damage‐associated
molecular pattern (DAMP), initiates NLRP3 inflammasome
activation and amplifies the secretion of inflammatory cyto-
kines [49]. Excessive mtROS also facilitate the formation of
neutrophil extracellular traps (NETs), which, in turn, release
MMPs that degrade periodontal connective matrices. Addi-
tionally, sustained mitochondrial calcium overload driven by
elevated ROS levels can induce the opening of the mitochon-
drial permeability transition pore (mPTP), ultimately triggering
apoptosis. Furthermore, impaired mitophagy due to dys-
function of the PI3K/AKT pathway compromises mitochondrial
quality control, thereby exacerbating OS [50]. Collectively,
mtROS originating from electron leakage forge a pivotal
mechanistic link between OS and the progressive destruction of
periodontal tissues.

Abnormal mitochondrial function has been observed in gingival
tissues and fibroblasts in chronic periodontitis, with P. gingivalis
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exacerbating mitochondrial damage [51]. Xu et al. [38] demon-
strated that, P. gingivalis induces mitochondrial dysfunction through
Drp1, resulting in mitochondrial fragmentation, elevated MtROS,
and reduced ATP production. Additionally, mitophagy, which reg-
ulates inflammation, is disrupted by MtROS, intensifying inflam-
mation in periodontitis. Activating mitochondrial autophagy may
represent a promising therapeutic target [52]. Previous researches
showed that mtROS production decreases in immune cells after
periodontal treatment, correlating with improved endothelial func-
tion in patients with periodontitis [53].

2.4 | Unhealthy Lifestyle Factors

Harmful lifestyle choices, such as consuming a diet high in fats
and proteins, smoking, and excessive alcohol intake, signifi-
cantly increase the risk of developing periodontitis. These
behaviors contribute to elevated ROS levels in the oral en-
vironment, exacerbating inflammation in periodontal tissues
and promoting alveolar bone resorption.

High‐fat and high‐protein diets have a detrimental effect on
periodontal health, which is often associated with higher OS [54,
55]. High‐calorie intake results in an overabundance of electrons
transferred to the ETC, sharply increasing superoxide anion pro-
duction. When the respiratory chain remains chronically over-
loaded, redox imbalances occur throughout the body, including
the oral cavity [56]. Peripheral blood neutrophils (PBN) from ob-
ese patients exhibit increased ROS production and cytokine
release, contributing to heightened local and systemic inflamma-
tion [57]. Interestingly, both ROS production and inflammatory
factor release are reduced after bariatric surgery [58].

Smoking is recognized as a risk factor in periodontal disease and
other oral conditions [59]. Nicotine, a major component of cigarette
smoke, directly increases the respiratory burst in neutrophils,
impairing their function and triggering ROS production, which
leads to OS‐related tissue damage [59, 60]. Simultaneously, when
saliva is exposed to cigarette smoke, it triggers an increase in oxi-
dant production, resulting in protein modifications in the carbonyl
form and reduced enzyme activity. This weakens salivary defense
mechanisms, potentially leading to various oral diseases [61].
Chronic alcohol consumption, on the other hand, can result in
mitochondrial dysfunction, impairing cellular functions. ROS are
generated during all stages of alcohol metabolism, including the
processes catalyzed by alcohol dehydrogenase and mitochondrial
enzymes, which oxidize alcohol into superoxide anions and
hydroxyl radicals, respectively [62]. Chronic alcohol intake also
lowers salivary amylase activity. Therefore, avoiding smoking and
excessive alcohol consumption is crucial in reducing the risk of
periodontitis and other oral diseases.

3 | The Dual Role of ROS in Periodontal Tissue

3.1 | The Physiological Effects of Appropriate
ROS Levels

ROS play a crucial role in maintaining cellular metabolism and
physiological processes. They are produced in various cellular
locations, including the mitochondria, cytoplasm, and endoplasmic

reticulum (ER) [63–65]. Under normal conditions, when cells are
exposed to hydrogen peroxide, SOD1 relocates to the nucleus and
binds to promoters to upregulate genes that control antioxidant
defenses, ensuring a balance between ROS production and anti-
oxidant systems [66]. Low ROS levels are crucial for sustaining
intracellular redox homeostasis, which includes signal transduction,
redox regulation, and defense mechanisms [67].

In periodontal tissues, when pathogens invade, host cells release
pro‐inflammatory cytokines, such as interleukins and TNF‐α, which
attract immune cells like PMNs and macrophages to the inflamed
site [68]. These immune cells eradicate pathogens by releasing ROS
[32] (Figure 1). Thus, maintaining appropriate ROS levels allows
periodontal tissues to perform their normal defensive functions.
Additionally, physiological levels of ROS are vital for preserving
stem cell functions, which are essential for balancing stem cell
differentiation and self‐renewal [69]. Periodontal ligament stem
cells (PDLSCs) play an important role in periodontal regeneration,
and maintaining their function is crucial for tissue repair [70].
Research by Qiu et al. [71] shows that appropriate ROS levels are
important for promoting effective bone regeneration of PDLSCs
within the periodontal environment.

3.2 | The Pathogenic Effects of Excessive ROS
Levels

Prolonged exposure to elevated ROS levels that exceed the
body's antioxidant defenses leads to OS [72]. Excessive ROS
disrupt cellular integrity, damaging proteins, mitochondria, and
DNA, which result in tissue impairment and a variety of dis-
eases [73]. Chronic inflammatory disorders, including peri-
odontitis, rheumatoid arthritis, cardiovascular disease, and
obesity, are linked to elevated levels of ROS [74–79].

In periodontal tissues, immune cells often release excess ROS in
response to pathogens, disrupting the equilibrium between ROS
generation and antioxidant defenses, ultimately resulting in OS
[80]. This oxidative imbalance is the primary cause of peri-
odontal tissue destruction. Excessive ROS act as signaling mo-
lecules within cells, activating inflammatory pathways and
inflammasomes, thereby increasing the release of pro‐
inflammatory cytokines and worsening periodontal inflamma-
tion. Excessive ROS activate inflammatory pathways like NF‐κB
and MAPK, promoting alveolar bone loss. ROS also trigger
NLRP3 inflammasome activation by inducing the expression of
OS‐related proteins like TXNIP, Nrf2, and MAVS, further con-
tributing to tissue damage (Figure 1). Elevated intracellular
ROS levels enhance the inflammatory response, with M1‐
polarized macrophages further escalating the secretion of
inflammatory cytokines and recruiting additional neutrophils to
the inflamed site, thus accelerating the progression of peri-
odontitis [81]. Thus, ROS are therefore critical in chronic
inflammation, tissue matrix degradation, and bone remodeling.

4 | Mechanisms of ROS in the Pathological
Condition of Periodontal Tissues

An imbalance between ROS and antioxidant defenses initiates
an OS response, contributing to periodontal tissue destruction

4 of 22 Immunity, Inflammation and Disease, 2025



[82]. A deeper understanding of these mechanisms is vital for
developing comprehensive strategies for managing periodontal
disease. The specific mechanisms of ROS in periodontitis are
illustrated in Figure 2.

4.1 | ROS and NF‐κB Signaling Pathway

NF‐κB functions as a crucial transcription factor activated by
ROS and is essential for the regulation of OS and inflammatory
processes [83]. In the classical NF‐κB activation pathway,
cytoplasmic p65 and p50 heterodimers are typically inhibited by
IκBα, keeping them inactive. Upon external stimulation, IκB
kinase is activated, leading to IκBα degradation. This free NF‐κB
translocates to the nucleus, where it promotes the expression of
NLRP3 inflammasome‐associated genes [84].

Numerous external stimuli, such as bacterial infections and
virulence factors, increase ROS production [85]. Both Gram‐
negative anaerobes and microaerophiles can destabilize the
redox equilibrium [86]. P. gingivalis, a primary bacterium
involved in periodontitis, disturbs the balance between benefi-
cial and harmful oral bacteria [87]. LPSs from P. gingivalis
increase OS in periodontal ligament fibroblasts (PDLFs), con-
tributing to periodontitis [88]. LPS also elevates intracellular
ROS production, activating the NF‐κB p65 pathway, which
enhances the release of inflammatory cytokines like TNF‐α and
IL‐1β. Antioxidants such as N‐acetyl‐L‐cysteine (NAC) reduce

P. gingivalis‐induced NF‐κB activation and cytokine expression
by neutralizing ROS [89]. Moreover, recent research has high-
lighted the correlation between psychological stress and peri-
odontitis. Some studies suggest that psychosocial stress may
have a more significant impact on periodontal inflammation
than pathogenic bacteria [90, 91]. Anxiety, depression, distress,
and perceived stress affect a substantial percentage of peri-
odontitis patients, with rates of 35.2%, 18.2%, 24.6%, and 43.9%,
respectively [92]. Stress hormones promote the proliferation of
Gram‐negative bacteria like P. gingivalis, fostering an environ-
ment conducive to periodontal tissue destruction [93]. Chronic
psychological stress further causes microcirculatory disorders,
leading to congestion and localized hemorrhaging in peri-
odontal tissues. This transformation shifts the periodontal en-
vironment from normoxia to hypoxia [94]. Hypoxia, in
combination with inflammation, activates hypoxia‐inducible
factor‐1 (HIF‐1) [95].

ROS can both activate and inhibit NF‐κB signaling across various
cell types, including macrophages, PMNs, human periodontal
ligament cells (hPDLCs), hGFs, human gingival mesenchymal
stem cells (hGMSCs), osteoblasts, and osteoclasts [96–98]. These
effects are mediated through upstream pathways such as the Toll‐
like receptor (TLR) and MAPK pathways [99]. ROS‐induced NF‐
κB activation leads to the expression of pro‐inflammatory cyto-
kines and chemokines, driving periodontal tissue destruction by
triggering inflammation and osteoclast differentiation [100, 101].
ROS activation triggers the NF‐κB signaling pathway and

FIGURE 1 | The dual role of ROS in periodontal tissue. In periodontal tissues, pathogen invasion induces host cells to release pro‐inflammatory

factors like IL‐1β and TNF‐α, recruiting PMNs and macrophages to the inflammation site. These inflammatory cells eliminate pathogens by releasing

ROS. (1) Appropriate levels of ROS: are crucial for maintaining the healthy physiological function of periodontal tissues, thereby creating a

favorable environment for bone regeneration. (2) Excessive levels of ROS: elicit an OS response, contributing to osteoclastic bone resorption via

modulation of diverse signaling pathways (created with BioRender.com/u03r009).
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enhances the release of IL‐6, IL‐1β, IL‐1, IL‐2, TNF‐α, prosta-
glandin E2 (PGE2), and lymphotoxin, etc [102]. These cytokines
and chemokines are associated with bone resorption in peri-
odontal tissues, with PGE2 being the most potent stimulator of
periodontal bone resorption, IL‐1 and TNF‐α initiating bone re-
sorption in periodontitis, IL‐1 being the most powerful inducer of
bone demineralization, and IL‐6 stimulating bone resorption while
simultaneously suppressing bone formation [103]. Nevertheless,
ROS can also exert inhibitory effects on NF‐κB signaling under
certain conditions. Excessive ROS accumulation may result in
oxidative modifications of critical signaling elements, such as
cysteine residues within the DNA‐binding domains of NF‐κB
subunits (e.g., p50 and p65), thereby compromising their DNA‐
binding capacity and diminishing transcriptional activation [104].
Furthermore, ROS can oxidize and inactivate components of the
IκB kinase (IKK) complex, thereby preventing the phosphoryl-
ation and subsequent degradation of IκBα, ultimately obstructing
NF‐κB nuclear translocation and activation [105]. In addition, ROS
may induce the activation of antioxidant and cytoprotective

pathways, notably the nuclear factor erythroid 2–related factor 2
(Nrf2) pathway, which antagonizes NF‐κB‐driven transcription by
competing for transcriptional coactivators or by upregulating anti‐
inflammatory genes such as Heme Oxygenase‐1 (HO‐1) and NAD
(P)H Quinone Dehydrogenase 1 (NQO1) [106]. Elevated ROS
levels attenuate NF‐κB signaling and suppress the expression of
pro‐inflammatory cytokines, potentially serving as a compensatory
mechanism to mitigate tissue injury under conditions of OS. Thus,
ROS acts as a double‐edged sword in the regulation of NF‐κB
signaling, with its effects being highly context‐dependent and in-
fluenced by factors such as ROS concentration, duration of ex-
posure, and the intracellular redox environment.

4.2 | ROS and MAPK Signaling Pathway

MAPK family is composed of serine‐threonine kinases that
regulate numerous cellular processes, such as proliferation and
apoptosis [107]. There are three key MAPK pathways: p38

FIGURE 2 | Specific ROS mechanisms in the pathological state of periodontal tissues. When exposed to external stimuli like P. gingivalis and

LPS, intracellular ROS levels rise. These processes interact with each other, accelerating periodontitis and ultimately causing alveolar bone re-

sorption. (1) Excessive ROS modulate several signaling pathways. ROS and NF‐kB: ROS and NF‐κB: The cytoplasmic heterodimer p65/p50 is

activated by the IκB kinase complex, which weakens IκB's inhibitory effect on NF‐κB. Once free, NF‐κB translocates to the nucleus, promoting the

expression of pro‐inflammatory genes, including those associated with NLRP3 inflammasome activation. ROS and MAPK: This signaling involves

pathways such as p38 MAPK, JNK, and ERK. Bax/Bcl‐2 ratios are crucial in determining cell survival or apoptosis. Bax translocates to mitochondria,

where it promotes cytochrome C release, which activates caspase‐9, resulting in the downstream activation of caspase‐3, ultimately inducing

apoptosis. (2) ROS also stimulate the NLRP3 inflammasome by activating oxidative stress‐related proteins. ROS and TXNIP: High ROS

levels reduce TRX activity, enhancing TXNIP's ability to activate NLRP3 inflammasome, increasing IL‐1β production. TRX dissociates from TXNIP in

a ROS‐dependent manner, and activated TXNIP directly activates NLRP3 inflammasome, leading to increased production of mature IL‐1β. ROS and

MAVS: MAVS recruits NLRP3 to mitochondria, enhancing its oligomerization and activation, which promotes caspase‐1 and IL‐1β production.

(3) Cells counteract oxidative stress by producing enzymes that neutralize ROS. ROS and Nrf2: Nrf2 dissociates from Keap1 and moves to

the nucleus, where it associates with AREs to regulate the expression of antioxidant genes. ROS and SIRT/FOXO: Enhanced SIRT1 activation

alleviates oxidative damage by deacetylating FOXO (created with BioRender.com/b37w148).
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MAPK, c‐Jun N‐terminal kinase (JNK), and extracellular signal‐
regulated kinase (ERK), which are all crucial for transmitting
extracellular signals to the nucleus [108]. MAPK pathways are
highly sensitive to ROS and function as redox‐sensitive mole-
cules that detect and transmit ROS signals [109]. These path-
ways are not only integral to normal physiological processes,
such as cell differentiation and proliferation, but also play es-
sential roles in pathological conditions like apoptosis, tissue
injury, OS, and inflammation. Their primary mechanism
involves extracellular stimuli activating specific upstream
phosphorylation sites, triggering the regulation of apoptosis
[110, 111]. The survival of a cell or its progression toward
apoptosis is governed by the interplay between the anti‐
apoptotic protein B‐cell lymphoma 2 (Bcl‐2) and the pro‐
apoptotic protein Bcl‐2‐associated X protein (Bax) [112]. Bax
translocates to the mitochondria, enhancing cytochrome C
release, which then activates caspase‐9 and subsequently initi-
ates the caspase‐3 cascade, leading to apoptosis [113, 114]. Li
et al. [115] established a periodontitis model in beagle dogs
through P. gingivalis infection and found that PBM therapy
enhances OS by modulating the ROS/MAPK/mTOR signaling
pathway. This approach regulates various inflammatory factors,
boosts anti‐inflammatory and antioxidant capacities in saliva,
improves bone density, and promotes implant osseointegration,
thereby aiding in the prevention of periodontitis‐related infec-
tions [115].

4.2.1 | p38 MAPK Signaling Pathway

p38 MAPK, a key MAPK family member, is primarily involved
in responses to OS, inflammation, and apoptosis [116]. Hypoxia
has been demonstrated to induce cell death in human peri-
odontal fibroblasts (PLFs), exacerbating periodontitis progres-
sion [117]. As mitochondria are a major source of ROS,
superoxide production by the ETC increases under hypoxic
conditions, with additional sources like NOX also generating
oxidative signals in response to hypoxia, causing OS in peri-
odontal tissues [118]. Studies have shown that both hypoxia and
LPS‐Pg stimulation elevate NOX4‐dependent H₂O₂ release in
PLFs [88]. Furthermore, oxygen deficiency enhances reductive
carboxylation, leading to an increase in ROS production [119].
Hypoxia activates p38 MAPK, which translocates to the nucleus
to regulate cell proliferation and apoptosis. Osteopontin inhibits
the expression of pro‐apoptotic proteins, including Bax and
caspase‐3, while simultaneously enhancing the expression of
Bcl‐2. Inhibiting p38 MAPK with osteopontin could reduce OS
and improve the antioxidant capacity of PLFs, preventing
hypoxia‐induced cell death [120, 121].

4.2.2 | JNK Signaling Pathway

As the stress‐activated protein kinase, JNK plays a pivotal role
in immune regulation [122]. JNK phosphorylation facilitates
Bax relocation to the outer mitochondrial membrane, where
Bax either functions as a pore‐forming protein or interacts with
voltage‐gated anion channels (VDAC). The permeabilization of
the mitochondrial membrane allows for the expansion of the
outer membrane pore, participating in ROS‐induced apoptosis
[123, 124]. Elevated glucose levels in patients with Type II

diabetes mellitus (T2DM) lead to the formation of non‐
enzymatic advanced glycation end products (AGEs) in an oxi-
dative environment, which can accumulate in periodontal tis-
sues, potentially resulting in their involvement in periodontitis
[125]. TNF‐α and AGEs stimulate endogenous ROS production
in PDLSCs. The continued ROS accumulation harms PDLSCs,
leading to the activation of the JNK pathway, a decrease in
mitochondrial membrane potential, the activation of caspase‐3,
and an elevated Bax/Bcl‐2 ratio [126]. Recent studies have
revealed that LPS‐preconditioned DFC‐sEVs demonstrate sig-
nificant advantages in suppressing alveolar bone loss and pro-
moting regeneration in dogs with experimental periodontitis.
These effects may be attributed to the inhibition of ROS/JNK
signaling, which reduces the RANKL/OPG ratio in PDLSCs,
and the promotion of macrophage polarization toward the M2
phenotype via ROS/ERK signaling [127].

4.2.3 | ERK Signaling Pathway

ERK is activated by the accumulation of hydrogen peroxide
(H2O2), a reactive oxygen metabolite produced in the cell.
Activated ERK moves to the nucleus to perform various func-
tions and plays a key role in cellular reactions to OS [128]. ROS
are central in activating the NLRP3 inflammasome [129]. ERK‐
specific inhibitors suppress NLRP3‐mediated caspase‐1 activa-
tion and IL‐1β secretion while also inhibiting NF‐κB activation,
indicating that ERK is upstream of both NF‐κB and the NLRP3
inflammasome [130]. The ERK pathway plays an essential role
in apoptosis. Phosphorylated ERK1/2 triggers apoptosis in
NRK‐52E cells by decreasing Bcl‐2 expression, increasing
caspase‐3 and Bax levels, and elevating ROS [131, 132]. Mes-
enchymal stem cells (MSCs) are the main source of stem cells
involved in periodontal bone regeneration. Ren et al. [133]
showed that MSCs stimulate the extracellular signal‐regulated
kinase (ERK)/AMP‐activated protein kinase (AMPK) pathway,
enhancing the osteogenic potential of bone marrow MSCs [133].
Therefore, the ERK/AMPK pathway holds significant research
potential for treating periodontitis.

4.3 | ROS and NLRP3 Inflammasome

The NLRP3 inflammasome is widely distributed in tissues and
organs throughout the body. It is the most prominent in-
flammasome in the NLR family and is involved in innate
immune responses to infections, inflammation, and chronic
diseases [134]. The NLRP3 inflammasome consists of three
components: NLRP3, apoptosis‐associated speck‐like protein
(ASC), which contains the caspase‐1 recruitment domain, and
pro‐caspase‐1 [135]. NLRP3 activation occurs in two steps [1]:
the initiation step, where pathogen‐associated molecular pat-
terns (PAMPs) such as LPS and cytokines such as TNF‐α,
activate NF‐κB, leading to the upregulation of genes associated
with the NLRP3 inflammasome [136], and [2] the activation
step, initiated by PAMPs or DAMPs like ROS, bacterial infec-
tions, ion efflux, or mitochondrial damage, which leads to
NLRP3 assembly and caspase‐1 activation [137]. LPS from P.
gingivalis is a significant PAMP that binds to TLR4, facilitating
inflammatory mediator release [138]. ROS generation in
response to LPS is a crucial signal in the inflammatory process,
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and ROS also trigger NLRP3 inflammasome activation, con-
tributing to periodontitis progression [139].

Excessive NLRP3 inflammasome activation is associated to
numerous inflammatory conditions, including diabetes, Alz-
heimer's disease, gout, atherosclerosis, and periodontitis [140].
The identification of the NLRP3 inflammasome offers a key
regulatory pathway for investigating periodontitis. Activated
NLRP3 converts pro‐inflammatory IL‐1β into its mature, active
form via caspase‐1 [136]. IL‐1β is a major cytokine associated
with the progression of periodontitis, as it enhances osteoclast
formation and promotes bone resorption [96]. The effects of the
NLRP3 inflammasome on osteoclastogenesis vary depending on
context. In the presence of infections like LPS, NLRP3 promotes
osteoclast formation, leading to tissue destruction. However, in
non‐infectious conditions, NLRP3 inhibits osteoclastogenesis by
inducing apoptosis in osteoclast precursors [141].

As a form of programmed cell death driven by inflammation,
pyroptosis is also involved in periodontal tissue degradation
[142]. Unlike apoptosis and autophagy, pyroptosis is primarily
mediated by caspase and gasdermin (GSDM) proteins [143].
NLRP3 inflammasome and caspase‐1 activate pyroptosis by
converting pro‐caspase‐1 into its active form, which cleaves
substrates like pro‐IL‐1β and pro‐IL‐18 into their active forms
[144]. Caspase‐1 also cleaves gasdermin D (GSDMD), leading to
the formation of membrane pores that facilitate the release of
IL‐1β and IL‐18, thereby initiating a robust inflammatory
response [145]. Additionally, GSDMD, the key effector of pyr-
optosis, forming pores in the cell membrane and allowing the
release of inflammatory cytokines like IL‐1β and IL‐18, thereby
triggering a robust inflammatory response [146]. In gingival
tissues, the expression levels of NLRP3, Caspase‐1, and IL‐1β
were significantly higher in patients with periodontitis than in
healthy individuals [147]. A multitude of studies has demon-
strated the pivotal role of the ROS/NLRP3 inflammasome in the
development and progression of periodontitis.

LPS, the primary PAMP in periodontitis, binds to TLR4 and
activates a signaling cascade that promotes the release of
inflammatory factors and ROS [138]. ROS production in
response to LPS also activate the NLRP3 inflammasome by
inducing OS‐related proteins like TXNIP and MAVS, which
further drive periodontitis progression [139].

4.3.1 | Thioredoxin‐Interacting Protein (TXNIP)

TXNIP, part of the thioredoxin (TRX) system, is a crucial reg-
ulator of OS, involved in cellular processes like proliferation,
differentiation, and pyroptosis [148]. In its inactive state, TXNIP
is bound to TRX in the cytoplasm and ER, where it forms
disulfide bonds, inhibiting TRX function [149, 150]. When ROS
levels rise, TRX activity decreases, and TXNIP becomes active,
promoting NLRP3 inflammasome activation and increasing IL‐
1β production [151, 152]. Studies have shown that PPARγ
activation can reduce ROS levels and inhibit TXNIP/NLRP3
signaling, decreasing pyroptosis and improving organ function
during sepsis [153]. Compounds such as cilantro protein have
been found to inhibit TXNIP‐NLRP3 interaction, reducing ROS
levels and cell pyroptosis, offering relief from NLRP3‐related

conditions like gouty arthritis [154]. TXNIP is a vital link
between ROS and NLRP3‐mediated pyroptosis [155].

Recent studies have highlighted the role of the ROS/TXNIP/
NLRP3 pathway in periodontitis development. Research by
Lian et al. [156] demonstrated that P. gingivalis lipo-
polysaccharide (Pg‐LPS) induces an inflammatory response in
mouse PDLFs via the ROS/TXNIP/NLRP3 pathway, leading to
chronic periodontitis in mice [156]. Additionally, Zhu et al.
[157] found that obstructive sleep apnea‐hypopnea syndrome
(OSAHS) increases NLRP3 and caspase‐1 activation in peri-
odontal tissues, making them more vulnerable to inflammatory
lesions through the ROS/TXNIP/NLRP3 pathway [157].

4.3.2 | Mitochondrial Antiviral Signaling
Protein (MAVS)

MAVS, a mitochondrial membrane protein, is crucial for the
production of Type 1 interferons and mediates NLRP3‐
mitochondrial interactions [158]. Mitochondria are a significant
source of ROS necessary for NLRP3 activation, and their role in
pyroptosis underlines the critical role of mitochondria in the
innate immune response [159]. MAVS detects ROS‐driven
inflammation, and its aggregation amplifies ROS production
[160]. Previous studies reported that ROS are essential for ini-
tiating NLRP3 activation but not necessary for sustaining it
[161]. MAVS functions within the NLRP3 inflammasome by
recruiting TLRs and RIG‐I, mediating NF‐κB and Type I
interferon signaling [155, 158]. MAVS also promotes NLRP3
oligomerization, leading to the secretion of caspase‐1 activation
and IL‐1β [162].

Research has demonstrated that Suyin Detoxification Granules
(SDG) protect renal tubular epithelial cells from apoptosis by
regulating the MAVS/NLRP3 pathway [163]. NLRP3 in-
flammasome within these cells produces MtROS, exacerbating
damage following hypoxia through interactions with MAVS
[164]. Nevertheless, there is currently no literature reporting on
the function of the ROS‐MAVS‐NLRP3 axis in periodontitis.
Given the significance role of ROS and NLRP3 in the develop-
ment of periodontitis, the ROS‐MAVS‐NLRP3 axis may become
a potential avenue for future research as one of the patho-
genesis and therapeutic targets of periodontitis.

ROS precipitate the degradation of periodontal tissues. To
counteract OS, cells produce protective enzymes that neutralize
ROS. Key regulatory pathways governing the production of
these protective enzymes include NRF2, silent information
regulator T (SIRT), and FOXO [165].

4.3.3 | Nuclear Factor Erythroid 2‐Related Factor
2 (Nrf2)

Nrf2 functions as a key sensor for OS and plays a crucial role as
a transcription factor in suppressing ROS‐induced inflamma-
tion [166]. It regulates the expression of various antioxidant
enzymes, such as heme oxygenase‐1 (HO‐1), glutathione‐S‐
transferase (GST), cystathionine ligase, and NADPH quinone
oxidoreductase 1 (NQO1), thereby offering protection against
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OS [167]. In a typical physiological state, Nrf2 is predominantly
found in the cytoplasm, where it is tethered to its negative
regulator, Kelch‐like ECH‐associated protein 1 (Keap1). This
binding leads to the ubiquitination and degradation of Nrf2
[168]. However, during OS, Nrf2 detaches from Keap1 and
moves into the nucleus. There, it interacts with AREs, initiating
the transcription of genes responsible for antioxidant defense
[169, 170].

Recent studies suggest that activating Nrf2 can prevent ex-
cessive ROS production and inhibit the activation of the NLRP3
inflammasome, positioning Nrf2 as a potential target for the
treatment of inflammatory diseases [171, 172]. Consequently,
therapies that enhance Nrf2 signaling may provide a promising
strategy to prevent inflammation‐related diseases. Research by
Chen et al. [173] demonstrated significant expression of Nrf2,
HO‐1, NLRP3, and ASC in the synovial tissues of patients with
osteoarthritis. Their findings indicate that NLRP3 inflamma-
some activation is driven by ROS following LPS stimulation,
with the anti‐inflammatory effects of the Nrf2/HO‐1 pathway
explaining the variations in ROS levels [173].

It has been established that there is a close association between
pyroptosis and periodontitis [174]. For instance, a recent study
revealed that ED‐71, a new active vitamin D analog, can protect
hGFs from LPS‐induced NLRP3 inflammasome‐mediated cell
death via the Nrf2/HO‐1 signaling pathway [139]. Similarly, it
was discovered for the first time that silymarin (SB), a natural
polyphenolic flavonoid, reduces ROS levels in LPS‐induced
human periodontal stem cells (hPDLCs) by downregulating NF‐
κB and NLRP3, while upregulating Nrf2 expression. This
demonstrates both anti‐inflammatory and antioxidant benefits,
suggesting that SB may hold significant potential for clinical use
in treating periodontitis [175].

4.3.4 | Forkhead Box O (FOXO)

FOXO1 is a ubiquitously expressed and evolutionarily con-
served transcription factor, which includes FOXO1, FOXO3,
FOXO4, and FOXO6 [176]. FOXO plays a pivotal role in
orchestrating numerous vital biological processes, including
cellular survival, differentiation, ROS attenuation, apoptosis,
cellular proliferation, senescence, and the maintenance of stem
cell homeostasis [177]. FOXO proteins are crucial in the cellular
defense against OS by preventing ROS formation, sequestering
reactive species, repairing damaged molecules, and inducing
protective signaling pathways [178]. Pathogens like P. gingivalis
and LPS trigger FOXO1 activation in neutrophils through TLR2
and TLR4, a process involving FOXO1 deacetylation and ROS
generation [179]. The signaling pathways of TLR2 and TLR4
facilitate FOXO1 nuclear translocation, contingent upon ROS
formation [180]. ROS, induced by P. gingivalis, augments FOXO
nuclear translocation and activity via the JNK signaling cascade
[181]. Activated FOXO mitigates OS by upregulating enzymes
that decompose ROS. FOXO1 and FOXO6 alleviate OS by
transcribing superoxide dismutase, thereby catalyzing the con-
version of O2− to H2O2 [182]. As a result, FOXO1 safeguards
PDLSCs against oxidative damage while also promoting their
osteogenic potential in inflammatory conditions [183]. Though
there are currently no direct studies linking FOXO to the

NLRP3 inflammasome in periodontitis, research has shown that
SIRT1 activation by SRT1720 promotes FOXO1 deacetylation,
reduces ROS overproduction, and inhibits NLRP3 inflamma-
some activation in models of subarachnoid hemorrhage (SAH)
[184]. This suggests a potential new pathway for periodontitis
treatment.

4.3.5 | Silent Information Regulator T

SIRT refers to a group of Class III protein deacetylases that rely
on NAD+ to function and regulate various physiological pro-
cesses [185]. SIRT1, the most extensively studied member of the
SIRT family, is a key modulator of redox balance and plays a
vital role in cellular survival, apoptosis, and inflammation [184].
A study by G‐J et al. demonstrated for the first time that SIRT1
activation and overexpression provide significant protection
against nicotine‐ and LPS‐induced cytotoxicity, reducing ROS
production and pro‐inflammatory cytokine secretion via the
PI3K, PKC, MAPK, and NF‐κB signaling pathways. This sug-
gests that SIRT1 activation could help alleviate inflammation in
periodontal diseases [186]. Additionally, SIRT1 protects MSCs
from damage by inhibiting IL‐1β release through the NLRP3
inflammasome [187]. SIRT1 regulates FOXO1 by enhancing its
ability to bind to DNA, which in turn promotes the expression
of specific target genes. This modulation plays a key role in
mitigating OS across a range of disease conditions [188]. In
conclusion, SIRT1 is a promising therapeutic target for treating
periodontitis by mitigating OS, reducing inflammatory
responses, and restoring mitochondrial function.

5 | Emerging Strategies for the Treatment of
Periodontitis

Contemporary clinical approaches for managing periodontitis
predominantly encompass mechanical debridement (including
supragingival scaling, subgingival scaling, and root planing),
adjunctive modalities (such as systemic antibiotic administra-
tion and localized antimicrobial therapies), and surgical inter-
ventions (such as flap surgery and guided bone regeneration
[GBR] techniques). Despite their demonstrable efficacy in mi-
tigating the progression of periodontitis, these interventions
remain constrained by notable challenges and inherent limita-
tions. Although mechanical debridement is universally
acknowledged as the foundation of periodontal therapy and
demonstrates efficacy in subgingival plaque biofilm removal, it
frequently proves insufficient in completely eradicating bacte-
rial biofilms within anatomically intricate sites, such as deep
periodontal pockets, furcation defects, and root concavities
[189]. Residual plaque biofilms serve as a primary source of
persistent inflammation. Furthermore, while the administration
of systemic antibiotics effectively reduces the burden of peri-
odontal pathogens, the widespread use of these agents has
precipitated the emergence of antibiotic resistance, now recog-
nized as a global public health crisis [190]. Local antimicrobial
therapies, such as the placement of metronidazole gels or
minocycline hydrochloride ointment into periodontal pockets,
have demonstrated significant efficacy in reducing localized
pathogenic bacterial loads and mitigating inflammation. How-
ever, their limitations remain evident, primarily manifesting as
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short‐lived therapeutic effects, restricted areas of action, and
reliance on the outcomes of concurrent mechanical debride-
ment [191]. In summary, conventional treatment modalities
exhibit notable limitations in eradicating pathogenic micro-
organisms, preventing disease recurrence, modulating the host
inflammatory response, and promoting periodontal tissue
regeneration. Furthermore, traditional therapies are often
ineffective in addressing OS and inflammatory burden, which
play pivotal roles in the pathogenesis and progression of peri-
odontitis. Consequently, there is an urgent need to develop
novel adjunctive therapeutic strategies to overcome the short-
comings of current approaches.

In recent years, as the understanding of the pathophysiological
mechanisms underlying periodontitis has advanced, researchers
have increasingly focused on innovative therapies aimed at
enhancing the efficacy of conventional treatments. Anti-
oxidants, PDT, and nanotechnology, recognized as highly
promising therapeutic strategies, have emerged as key areas of
investigation in the field of periodontal treatment. These
emerging therapies not only aim to address the limitations of
traditional approaches but also emphasize the modulation
of host immune responses, alleviation of OS, and promotion of
periodontal tissue regeneration, thereby offering novel insights
and potential avenues for the treatment of periodontitis.

5.1 | Antioxidants

Antioxidants are substances capable of significantly inhibiting
or delaying oxidative reactions in substrates, even at low con-
centrations, thereby effectively mitigating OS [192]. In the
clinical management of periodontitis, antioxidants can be cat-
egorized into endogenous and exogenous types. Endogenous
antioxidants, such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx), play a pivotal role in
counteracting OS within the body. However, their production is
largely dependent on endogenous synthesis or exogenous sup-
plementation [193, 194]. In contrast, exogenous antioxidants,
such as vitamin C, melatonin, coenzyme Q10 (CoQ10), and
polyphenolic compounds (including green tea catechins, res-
veratrol [RV], and curcumin), are typically administered via
oral supplementation or topical application. These agents have
been shown to effectively alleviate periodontal inflammation,
promote periodontal tissue repair, and enhance therapeutic
outcomes [37]. Given the significant therapeutic efficacy of
exogenous antioxidants in the clinical management of peri-
odontitis, we will next provide a concise overview of recent
advancements in their clinical applications within this domain.

5.1.1 | Vitamin C

Vitamin C, a crucial water‐soluble vitamin, exhibits potent
antioxidant and immunomodulatory properties. It is regarded as
an essential dietary antioxidant for maintaining periodontal
health [195]. Vitamin C supplementation mitigates OS by
reducing the production of pro‐inflammatory cytokines in in-
fected periodontal tissues. Additionally, it modulates NF‐κB‐
DNA binding activity by inhibiting NF‐κB activation, thereby
attenuating OS and inflammation‐induced periodontal tissue

degradation [196]. Li et al. [197], through an analysis of data
from the 2009–2014 National Health and Nutrition Examina-
tion Survey (NHANES) in the United States, investigated the
relationship between dietary vitamin C intake and periodontitis.
The study revealed that the risk of periodontitis was minimized
at a dietary vitamin C intake of 158.49mg, while both insuffi-
cient and excessive intake were associated with an increased
risk of developing the disease [197]. Moreover, vitamin C sup-
plementation has been shown to facilitate postoperative healing
in patients undergoing GBR or Bio‐Oss collagen grafting as part
of dental implant procedures [198].

5.1.2 | Melatonin

Melatonin exhibits a wide range of biological functions,
including circadian rhythm regulation, antioxidant activity, and
anti‐inflammatory properties [199]. As a potent antioxidant,
melatonin exerts its effects by inhibiting the activity of nuclear
transcription factors such as NF‐κB and MAPK, scavenging
various free radicals, and modulating anti‐inflammatory medi-
ators, positioning it as a promising biomarker and therapeutic
agent [200]. Studies suggest that melatonin may alleviate peri-
odontal tissue damage by suppressing the activation of the
NLRP3 inflammasome, reducing cytokine expression, and pre-
venting pyroptosis [201]. Recent clinical studies have confirmed
that, in patients with Type 2 diabetes and periodontitis, sup-
plementation with melatonin (6 mg/day for 30 days) signifi-
cantly reduced periodontal inflammation and probing depth
(PD), when compared to full‐mouth scaling and root planing
(fmSRP) alone. Furthermore, evaluations based on clinical and
biochemical markers, such as RANKL, OPG, MMP‐8 in gingival
crevicular fluid, and serum IL‐1β levels, revealed no local or
systemic adverse effects associated with melatonin supple-
mentation [202]. Additionally, studies indicate that combining
melatonin with an appropriate dosage of vitamin C may yield
beneficial outcomes in the treatment of periodontitis, without
causing detrimental effects on enamel due to its acidity [203].

5.1.3 | Coenzyme Q10 (CoQ10)

CoQ10 exhibits significant antioxidant activity by scavenging
free radicals and enhancing the activity of key antioxidant en-
zymes, such as SOD, GPx, and CAT [204]. Studies suggest that
CoQ10 may play a crucial role in the pathogenesis of peri-
odontitis, as approximately 80% of periodontitis patients exhibit
a deficiency of CoQ10 in gingival biopsies [205]. Yoneda et al.
[206] were the first to demonstrate that CoQ10 can inhibit the
phosphorylation of NF‐κB, thereby preventing its transcription
factors from translocating into the nucleus and reducing the
activation of the NLRP3 inflammasome, consequently dimin-
ishing the expression of inflammation‐related genes (such as IL‐
1β and caspase‐1) in periodontal tissues [206]. Recent studies
have further demonstrated that, compared to conventional
periodontal therapy alone, CoQ10 supplementation (such as
Perio Q™) significantly improves clinical parameters in patients
with periodontitis, including plaque index (PI), gingival index
(GI), gingival bleeding index, probing pocket depth, and
attachment loss, with notable improvements observed at both 1
and 3 months post‐treatment [207]. Moreover, studies have
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indicated that both oral supplementation and local application
of CoQ10 significantly ameliorate the symptoms of periodonti-
tis, thereby supporting its role as an effective adjunctive therapy
in the management of periodontal disease [208].

5.1.4 | Polyphenolic Compounds

Polyphenolic compounds are a class of natural organic sub-
stances characterized by multiple phenolic hydroxyl (OH)
groups, primarily derived from plants [209]. Among them,
epigallocatechin gallate (EGCG), RV, and curcumin have
gained significant attention in recent clinical research due to
their accessibility. These polyphenolic compounds exhibit
remarkable antioxidant, anti‐inflammatory, antimicrobial, and
immune‐modulatory effects, thereby garnering widespread
interest as adjunctive therapies for periodontitis [210].

With the rising awareness of health, green tea has become one
of the most widely consumed beverages globally due to its
potential health benefits. Green tea is made from tea leaves that
undergo minimal oxidation to preserve their natural poly-
phenolic content. It is rich in various polyphenolic compounds,
particularly EGCG [211]. Recent studies have demonstrated
that EGCG, the primary bioactive component of green tea, not
only exerts significant effects in improving cardiovascular
health and reducing blood lipids but also plays a crucial role in
protecting the alveolar bone from excessive resorption through
the modulation of various biological mechanisms [212]. High‐
dose EGCG directly eliminates bacteria by disrupting their
structural integrity, while low‐dose EGCG inhibits the activity
of key virulence factors, reducing biofilm formation, and sup-
pressing bacterial adhesion and aggregation, thereby dimin-
ishing their invasive impact on periodontal tissues [212]. Qin
et al. found that EGCG (200mg/kg) effectively reduced alveolar
bone loss in a periodontal inflammation model by modulating
the Nrf2/HO‐1/NLRP3/NF‐κB p65 signaling pathway, thereby
inhibiting OS and inflammatory responses [213]. Additionally,
Wang et al. [214] employed a novel dental scaler tip for deli-
vering purified EGCG aqueous solution as a coolant in con-
junction with scaling and root planing (SRP). The results
revealed that, compared to SRP alone, the combined treatment
significantly improved PD [214]. Furthermore, gingival patches
(GP‐EGC) containing EGCG, which adhered to the mucosal
membrane, demonstrated potential as an adjunctive therapy for
periodontal disease by modulating the expression of IL‐6 and
IL‐10 [215].

In recent years, the potential application of RV as an adjunctive
therapy for periodontitis has garnered significant attention. Its
mechanisms of action primarily encompass the regulation of OS,
mitigation of inflammatory responses, and promotion of osteo-
genic differentiation. Studies have demonstrated that revealed that
RV suppresses inflammation by downregulating the expression of
TLR4, TNF‐α, and NF‐κB while activating ERK/Wnt signaling
crosstalk, thereby enhancing the proliferation and osteogenic dif-
ferentiation potential of GMSCs and significantly improving their
immunomodulatory capabilities [216]. Zhang et al. [217] further
evaluated the clinical efficacy of oral RV in patients with peri-
odontitis. An 8‐week trial demonstrated that RV effectively
reduced systemic and local inflammatory markers while

significantly suppressing systemic endotoxin levels. The study also
identified 500mg/day as the optimal therapeutic dose of RV for
periodontitis patients, providing crucial guidance for its applica-
tion in clinical practice [217].

Curcumin, an antioxidant with diverse biological activities, is
extracted from the roots of the turmeric plant [218]. Research
has revealed that curcumin significantly inhibits osteoclast
differentiation by suppressing the RANKL/RANK and NF‐κB
signaling pathways while activating the Wnt/β‐catenin path-
way, thereby effectively alleviating alveolar bone resorption
[219]. Furthermore, clinical studies have demonstrated that
curcumin exhibits comparable efficacy to the widely used an-
timicrobial agent chlorhexidine in reducing periodontal PD,
improving clinical attachment loss (CAL), and decreasing GI
and PI, providing robust support for its role as an adjunctive
therapy in periodontal disease management [220].

5.1.5 | The Challenges and Limitations of Applying
Antioxidants in Clinical Practice

As adjunctive therapies for non‐surgical periodontal treatment,
antioxidants have demonstrated significant clinical potential but
face numerous challenges and limitations in practical application.
Firstly, many antioxidants exhibit low bioavailability due to their
limited solubility, chemical instability, and rapid metabolism,
which hinders their systemic or local efficacy. Moreover, individ-
ual variations in genetic background, immune status, and en-
vironmental factors (such as smoking, diet, and oral hygiene
habits) can substantially influence the pharmacokinetics and
pharmacodynamics of antioxidants. Secondly, the role of anti-
oxidants within the complex periodontal microenvironment
remains incompletely understood. The OS and inflammatory
responses within periodontal tissues exhibit considerable hetero-
geneity, making it challenging for a single antioxidant to com-
prehensively address multiple sources of OS and inflammatory
mediators. Furthermore, current research provides limited clinical
data on the long‐term safety and potential side effects of anti-
oxidants, complicating their clinical translation. Future advance-
ments should prioritize optimizing drug delivery systems and
exploring multifunctional synergistic therapies. The application of
nanotechnology, including nanoparticles, liposomes, and hydro-
gels, holds promise for significantly enhancing the stability, tar-
geting capability, and local concentration of antioxidants.
Additionally, the investigation of combination therapies offers
considerable potential, such as integrating antioxidants with an-
timicrobial agents, anti‐inflammatory drugs, osteogenic factors, or
PDT to achieve multi‐target synergistic effects. These approaches
aim to comprehensively inhibit pathological periodontal processes
while promoting tissue regeneration. Furthermore, high‐quality,
long‐term follow‐up randomized controlled clinical trials are
urgently needed to validate the efficacy, safety, and feasibility of
antioxidants for sustained application in periodontal therapy,
thereby facilitating their widespread adoption in clinical practice.

5.2 | Photodynamic Therapy

PDT, an emerging non‐surgical treatment modality for
periodontitis, operates on the synergistic interaction of
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photosensitizers, specific wavelength light sources, and oxygen
[221]. In recent years, PDT has been extensively utilized as an
adjunct to traditional mechanical therapy to enhance thera-
peutic outcomes. During its application, photosensitizers, such
as methylene blue or toluidine blue, are directly applied to
periodontal pockets where they bind to pathogens and their
biofilms. These photosensitizers are subsequently activated by
light sources within a specific wavelength range (typically
630–650 nm) [222]. Upon activation, the photosensitizers
transfer energy to produce singlet oxygen and other ROS, such
as singlet oxygen (¹O₂) and hydroxyl radicals (·OH). These
reactive molecules exert selective antimicrobial effects by
effectively eliminating pathogenic microorganisms while also
modulating inflammatory responses [223].

5.2.1 | The Advantages of PDT Compared With
Conventional Therapy

PDT demonstrates significant advantages in selective anti-
microbial activity, non‐invasive procedures, and anti‐
inflammatory effects. Its unique photosensitizers exhibit a high
specificity for binding to pathogenic microorganisms, effectively
safeguarding host tissues from oxidative damage induced by
ROS [224]. Since PDT relies on photochemical reactions rather
than antibiotics for microbial eradication, it substantially miti-
gates the risk of developing antibiotic resistance [225]. By
generating ROS, PDT effectively disrupts bacterial cell mem-
branes and internal structures, showing potent bactericidal ef-
fects, particularly against anaerobic bacteria and Gram‐negative
pathogens such as Aa, P. gingivalis, and Prevotella intermedia (P.
intermedia). These microorganisms are closely associated with
the pathogenesis of periodontitis [226]. As a non‐invasive and
painless therapeutic approach, PDT significantly alleviates pa-
tients’ treatment‐related fear and anxiety, particularly when
addressing deep periodontal pockets or sensitive areas [227].
For individuals with systemic conditions such as diabetes,
hypertension, or immunosuppression, PDT offers the advantage
of minimizing complications associated with conventional
therapies, including wound infections, bleeding, and poor
healing outcomes [228]. Moreover, PDT demonstrates remark-
able efficacy in inflammation control by suppressing the ex-
pression of pro‐inflammatory cytokines, such as IL‐1β and TNF‐
α, thereby promoting periodontal tissue healing [229]. Studies
have revealed that toluidine blue‐mediated photodynamic
therapy (TB‐PDT) effectively mitigates inflammation by in-
hibiting NF‐κB signaling pathway activation, reducing the ex-
pression of RANKL and OPG, and modulating the OPG/
RANKL ratio [230]. Additionally, research conducted by Jiang
et al. [231] highlighted that methylene blue‐mediated photo-
dynamic therapy (MB‐PDT) induces macrophage apoptosis via
ROS, consequently reducing alveolar bone resorption [231].
Clinical trials further substantiate PDT's potential, demon-
strating its efficacy in improving PD and AL, reducing inflam-
matory cytokine levels, and promoting periodontal tissue
regeneration [232]. Nevertheless, the limitations of PDT war-
rant attention. These include the suboptimal penetration
capacity of individual photosensitizers in tissues and biofilms,
as well as their limited bioavailability, which collectively hinder
their efficacy in accessing deeper periodontal pockets and may
subsequently compromise therapeutic outcomes. Additionally,

the therapeutic effectiveness of PDT can be influenced by var-
ious parameters, including the type and concentration of the
photosensitizer, the wavelength and intensity of the light
source, the duration of irradiation, oxygen availability, and
interindividual variability among patients [233].

5.2.2 | The Combined Application of PDT and
Antioxidants

In recent years, the combined application of antioxidant ther-
apy and PDT has garnered significant attention. This combi-
natorial approach leverages antioxidants to modulate OS and
inflammatory responses, not only alleviating periodontal
inflammation but also augmenting the therapeutic efficacy of
PDT. Curcumin, a natural photosensitizer, has been extensively
studied for its integration into PDT for periodontal therapy. Its
combination with PDT facilitates effective access to areas tra-
ditionally challenging to treat, markedly enhancing clinical
outcomes [234]. Studies have demonstrated that curcumin‐
mediated PDT effectively inhibits the growth of periodontal
pathogens, such as Streptococcus mutans, with results signifi-
cantly surpassing those achieved by curcumin alone [235].
Clinically, the combination of curcumin and PDT as an adjunct
to SRP has shown remarkable antibacterial effects, particularly
against periodontal pathogens such as Aa, P. gingivalis, and P.
intermedia. Moreover, this synergistic therapy exhibits out-
standing efficacy in improving clinical parameters, including
significant reductions in bleeding on probing (BOP), PD, and
CAL [236]. Recent studies have further substantiated the
potential of integrating curcumin‐mediated PDT with 660 nm
laser irradiation and increasing irradiation frequency. This
approach fosters an optimal biological environment conducive
to periodontal tissue regeneration [237]. Collectively, these
findings underscore the potential value of curcumin‐mediated
PDT as an adjunctive therapeutic strategy in periodontal disease
management.

5.2.3 | The Application of Nanotechnology in PDT

With the rapid progress of nanotechnology, various functional
nanomaterials have demonstrated tremendous potential in drug
delivery and antimicrobial therapy for the treatment of peri-
odontitis [238]. In recent years, the combination of PDT and gas
therapy has led to the development of multifunctional nano-
materials, which have gained increasing attention in the field of
dentistry [239]. For instance, Zeng et al. [240] developed a self‐
propelled nanovesicle (PCL‐PLG@CHX) that generates NO
through the reaction of guanidine groups with ROS. This sys-
tem effectively eradicates bacterial biofilms within periodontal
pockets, reduces inflammatory cell infiltration, and promotes
angiogenesis and collagen repair [240]. For diabetic periodon-
titis, Wang et al. [241] designed a multi‐enzyme synergistic
nanoplatform (MSN‐Au@CO) based on carbon monoxide (CO)
gas therapy. This platform leverages the multi‐enzyme catalytic
activity of gold nanoparticles (Au NPs) to lower local glucose
concentrations and eradicate bacteria while utilizing a
manganese‐based complex (MnCO) to release CO in response to
hydrogen peroxide (H₂O₂) and hydroxyl radicals (·OH). The
released CO modulates the Nrf2 and NF‐κB signaling pathways,
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demonstrating significant anti‐inflammatory, antibacterial, and
bone loss‐preventing effects, with promising applications in
diabetic periodontitis models [241]. The introduction of nano-
technology has opened new avenues for PDT research. Nano-
carrier systems significantly enhance the distribution and
penetration of photosensitizers within periodontal pockets,
thereby increasing drug concentration at sites of deep infection.
For example, Shi et al. [242] developed a nanosystem
(sPDMA@ICG NPs) formed by the self‐assembly of indocyanine
green (ICG) and star‐shaped polycationic brushes (sPDMA).
This system exhibits excellent adsorption and penetration
capabilities against P. gingivalis, efficiently delivering ICG to
deep periodontal pockets. Upon laser irradiation (808 nm, 2W/
cm²) for 5 min, the system effectively inhibited Pg growth
in vitro and reduced alveolar bone resorption and inflammation
in vivo, highlighting its clinical translational potential [242]. To
address the challenges posed by antibiotic resistance and bio-
film formation, which diminish therapeutic efficacy, Ma et al.
[243] developed a novel PDT‐driven controlled CO release
system (Ce6&CO@FADP). This multifunctional antimicrobial
system is safe and efficient, achieving bacterial infection treat-
ment and biofilm eradication in vivo, presenting significant
applications in antimicrobial therapies [243]. However, ex-
cessive ROS generation during PDT can cause irreversible
damage to periodontal tissues. To mitigate this, Sun et al. [244]
designed a multifunctional nanocomposite (CeO₂@Ce6) with
both antibacterial and anti‐inflammatory properties. This
composite material regulates ROS levels and macrophage
polarization, avoiding PDT‐induced side effects while achieving
sequential “antibacterial first, anti‐inflammatory later” modu-
lation [244]. In summary, the application of nanotechnology
has significantly improved the bioavailability and targeting
capabilities of photosensitizers, optimized PDT's therapeutic
efficacy, and demonstrated considerable advantages in reducing
potential side effects.

PDT combined with nanotechnology demonstrates immense
potential in the treatment of periodontitis. However, current
research predominantly focuses on enhancing its antibacterial effi-
cacy, with limited exploration of its multifunctionality and inte-
grative therapeutic capabilities. Future advancements should aim to
address the limitations of conventional photosensitizers by design-
ing nanoplatforms that balance high efficacy with safety, thereby
further optimizing the therapeutic performance of PDT. Specifically,
by incorporating diverse functional materials, it is possible to
develop comprehensive nanotherapeutic platforms that integrate
antibacterial PDT, gas therapy, antioxidant treatment, im-
munomodulation, and tissue repair. Such platforms could effec-
tively target the complex pathological mechanisms of periodontitis
while significantly enhancing the specificity and comprehensive-
ness of treatment, thereby meeting the diverse demands of clinical
practice. Simultaneously, future investigations should prioritize
PDT's potential in reducing side effects, improving drug delivery
efficiency, and enhancing tissue regeneration capabilities, providing
more reliable solutions for the precision treatment of periodontitis.

6 | Conclusions and Future Directions

Maintaining appropriate ROS levels is essential for preserving
periodontal tissue homeostasis and creating a conducive

environment for tissue regeneration. However, excessive ROS
production triggers localized OS, which exacerbates periodontal
tissue damage. Reducing ROS overproduction and protecting
cells from OS is a viable therapeutic strategy for periodontitis.
This review summarizes recent advances in understanding the
molecular mechanisms by which ROS drive periodontitis, fo-
cusing on:

1. ROS‐induced cell damage through key inflammatory
pathways, such as NF‐κB, p38 MAPK, JNK, and ERK; and

2. The activation of OS‐related proteins, like Nrf2 and
MAVS, which trigger the NLRP3 inflammasome, leading
to tissue destruction. Emerging therapeutic strategies for
periodontitis have garnered increasing attention, particu-
larly the use of antioxidants, PDT, and their synergistic
application with nanomaterials. These approaches hold
promise for enhancing treatment efficacy by targeting
ROS‐mediated mechanisms and improving local tissue
responses. A deeper understanding of the processes could
lead to the development of more effective treatments for
periodontitis.

In recent years, antioxidants, PDT and novel nano‐biomaterials
have emerged as promising tools for preventing and treating
periodontitis. However, several challenges remain:

1. The precise molecular mechanisms linking ROS to peri-
odontitis are not fully understood;

2. The threshold for ROS levels in both physiological and
pathological conditions is unclear;

3. There is no consensus on the optimal dosage of ROS
scavengers; and

4. Clinical trials evaluating the long‐term efficacy of anti-
oxidants are lacking. These obstacles must be overcome
before periodontal tissue engineering can fully achieve its
goal of bone regeneration. Given the role of antioxidants
in controlling inflammation and promoting tissue repair,
there is great interest in developing new materials with
anti‐inflammatory, antibacterial, antioxidant, and osteo-
genic properties. While many antioxidants have shown
efficacy in modulating ROS‐related signaling pathways,
their potential to target the NLRP3 inflammasome
remains underexplored. This could represent a new
approach to mitigating periodontal tissue damage.

Future research in the field of ROS and periodontitis should
prioritize several areas to enhance our understanding and
improve treatment outcomes. First, further investigation is
required into the molecular mechanisms by which ROS con-
tribute to periodontitis pathogenesis. While pathways like NF‐
κB, MAPK, and NLRP3 have been identified as central media-
tors of ROS‐induced inflammation and tissue degradation, their
interactions and regulatory networks within periodontal tissues
remain incompletely understood. Unraveling these relation-
ships could provide new therapeutic targets, especially by
blocking specific ROS‐mediated signaling pathways. Second, it
is crucial to define the precise ROS levels that balance physio-
logical functions with preventing OS. Identifying these thresh-
olds could inform therapeutic strategies. Third, given the
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potential of antioxidants, future research should explore the
efficacy and safety of antioxidant treatments in periodontal
care. Long‐term clinical trials are necessary to assess their
impact on periodontal regeneration and inflammation control.
Fourth, in light of the potential of photosensitizers, future
research should focus on addressing the limitations of tradi-
tional photosensitizers, such as their types, concentrations, and
the wavelength and intensity of the light source, as well as the
availability of oxygen, all of which influence the stability and
efficacy of treatment outcomes. Incorporating nanomaterials
offers a promising approach to enhance the delivery efficiency
of photosensitizers and promote periodontal tissue regenera-
tion. Additionally, emerging antioxidant delivery systems,
including nanobiomaterials, present exciting prospects for tar-
geted therapy. These systems are particularly advantageous in
modulating ROS levels at inflamed sites, paving the way for
synergistic effects when combined with PDT. Extensive clinical
trials are still required to validate their safety and efficacy, en-
suring their practical application in clinical settings. However,
the optimal dosing, timing, and combination of these agents
remain to be fully elucidated. Finally, targeting the NLRP3 in-
flammasome through antioxidant and ROS‐modulating thera-
pies presents a novel avenue for preventing periodontal tissue
degradation. Future studies should explore the potential of
antioxidants not only as ROS scavengers but also as modulators
of NLRP3 activation, aiming to mitigate both inflammation and
OS in periodontitis.
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