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Abstract
The development of technologies to promote vascularization of engineered tissue would

drive major developments in tissue engineering and regenerative medicine. Recently, we

succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal

stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis

due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endo-

thelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone

tissues in vitro. The purpose of this study was to assess the impact of endothelial cells com-

bined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term cul-

ture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell

constructs, cell viability and growth factor production were increased after 7 days. Further-

more, HUVECs were observed to proliferate and self-organize into reticulate porous struc-

tures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed

abundant mineralized matrices compared with those composed of MSCs alone. Transmis-

sion electron microscopy and qualitative analysis revealed that the mineralized matrices

comprised porous cancellous bone-like tissues. These results demonstrate that highly bio-

mimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with

HUVECs.

Introduction
Approaches that attempt to fabricate living tissues ex vivo are increasing with the development
of tissue engineering technologies and biomaterials [1, 2]. In vitro tissue engineering techniques
are considered to be applicable not only to regenerative medicine but also to drug-discovery
technology and histogenetics research [3–6]. Recently, methods for the generation of several
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kinds of tissues have been developed [1, 7, 8]. Three-dimensional (3D) bone-like constructs
were formed by seeding human-derived mesenchymal stem cells (hMSC) into collagen-hy-
droxyapatite scaffolds [9] and bioactive glass ceramics [10]. Also, liver-like constructs were fab-
ricated by culturing hepatocytes with cellulose and hyaluronan-gelatin hydrogels [11].
Furthermore, other groups have reported cell-sheet engineering and constructed myocardium-
like tissues by accumulating membranous cell aggregates [12, 13].

3D biomaterial scaffolds are frequently used in tissue engineering to support cell prolifera-
tion and determine a specific shape. However, there are many concerns about the use of scaf-
folds, including: 1) it is difficult to control the absorption rate to precisely match the rate of
new tissue formation [14]; and 2) the remaining material or degradation byproducts occasion-
ally hamper tissue regeneration [15]. Therefore, scaffold-free approaches could further prog-
ress tissue-engineered medical products.

We previously reported that scaffold-free 3D cell constructs could be fabricated using a
thermo-responsive hydrogel that alters its volume depending on the surrounding temperature
[16]. Furthermore, we have also shown that bone-like tissue and cartilage tissue were formed
in the process of endochondral ossification by osteogenic induction of mouse-derived MSCs
[17]. The cell constructs consisted solely of cells without a scaffold, hence they hold great
promise as a novel bone graft material. However, the majority of cells within the cell construct
were necrotized by insufficient oxygen and nutrient supply. Thereby, small and immature min-
eralized matrices were formed within these cell constructs.

We hypothesized that the survival of the inner cells could be improved by incorporating
human vascular endothelial cells (HUVECs) into the cell constructs, resulting in efficient bio-
mimetic bone fabrication in vitro. If developed, this technology could help towards the realiza-
tion of in vitro tissue engineering [18].

The purpose of this study was to assess the influence of HUVECs incorporated into hMSC-
derived cell constructs (MSC/HUVEC constructs) during short- and long-term culture, and
fabricate biomimetic bone tissue in vitro by inducing their osteogenic differentiation.

Materials and Methods

Cell culture
Human mesenchymal stem cells (hMSCs; Riken, Tsukuba, Japan) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) containing 20% fetal bovine serum (FBS). Human umbili-
cal vein endothelial cells (HUVECs; Riken) were cultured in Endothelial Cell Basal Medium-2
supplemented with SingleQuots (EBM-2; Lonza, Walkersville, MD). hMSC and HUVECs were
maintained in a humidified incubator at 37°C with 5% CO2.

To assess cell proliferation in osteogenic differentiation medium (dif-MEM), each cell type
was cultured in DMEM containing 20% FBS, beta-glycerophosphate disodium salt hydrate
(1 × 10-2 mol/l, Sigma-Aldrich, St. Louis, MO), ascorbic acid (50 μg/ml, Sigma-Aldrich), dexa-
methasone (1 × 10-6 mol/l, Sigma-Aldrich), and 10 mM of calcium chloride solution for con-
trolling the calcium concentration in the medium. Each cell type was seeded into 24-well cell
culture plates (1.0 × 104 cells), and counted by using a hemocytometer on days 1, 3, 7, and 12.

Preparation of hMSC/HUVEC 3D constructs
The cell constructs were fabricated using a thermo-responsive poly(N-isopropylacrylamide)
(poly-NIPAAm) hydrogel mold [16]. Briefly, a 3D UV curable polymer for poly-NIPAAm gel
molding was designed using graphic modeling software (Freeform, Geomagic, Rock Hill, SC)
and manufactured with a 3D printing system (Eden, Objet, Israel). A NIPAAm solution with
polyethylene glycol dimethacrylate as the cross-linking reagent was poured into the chamber
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and refrigerated for 8 h. The polymerized hydrogel was created with holes (φ = 1.5 mm) that
enabled cell spheroid formation.

Suspensions of hMSCs containing HUVECs at a rate of 0, 1, 2, and 5% of the total cell num-
ber (1.0 × 105 cells) were poured into the holes of the gel to fabricate cell constructs composed
of hMSCs and HUVECs (99:1–95:5), and hMSCs alone (100:0). After 24 h, each cell construct
was harvested by reducing the temperature from 37°C to room temperature for 15 min. The
cell constructs were cultured in dif-MEM with shaking on a seesaw shaker at 0.13 Hz to prevent
the constructs from adhering to the culture substrate.

The diameter of the cell construct was measured throughout the culture period using images
taken by a CCD camera (DS-Fi2, Nikon, Tokyo, Japan) equipped with a stereoscopic micro-
scope (SMZ745T, Nikon) (n = 8).

Histological analysis
Cell constructs (100:0–95:5) were cultured for 7 days, fixed with 4% paraformaldehyde and em-
bedded in paraffin, which was then cut into 5-μm thick sections. For histological evaluation,
sections of the cell construct were stained with hematoxylin and an aqueous eosin Y solution.
Cells were counted by means of a grid (300 × 200 μm) under a light microscope in 4 indepen-
dent specimens. For immunofluorescent staining, the sections were deparaffinized, then incu-
bated in phosphate buffered saline (PBS) containing 0.1% Triton-X and 1% bovine serum
albumin for 20 min. After being washed twice, the sections were incubated with antibodies
against CD31 (anti-CD31; 1/50, DAKO, Carpinteria, CA), vascular endothelial growth factor
(anti-VEGF; 1/200, Merck Millipore, Billerica, MA), or hepatocyte growth factor (anti-HGF; 1/
100, Santa Cruz Biotechnology, Santa Cruz, CA) for 40 min, then incubated with a secondary
antibody conjugated with Alexa Fluor 488 (Invitrogen, Carlsbad, CA) for 40 min, followed by
nuclear staining with Hoechst33342 (Invitrogen). The stained sections were observed using a
fluorescence microscope with a CCD camera (TE2000; Coolsnap cf, Nikon).

Electron microscopy observation
Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses
were carried out on the hMSC only (100:0) and hMSC/HUVEC constructs (95:5) at 7 and 50
days of culture according to a previous report [19]. Briefly, cell constructs were fixed with 2.5%
glutaraldehyde for 24 h. The 3D cell constructs were then post-fixed in 1% osmium tetraoxide
for 2 h, and washed and dehydrated in graded concentrations of ethanol (40–100%). These cell
constructs were infiltrated and embedded in Epoxy resin (EPON 812, TAAB, Berks, UK). For
TEM observation, ultrathin sections (100 nm) were then cut using a diamond knife on a micro-
tome (Sorvall MT-5000, Du Pont, CA). The sections were collected on copper grids and stained
with saturated aqueous uranyl acetate, counter stained with 4% lead citrate and observed under
TEM (H-7100, Hitachi, Tokyo, Japan). For SEM observation, harvested cell constructs were
coated with gold and observed by SEM (JSM-6390, JEOL, Tokyo, Japan).

In silico analyses of HUVEC reticulation
It was conceived that HUVECs in the 3D cell construct could survive and form reticulated
structures by the influence of growth factors secreted by the hMSCs. To confirm this hypothe-
sis, in silico analysis was performed to investigate the reticulation mechanisms of HUVECs
using CompuCell3D simulation software [20]. The HUVEC model, which doubled in number
and migrated every 100 Monte Carlo Steps (MCSs), was located at the mass of the hMSC mod-
els. Both cell models were represented as polygonal lattices. The MSCs model was configured
to secrete VEGF at 50 pg/h [21], which would diffuse at a speed of 0.042 μm2/s [22]. The
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simulations were carried out under the condition that HUVECs proliferated and migrated with
or without the influences of VEGF up to 600 MCSs.

Alkaline phosphatase (ALP) activity measurement
ALP activity of cells forming the 3D construct was measured using the ALP quantitative analy-
sis kit (Wako, Osaka, Japan) according to the manufacture’s instruction. Briefly, cell constructs
(100:0–95:5) cultured for 7 or 14 days were washed with PBS, and dispersed by ultrasonic agita-
tion in cell lysis buffer (RIPA buffer; Takara Bio, Otsu, Japan). 100 μl of p-nitrophenyl phos-
phate reaction mixture and a 20 μl aliquot of each supernatant were applied to each well
(96-well plate). After the plate was incubated for 15 min at 37°C, 80 μl of stop solution was
added to each well. The optical density was quantified at 450 nm with a microplate reader
(Bio-Rad, Hercules, CA). The experiment was performed in triplicate for each group and re-
peated three times.

Characterization of precipitated minerals in hMSC/HUVEC constructs
Sections (5-μm thick) of the hMSC/HUVEC constructs cultured for 50 days were prepared and
von Kossa staining or Alcian blue staining were conducted. The stained areas of mineralized
aggregates were measured using images from the CCD camera (DS-Fi2) equipped with a light
microscope (ECLIPSE Ci; Nikon). Four sections from four different cell constructs were used
in the quantitative analysis.

The hardness of the mineralized aggregate was measured for investigating osteogenic-matu-
ration of the hMSC/HUVEC constructs. Briefly, hMSC/HUVEC constructs cultured for 50
days were embedded in paraffin and then cut to the core using a microtome. The consistencies
of the fabricated tissues were evaluated for micro-Vickers hardness using a micro hardness
testing machine (MicroWiZhard; Mitsutoyo, Kawasaki, Japan) (n = 5).

The amount of mineral deposition produced by hMSCs in the cell constructs was investigated
using the methylxylenol blue (MXB) method (Calcium E-Test Wako; Wako). hMSC/HUVEC
cell constructs (100:0–95:5) cultured for 50 days were washed with ultrapure water and dried
using a dry-heat sterilizer (MOV-112S; Sanyo, Tokyo, Japan). Dried cell constructs were dis-
solved in 1 MHCl andmixed withMXB andmonoethanolamine buffer. The calcium concentra-
tions of the solutions were determined by measuring the absorbance at 595 nm (n = 4).

Fourier-transform infrared (FT-IR) spectroscopy
FT-IR spectroscopy was carried out to investigate the composition changes of precipitated ma-
trices by incorporating HUVECs into the hMSC constructs. Cell constructs composed of
hMSCs only (100:0) and hMSCs/HUVECs (95:5) cultured for 50 days were washed with ultra-
pure water and dried using a dry-heat sterilizer (MOV-112S). The samples were then dispersed
in a micronized potassium bromide powder using a pestle. The mixed sample powder was
loaded on a sample cup as a flat loose powder bed with a flat surface formed by a microspatula.
FT-IR spectra were obtained by powder diffuse reflectance using an FT-IR spectrophotometer
(FTIR-8300; Shimadzu, Kyoto, Japan). A total of 50 scans were collected with a range of 1900
to 700 cm-1 at a resolution of 1 cm-1.

Statistical analysis
One-way analysis of variance (ANOVA) with a Tukey’s or Dunnett’s post hoc test was used for
comparisons of more than two groups. The Student’s t-test was used for comparisons of two
groups. A significant difference was defined for values of p< 0.05 or< 0.01.
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Results

Fabrication of hMSC/HUVEC constructs
hMSC/HUVEC constructs were obtained by seeding hMSC and HUVEC suspensions into
thermo-responsive poly-NIPAAm hydrogel (Fig 1). These cell constructs showed white color
and uniform sizes (0.9–1.0 mm) at all ratios of HUVECs. However, the HUVEC only suspen-
sion did not form the globular shape (data not shown).

hMSC/HUVEC constructs were successfully cultured using the seesaw bioreactor. At day 7,
HE stained images revealed that the number of stained cell increased as the ratio of HUVECs
increased (Fig 2A and 2B). The size of the 100:0 cell constructs decreased during long-term cul-
ture, whereas less size loss was found in the 95:5 cell constructs over the culture period (Fig 2C).

Internal structures of the 3D cell construct
HUVECs did not proliferate in dif-MEM and underwent necrosis within 1 week of 2D culture
(S1 Fig). However, HUVECs were able to survive within the cell constructs. The number of
CD31 positive cells increased incrementally with increasing HUVEC ratio in the cell constructs
(Fig 3A). In addition, the magnified image revealed that hMSCs and HUVECs showed a partic-
ular distribution in the cell constructs. The hMSC/HUVEC construct was formed by 3–4 layers
of hMSCs in the outermost region, 2–3 layers of HUVECs in the inside layer, and a reticulated
structure of HUVECs in the nucleus of the cell construct (Fig 3B).

SEM images showed that the 100:0 cell constructs were filled with cells (Fig 4A). However,
the 95:5 samples exhibited some cell-free pores at 7 days of culture (Fig 4B). Detailed TEM
analysis revealed that the MSCs were arranged densely in the 100:0 cell constructs (Fig 4C). By
contrast, uneven gaps (maximum diameter; 5–10 μm) were generated between the cells in the
95:5 constructs (Fig 4D).

Fig 1. Fabrication of hMSC/HUVEC 3D cell constructs. Cell constructs were formed using a thermo-
responsive poly-NIPAAm hydrogel (A) and were obtained as uniform sizes (B, C).

doi:10.1371/journal.pone.0129266.g001
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Growth factors and differentiation of MSCs in 3D cell constructs
Immunofluorescence staining of angiogenic-related growth factors showed that co-culture
with HUVECs expanded the areas positive for VEGF and HGF secreted by hMSCs (Fig 5).

ALP activity in the 100:0 cell constructs at day 7 measured as 0.18 ± 0.12 units, whilst the
95:5 cell constructs had a significantly higher value of 0.33 ± 0.026 units. In addition, at day14,
ALP activity in the 95:5 cell constructs measured as 0.38 ± 0.031 units, which was approximate-
ly two-fold the amount of the 100:0 cell constructs (0.19 ± 0.074 units) (Fig 6).

In silico analyses
The results of the in silico analyses showed that when HUVECs were subjected to the influence of
VEGF, HUVECs radiated outward after 200 MCSs (Fig 7B). When HUVECs were free of VEGF,
HUVECs proliferated and colonized near their initial position (Fig 7A). At 600MCSs, HUVECs

Fig 2. Growth of hMSC/HUVEC 3D cell constructs. (A) HE staining was carried out on each cell construct after 7 days in culture. (B) Cell numbers stained
by hematoxylin were counted in 300 × 200 μm fields. Stained cells increased as the ratio of HUVECs increased. (C) As the size of the cell construct
decreased, less size loss was found significantly in the 95:5 cell constructs throughout the culture period. (* p < 0.05; ** p < 0.01).

doi:10.1371/journal.pone.0129266.g002
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that responded to VEGF spread across a wide area with a reticulate structure. In contrast, without
the influence of VEGF, HUVECs created a greater cell mass but did not form a specific structure.

Structures of mineralized matrices in cell constructs
Alcian blue staining detected cartilage matrices within the cell constructs at day 50 of culture
(S2 Fig). In addition, increased mineral deposition was observed in the hMSC/HUVEC con-
structs compared with the hMSC only constructs at day 50 of culture (Fig 8).

TEM images of the 100:0 cell constructs showed that some MSCs deposited calcified sub-
stances in the cytoplasm and extracellular matrix at day 50 of culture (Fig 9A). In the 95:5 cell
constructs, the majority of cells were calcified completely and the mineralized matrices were
connected with each other. In addition, these matrices were observed to build a porous struc-
ture inside the cell constructs comprising a cancellous bone-like structure (Fig 9B).

Characterization of cell construct mineralized matrices
Calcium content of the mineralized tissue was 0.32 ± 0.042 μg for the 100:0 cell constructs,
which increased dramatically to 1.70 ± 0.93 μg for the 98:2 cell constructs and 4.83 ± 1.11 μg

Fig 3. CD31 immunofluorescence stained images of hMSC/HUVEC 3D constructs. (A) Stained area of
HUVECs (CD31-positive cells; green), which were more diffuse with the increasing ratio of HUVECs. The
hMSCs only stained positive for Hoechst33342 (nucleus; red) (B) Representative magnified image of a
hMSC/HUVEC (99:1) construct showing that HUVECs formed a reticulated structure within the 3D cell
construct. White dotted lines indicate outline of cell construct.

doi:10.1371/journal.pone.0129266.g003
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for the 95:5 cell constructs (Fig 10A). There were no significant differences in calcium contents
between the 98:2 and 95:5 hMSC/HUVEC constructs. Fig 10B shows the results of the micro-
Vickers hardness test of the hMSC/HUVEC constructs (100:0–95:5) cultured for 50 days. The
cell constructs stiffened following incorporation of HUVECs, and their consistencies changed
from 2.64 ± 0.41 HV for the 100:0 to 7.02 ± 1.81 HV for the 95:5 cell constructs.

The IR absorption spectra of the cell constructs with and without HUVECs (95:5 and 100:0)
are shown in Fig 11. The FT-IR spectroscopy analyses revealed that the hMSC cell constructs
with HUVECs contained high bone-specific absorbance band vibrations of phosphate (1200–

Fig 4. SEM and TEM images of 3D cell constructs. Cavities (arrows) were formed within the 95:5 cell
constructs (B) but not in the 100:0 constructs (A). TEM images revealed that tight structures formed in the
100:0 cell constructs (C). By contrast, void spaces (arrowhead) between the cells were observed in 95:5 cell
constructs (D).

doi:10.1371/journal.pone.0129266.g004

Fig 5. Immunofluorescence stained images of hMSC/HUVEC 3D constructs for angiogenic factors. (A–D) VEGF and (E–H) HGF were diffused within
each cell construct. White dotted lines indicate outline of cell construct.

doi:10.1371/journal.pone.0129266.g005
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900 cm-1), carbonate (890–860 cm-1) and matrices rich in amino acids (amide I: 1700–1630 cm-1;
amide II: 1620–1520 cm-1) [23]. hMSC constructs without HUVECs exhibited an undetectable
absorbance band for carbonate, and the other bands were unclear, even after 50 days culture.

Discussion
Despite significant progression in the science of in vitro tissue engineering, practical technolo-
gies are limited for cartilage regeneration [24, 25] and two dimensional tissues, for example the

Fig 6. ALP activity of hMSC/HUVEC 3D constructs.HUVEC incorporated hMSC constructs (99:1–95:5)
showed higher ALP activity compared with the hMSC only construct (100:0) at 7 and 14 days of culture (*
p < 0.05; ** p < 0.01).

doi:10.1371/journal.pone.0129266.g006

Fig 7. In silico analyses of the reticulate process of HUVECs. The HUVECmodel (red polygons) was set
in those of the hMSCs models (blue polygons) at 0 MCS. In absence of VEGF, HUVECs proliferated and
colonized near their initial position (A). By contrast, in the presence of VEGF, HUVECs responded and
spread across a wide area with the reticulate structure (B).

doi:10.1371/journal.pone.0129266.g007
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epidermis [26] and retina [27]. These matters are attributed to the lack of technologies that en-
able us to induce the structure of blood capillaries into the exogenously-produced tissues.
Therefore, interior portions of fabricated tissues are necrotized over a short period due to the
absence of a capillary network. Development of a technology that induces the capillary network
into the fabricated tissues in vitro could provide a practical option that could be applicable for
the fabrication of various tissues in vitro [18, 28, 29]. Some groups have reported the successful
formation of vascular networks within tissue-like constructs or 3D scaffolds [30–34]. Zeitlin
et al. [31] constructed an angiogenesis model by seeding dermal microvascular endothelial
cells into a peptide hydrogel. Nishiguchi et al. [30] applied a sandwich culture based on the
cell-accumulation technique, then fabricated highly dense tubular 3D networks.

We previously demonstrated that bone marrow-derived MSCs showed region-specific self-
organization within the cell construct by prolonged culture with osteogenic differentiation me-
dium [17]. In this study, we attempted to fabricate the capillary network in MSC 3D constructs

Fig 8. Mineral deposition in the hMSC/HUVEC 3D constructs. (A) Mineralized matrices within the cell constructs were detected by von Kossa staining as
black aggregates, and (B) semi-quantitative assessment was performed (n = 4).

doi:10.1371/journal.pone.0129266.g008

Fig 9. Self-organization of mineralized matrices in the 3D cell constructs after 50 days of culture. (A)
Mineral deposition (M) was generated in the cytoplasm in the 100:0 cell constructs. (B) Mineral deposition
resulted in a cancellous bone-like porous structure in the 95:5 cell constructs.

doi:10.1371/journal.pone.0129266.g009
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by incorporating vein endothelial cells and to evaluate the occurrence of MSC self-organization
within the construct.

Spherical cell constructs were fabricated by incorporating HUVECs at a ratio of 1%-5%
with hMSCs; however HUVECs alone were unable to form cell aggregates. Cell–cell adhesion
force is predominantly generated by neural (N)-cadherin in hMSCs and by vein endothelial
(VE)-cadherin in HUVECs [35, 36]. Because our cell constructs were composed solely of cells
(hMSCs and/or HUVECs), these results were considered to be caused by differences in cell–
cell adhesion forces between the MSCs and HUVECs.

HUVECs, which were cultured using media containing angiogenic growth factors, necro-
tized following culture with osteogenic differentiation medium. In contrast, CD31 staining re-
vealed that HUVECs survived within the hMSC constructs, even in the presence of osteogenic

Fig 10. Characterization of mineralized matrices in hMSC/HUVEC 3D constructs.Mineralized matrices
were evaluated by calcium content (A) and Vickers hardness (B). Both values increased following
incorporation of HUVECs into the hMSC constructs.

doi:10.1371/journal.pone.0129266.g010
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medium. In addition, our previous study reported that the centrally-located cells in the 3D con-
struct were necrotized in a short culture period owing to the absence of oxygen and nutrition
[16], however, the number of viable cells increased as the ratio of incorporated HUVECs in-
creased. These results demonstrated that HUVECs were able to survive under some influence
of the hMSCs. Additionally, less size loss was found in the 95:5 constructs compared with the
100:0 constructs. The relatively larger number of surviving cells in the 95:5 constructs likely se-
creted sufficient matrix molecules to maintain the 3D morphology of the cell constructs.

HUVECs and hMSCs showed specific distribution within the hMSC/HUVEC constructs,
which contained cell layers of hMSCs in the outer region and a reticulate structure of HUVECs.
In addition, cavities between the cells were observed by SEM and TEM. These results indicated
that HUVECs self-organized under the influence of hMSCs and formed a luminal-like structure.

Because these results demonstrated that HUVECs were able to survive and self-organize
under the influence of hMSCs, we next investigated the distribution of VEGF and HGF, two
well-known angiogenic factors [37–39]. Accordingly, productions of VEGF and HGF by the
hMSCs were promoted incrementally by the proportion of HUVECs. This result indicated that
HUVECs could form a reticulate structure and survive within the 3D cell construct via the
presence of these growth factors. We next carried out in silico analyses to confirm these find-
ings. The self-organization process of HUVECs within the hMSC constructs was simulated
using CompuCell3D software, which specializes in analyses of cell–cell interactions [20, 40].
These analyses demonstrated that single HUVECs could form the reticulate structure sup-
ported by growth factors secreted from the hMSCs.

It has recently been reported that the osteogenic differentiation of hMSCs is significantly en-
hanced following co-culture with HUVECs in 2D cultures [41–44], 3D cultures with scaffolds
[45, 46], and also in vivo [47, 48]. These studies indicate that the extent of cell–cell communica-
tion between the hMSCs and HUVECs with secreted cytokines, such as bone morphogenetic
proteins (BMPs), might be able to enhance the osteogenesis of hMSCs [41]. The results re-
ported here, which correlate well with those of previous reports, revealed that crosstalk between
HUVECs and hMSCs occurred within the 3D scaffold-free environment, and such paracrine
interactions are likely valuable when fabricating biomimetic bone tissue in vitro.

Fig 11. Comparisons of FT-IR spectra of (A) 100:0 and (B) 95:5 cell constructs. The IR spectra shows
bands for amide I (1700–1630 cm-1, open arrowhead), amide II (1620–1520 cm-1, filled arrowhead),
phosphate (1200–900 cm-1, open arrow), and carbonate (890–860 cm-1, filled arrow).

doi:10.1371/journal.pone.0129266.g011
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Next, we compared the properties of the deposited mineralized matrix in the 100:0 and 95:5
constructs with long-term culture because the osteogenic differentiation of hMSCs was pro-
moted by the HUVECs in a concentration-dependent manner. These results revealed that the
amount of mineralized matrix increased and the cell constructs hardened following incorpo-
ration of HUVECs. Furthermore, it was demonstrated that the mineralized matrices were in-
ternally connected and formed a matured cancellous bone-like structure.

Our previous study reported that MSCs in the cell constructs formed mineralized matrices
via the endochondral ossification process [17]. Because we observed that the hMSC/HUVEC
construct also formed cartilage matrix, we postulated that hMSCs underwent cell differentia-
tion, and then formed biomimetic bone tissues within the cell construct.

Subsequently, FT-IR analysis was carried out to confirm the formation of biomimetic bone
matrices following incorporation of HUVECs. The spectrum patterns obtained in the present
study revealed that the hMSC/HUVEC constructs formed bone matrices more analogous to
living bone tissue than the hMSC-only constructs.

In this study, we investigated the impact of incorporating endothelial cells into the MSC con-
struct during short- and long-term culture. Our results indicated that hMSCs and HUVECs
worked synergistically in that i) HUVECs, which formed the luminal structure, promoted the
survival and differentiation of the hMSCs, and ii) the hMSCs promoted the survival and reticu-
late structure formation of the HUVECs. In addition, it was demonstrated that biomimetic can-
cellous bone-like tissues were fabricated by osteogenic induction of hMSC/HUVEC constructs.

Conclusions
We have demonstrated in this study that 3D cell constructs can be fabricated and maintained
by incorporating HUVECs into hMSC constructs. In these hMSC/HUVEC constructs, the sur-
vival rate and osteogenic differentiation of hMSCs were promoted. Furthermore, HUVECs
formed reticulate and luminal structures under the influence of growth factors secreted from
the hMSCs. As a result of long-term osteogenic induction, cancellous bone-like tissues were
formed within the hMSCs/HUVECs constructs.

The technology highlighted in this report, which enabled incorporation of the vein endothe-
lial cells into the 3D cell constructs, would be valuable for development of the in vitro tissue en-
gineering of various organs. In particular, the 3D biomimetic bone material fabricated in this
study would be a promising approach as a novel biomaterial in bone regenerative medicine
and tissue engineering.

Supporting Information
S1 Fig. Proliferation of hMSCs and HUVECs in osteogenic differentiation medium. (A)
Light microscope images of hMSCs and HUVECs cultured in osteogenic differentiation medi-
um at days 1 and 12. (B) Cell number was counted up to day 12 of culture.
(TIF)

S2 Fig. Cartilage matrices deposited in hMSC 3D constructs were detected by alcian blue
staining. Cartilage matrices (blue) were formed under the surface layer, highlighted as red
staining, at day 50 of culture.
(TIF)
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