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Abstract

Introduction:Ourgoalwas todetermine if featuresof surgical patients, easily obtained

from themedical chart or brief interview, could be used to predict those likely to expe-

riencemore rapid cognitive decline following surgery.

Methods: We analyzed data from an observational study of 560 older adults (≥70

years) without dementia undergoing major elective non-cardiac surgery. Cognitive

declinewasmeasuredusing change in a global compositeover2 to36months following

surgery. Predictive features were identified as variables readily obtained from chart

review or a brief patient assessment. We developed predictive models for cognitive

decline (slope) and predicting dichotomized cognitive decline at a clinically determined

cut.
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Results: In a hold-out testing set, the regularized regression predictivemodel achieved

a rootmean squared error (RMSE) of 0.146 and amodel r-square (R2) of .31. Prediction

of “rapid” decliners as a group achieved an area under the curve (AUC) of .75.

Conclusion: Some of our models could predict persons with increased risk for acceler-

ated cognitive decline with greater accuracy than relying upon chance, and this result

mightbeuseful for stratificationof surgical patients for inclusion in future clinical trials.

KEYWORDS

cognitive decline, delirium, machine learning, model prediction, post-operative, statistical
learning

1 INTRODUCTION

Prior studies have documented the substantial risk of cognitive decline

following surgery.1 Although it remains unclear whether the surgery

itself, the associated anesthesia, and/or other perioperative factors are

causal,2 the ability to predict who is at risk for cognitive decline after

surgery would represent an important advance both to guide clinical

care (eg, intensivemonitoring, preventive strategies) and toplanenroll-

ment into clinical trials to test intervention strategies to ameliorate

post-operative cognitive decline. The conduct of these intensive inter-

ventions and clinical trials would benefit from the ability to predict risk

for cognitive decline following surgery prior to admission, an approach

that requires prediction based on pre-operative characteristics.

Thus the goal in the present study was to use modern predic-

tive modeling strategies—including machine learning techniques3—to

derive a predictive model for long-term cognitive change following

elective surgery. In keepingwith an anticipated goal of using thepredic-

tive model to rapidly screen potential research participants for inclu-

sion in intensive clinical interventions or in randomized controlled tri-

als, we limited our potential predictive features to elements that could

be readily obtained from a chart review or brief pre-operative patient

assessment.

2 METHODS

2.1 Source of patient information

We analyzed data from the Successful Aging after Elective Surgery

(SAGES) study. The SAGES study design and methods have been

described in detail previously.4,5 In brief, eligible participants were age

70 years and older, English speaking, scheduled to undergo elective

surgery at one of twoHarvard-affiliated academicmedical centers and

with an anticipated length of stay of at least 3 days. Eligible surgical

procedures included: total hip or knee replacement; lumbar, cervical,

or sacral laminectomy; lower extremity arterial bypass; open abdomi-

nal aortic aneurysm repair; and open or laparoscopic colectomy. Exclu-

sion criteria were dementia, delirium at pre-surgical baseline, hospital-

ization within the past 3 months, terminal condition, legal blindness,

severe deafness, history of schizophrenia or psychosis, and medical-

record documented history of alcohol abuse or withdrawal within the

past 6 months and/or self-reporting more than five drinks per day for

men (or four drinks per day for women). A total of 560 patients met

all eligibility criteria and were enrolled between June 18, 2010 and

August 8, 2013. Written informed consent for study participation was

obtained from all participants according to procedures approved by

the institutional review boards of Beth Israel Deaconess Medical Cen-

ter and Brigham and Women’s Hospital, the two study hospitals, and

Hebrew SeniorLife, the coordinating center for the study.

2.2 Assessment of cognitive functioning and
cognitive decline

Cognitive functioning was assessed with a battery of 11 neuropsycho-

logical tests at preoperative baseline and at months 1, 2, 6, 12, 18,

24, and 36 following surgery. The neuropsychological battery included

tests of attention, memory, language, and executive functioning, and

a composite score (general cognitive performance, GCP) was gener-

ated and standardized to a mean of 50 and standard deviation of 10

relative to a nationally representative sample of older adults aged 70

and over.6,7 In this analysis we use estimated slopes from a piecewise

linear mixed-effect model that captures change from the 2- through

36-month follow-up window separately from short-term fluctuations

occurring between baseline and 1 month follow-up, and the 1-month

and 2-month follow-up.8 Our prior studies demonstrated a typical

period of postoperative decline at 1 month that improved by 2months

follow-up. Therefore, this time period of cognitive fluctuation was

excluded from the long-term trajectory. The outcome variable for pre-

dictive models of slope was the maximum likelihood estimate of each

patients’ slope estimated over the interval 2 to 36 months following

surgery. The cognitive slopewas estimated from amaximum likelihood

random-effects growth curve model that uses all available data under

the assumption that, conditional on observed cognitive variables and

covariates, the reason for missingness is unrelated to the values that

would have been observed if they had been observed. This is the con-

ditionally missing at random assumption. Inouye et al.,8 describe miss-

ing data in the repeated cognition and sensitivity analyses regarding

missing data in the estimation of slope. About 11% of the sample was

lost to follow-up over the follow-up period. The outcome variable for



JONES ET AL. 3 of 6

predictivemodels of steep slopewas a binary variable splitting the esti-

mated slope into those where the slope was less than −0.5 GCP units

per year versus higher. Finally, it is important to note that although

the study collected detailed neuropsychological performance data pre-

operatively, we do not use the pre-operative neuropsychological test

performance data in our predictive models. This decision reflects our

intention that the predictive models use only variables that could con-

ceivably be used in future research to rapidly screen potential research

participants for inclusion in intensive clinical interventions or in ran-

domized controlled trials. Therefore, only elements that could be read-

ily obtained from a chart review or brief pre-operative patient assess-

ment were included.

2.3 Predictive features

Participants underwent baseline assessment in their homes approx-

imately 2 weeks (mean [standard deviation] 13 [15] days) prior to

surgery. All study interviews were conducted by experienced inter-

viewers who underwent 2to 4 weeks of intensive training and stan-

dardization. Inter-rater reliability assessment and standardization on

all key study variables were conducted every 6 months throughout

the study. Medical records were reviewed by study clinicians to collect

information on surgical procedure, abnormal laboratory results, base-

line diagnoses, among other factors not utilized in this analysis (Hshieh

et al., 2019). Chart abstraction data were checked randomly for illog-

ical values and against data collected as part of the screening process

(eg, surgery type). In addition, a 10% subset of charts underwent re-

abstraction for reliability checks.

From this information set, we identified features for use in our pre-

dictive models. Potential predictors were required either to be read-

ily available in a clinical setting through existing sources (eg, medical

record or standard laboratory data) or through quick screening tests

that would be feasible in a busy clinical setting. All candidate predic-

tive features represented pre-operative characteristics, and notably

excludepost-operative factors includingdeliriumandcognitivedecline.

We decided that although pre-surgical medication use could be predic-

tive of post-operative risk of cognitive decline, the process of identi-

fying predictors from among the multitude of medications in various

formulations and dosages would require extensive pre-processing and

would not satisfy the criterion of ready availability in a clinical set-

ting. Of the remaining potential features, 71 pre-operative variables

were selected and included demographic characteristics, lifestyle fac-

tors, cognitive function, physical function, psychosocial factors, frailty,

sensory function, medical conditions, and laboratory values (Appendix

Table S1). Missing data in the feature set were multiply imputed by

chained equations.

2.4 Data analysis

The full data set (n = 560) was split into an 80% training (or model

development) set and a 20% testing (or hold-out, validation) set. Mod-

els were developed using the training set, and evaluated using the

RESEARCH INCONTEXT

1. Systematic review. This article does not include a sys-

tematic literature review of predictive models for post-

operative cognitive decline. However, we do make refer-

ence to early and important work in this area.

2. Interpretation. Using readily available information from

the medical chart, a predictive model can be generated

that offers some improvement over random chance in

predicting those patients that are at higher than aver-

age risk of cognitive decline. This might not be useful for

patient care, but can improve the efficiency of large trials

where recruitment of a large number of patients is neces-

sary to test interventions.

3. Future directions. The predictivemodelmay be improved

by accessing information that is available, but not easily

obtained, from the medical chart and electronic health

record.

testing set. All indices of model fit and predictive power reported in

the manuscript reflect results in the 20% testing set. Our principal

approach for developing a predictive model was regularized regres-

sion, which seeks to prevent over-inclusion of extraneous features by

eliminating associations that are small in magnitude or likely due to

chance.9 For this we used elastic net regularization, which combines

the LASSO (least absolute shrinkage and selection operator) and ridge

regression.10 The LASSO also automatically performs variable selec-

tion, resulting in parsimoniousmodels. As a sensitivity analysis, we also

evaluated other well-known predictive model approaches including

stepwise linear regression, multivariate adaptive splines, random for-

est, gradient boosted models, neural network, and k-nearest neighbor

models.11 All predictive model derivation procedures used 10 repeats

of 4-fold cross-validation. We examined the quality of our predictive

model in terms of the square root mean deviation between predicted

and observed values. In keeping with our goal of identifying persons

for inclusion in a randomized controlled trial, we also identified per-

sons with a slope less (more negative) than a clinically determined

threshold, −0.5 GCP units per year, as experiencing “rapid” cognitive

decline, and compared classification of persons lower than this thresh-

old on observed slopes. Model calibration was examined by inspecting

observed and predictive cognitive slopes.

3 RESULTS

Patient characteristics, including the selected feature set, are

described in Table 1. The training and testing sets were selected

at random, so any differences in the training and test data sets were

due to chance. None of the differences across training and testing

sets exceed an effect size (Cohen’s h for proportions, d for continuous
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TABLE 1 Pre-operative patient characteristics

Training Testing Overall

Patient characteristic (n= 421) (n= 139) (n= 560)

Age (years), mean (SD) 76.8 (5.2) 76.2 (5.0) 76.6 (5.2)

Female sex, n/N (%) 257/421 (61%) 69/139 (50%) 326/560 (58%)

Nonwhite race, n/N (%) 31/421 (7%) 11/139 (8%) 42/560 (8%)

Education (years), mean (SD) 14.8 (2.9) 15.4 (3.1) 15.0 (3.0)

Past smoker, n/N (%) 241/421 (57%) 71/139 (51%) 312/560 (56%)

Current smoker, n/N (%) 19/421 (5%) 7/139 (5%) 26/560 (5%)

Alcohol≥5 times/week, n/N (%) 77/418 (18%) 29/136 (21%) 106/554 (19%)

Hearing impairment, n/N (%) 137/420 (33%) 45/139 (32%) 182/559 (33%)

Length of stay (days), mean (SD) 5.3 (3.2) 5.5 (3.7) 5.3 (3.4)

Charlson Comorbidity Index score≥2, n/N (%) 123/421 (29%) 41/139 (29%) 164/560 (29%)

ASA class≥3, n/N (%) 269/421 (64%) 84/139 (60%) 353/560 (63%)

Surgery type, n/N (%)

Orthopedic 343/421 (81%) 111/139 (80%) 454/560 (81%)

Vascular 27/421 (6%) 8/139 (5%) 35/560 (6%)

Gastrointestinal 51/421 (12%) 20/139 (14%) 71/560 (13%)

White blood count (× 103), mean (SD) 7.3 (2.2) 7.0 (1.7) 7.2 (2.1)

Hematocrit (%), mean (SD) 39.3 (3.7) 40.1 (3.7) 39.5 (3.7)

Creatinine (mg/dL), mean (SD) 1.00 (0.30) 0.97 (0.28) 0.99 (0.29)

Sodium (mEq/L), mean (SD) 139.5 (2.7) 139.4 (2.5) 139.5 (2.6)

Oxygen saturation (on room air) (%), mean (SD) 98.0 (1.4) 98.0 (1.5) 98.0 (1.5)

BUN/creatinine ratio, mean (SD) 23.0 (6.0) 22.0 (6.0) 23.0 (6.0)

Abbreviations: ASA, American Society of Anesthesiologists Physical Status Classification; BUN, blood urea nitrogen.

variables12) of 0.15, well below the conventional threshold for small

effects. Themean effect size was 0.07 across all features.

Figure 1 illustrates the agreement between predicted slope (y-axis)

and observed slope (x-axis) given the regularized regression predictive

model. TheRMSE (rootmeansquarederror) for thismodelwas0.146 in

units of change inGCPper year (Table 2). Relative to an observedmean

slope of −0.6 per year, and observed standard deviation of 0.9, this

RMSE reveals poor prediction. The calibration plot in Figure 1 suggests

that the predicted model was unable to generate predictions lower

than −0.6 GCP points per year, whereas the observed slopes range

from a low of about −0.9. The implication is that when the observed

slope is very low, the predictors we have included are unable to gen-

erate predictions that come close to the observed values. Sensitivity

analysis considering other methods of generating predictive models

failed to produce models with a lower RMSE than regularized regres-

sion (Table 2) and produced similar calibration plots (Appendix Figure

S1). However, the multivariate adaptive splines model was compara-

ble to the regularized regression model in terms of RMSE (0.148 vs

0.146), but had a lower r-squared (.26 vs .31). Both of thesemodels had

lower RMSE than linear regression (0.165) and substantially greater r-

squared relative to linear regression (.15).

We considered that the predictive model generated from the tar-

get features could identify patients with a slope that indicated a pace

F IGURE 1 Calibration plot for regularized regressionmodel
predicting cognitive decline over months 2 to 36 following elective
surgery
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TABLE 2 Comparison ofmachine learning algorithms for prediction of cognitive decline as a linear outcome and as a binary outcome indicating
decline faster than−0.5 GCP units per year

Predicting slope

Predicting slope less than or equal to−

0.5 GCP points/year

Algorithm RMSE R2 AUC PPV NPV

Regularization regression 0.146 .31 0.75 0.48 0.86

Multivariate adaptive regression splines 0.148 .26 0.76 0.63 0.88

Random forest 0.153 .19 0.74 0.41 0.84

K-nearest neighbor 0.166 .09 0.65 0.47 0.83

Gradient boostedmodel 0.170 .06 0.72 0.44 0.85

Neural network 0.199 .10 0.72 0.48 0.86

Linear regression 0.165 .15 – – –

Logistic regression – – 0.68 0.41 0.84

Notes: All statistics in Table 2 reflectmodels estimated in training data and validated in a hold-out sample not included in the derivation. Abbreviations: RMSE

(rootmean squared error) are in units of GCP slope per year. R2 is coefficient of determination; AUC= area under the (ROC) curve; PPV= positive predictive

value (true positive over true positive+ false positive); NPV= negative predictive value (true negative over true negative plus false negative); SVM, support

vector machine.

of cognitive decline that was atypical, and consistent with mild cogni-

tive impairment (−0.5 GCP units per year; Inouye et al., 2016). These

results are reported in Table 2. This cut-point identifies the top 45% of

the observed sample. The predictive model derived from regularized

regression returns an area under the receiver-operating characteris-

tic curve (AUC) of 0.75 for this outcome, only slightly lower than for

multivariate adaptive spline (0.76) and higher than for random forest

(0.74). Logistic regression was noticeably less accurate (AUC = 0.68).

The model with the highest positive predictive value (proportion of

those flagged by the algorithm who do have an accelerated slope) was

63% for the multivariate adaptive regression splines model, followed

by the regularized regression and neural networkmodels (both 48%).

4 DISCUSSION

Using a large number of sociodemographic, functional, and clinical

characteristics, we generated a predictive model for cognitive decline

from 2 months to about 3 years following elective surgery that

achieved our goal of improving prediction above the baseline rate.

This improvement in prediction could be used to provide some gains

in the efficiency over simple random sampling in future clinical tri-

als targeted at the prevention of long-term cognitive decline follow-

ing surgery. For a randomly selected pair of persons—onewith and one

without observed clinically significant cognitive decline—the probabil-

ity that the personwith observed clinically significant cognitive decline

has a higher predicted probability of being observed with clinically sig-

nificant cognitive decline is 75%. The positive predictive valuewas only

48% for regularized regression but was 63% for multivariate adaptive

splines. Compared to the base rate of 45% for the prevalence of per-

sons with clinically adjudged significant cognitive decline, a prediction

rule for enrollment in a clinical trial using our multivariate adaptive

splines model would provide some benefit.

Although we achieved the overall goal of our study, it is important

to acknowledge that the overall predictivemodel was limited in its pre-

dictive accuracy andmodel fit. A potential weakness of our study is the

limited number of participants for developing and validating predictive

models (n = 560).13 However, our study offers a number of strengths

that, prior to engaging in the described analysis, we hoped would off-

set this limitation. Strengths include a well-characterized cohort with

few missing data, evaluation of cognitive functioning using a rich bat-

tery of neuropsychological tests, and relatively long follow-up of the

cohort. Our results may have been hampered by the restriction to

easily-identifiable data elements and the omission of key variables of

importance to account for cognitive decline after surgery. For exam-

ple, we did not include baseline cognitive functioning, genetic informa-

tion (eg, apolipoprotein E gene variant (APOE) ε4) or other biomarkers,

andwedidnot includemedications.Weelectednot to include variables

that would be difficult or time-consuming to collect prior to surgery in

order to increase the clinical applicability of the results and increase

the utility of these models for recruitment from clinical settings into

large, multi-site clinical trials. Moreover, the course of long-term

cognitive decline following surgery may not be linear, and further

exploration of potential non-linear changes over time may improve

model fit.

Future studies will need to include other factors, which may be key

to predicting long-term cognitive decline after surgery, such as intra-

operative andperi-operative factors (eg, anesthesia type, surgical dura-

tion, blood loss, hypotension, medications), post-operative factors (eg,

stroke, myocardial infarction, infection), and other biological factors

(inflammatory markers, biomarkers for neuronal injury, neuroimaging

or electrophysiologic markers). These may represent key factors in the

pathophysiologic pathway to delirium, and ultimately, may be impor-

tant to improve overall prediction in this sample. Investigation of these

factors is a critically important next step to advance our understanding

of cognitive decline following surgery.
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