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Lyme disease (LD) is the most common tick-borne disease in North America. It is caused by Borrelia burgdorferi and transmitted
to humans by blacklegged ticks, Ixodes scapularis.'e life cycle of the LD vector, I. scapularis, usually takes two to three years to
complete and goes through three stages, all of which are dependent on environmental factors. Increases in daily average
temperatures, a manifestation of climate change, might have contributed to an increase in tick abundance via higher rates of tick
survival. Additionally, these environmental changes might have contributed to better host availability, which is necessary for tick
feeding and life cycle completion. In fact, it has been shown that both tick activity and survival depend on temperature and
humidity. In this study, we have examined the relationship between those climatic variables and the reported incidence of LD in 15
states that contribute to more than 95% of reported cases within the Unites States. Using fixed effects analysis for a panel of 468 U.
S. counties from those high-incidence states with annual data available for the period 2000–2016, we have found sizable impacts of
temperature on the incidence of LD. 'ose impacts can be described approximately by an inverted U-shaped relationship,
consistent with patterns of tick survival and host-seeking behavior. Assuming a 2°C increase in annual average temperature—in
line withmid-century (2036–2065) projections from the latest U.S. National Climate Assessment (NCA4)—we have predicted that
the number of LD cases in the United States will increase by over 20 percent in the coming decades. 'ese findings may help
improving preparedness and response by clinicians, public health professionals, and policy makers, as well as raising public
awareness of the importance of being cautious when engaging in outdoor activities.

1. Introduction

Lyme disease (LD) is the most common reportable vector-
borne zoonosis in the United States, and its incidence has
sharply increased over the last decade. 'e causative
pathogen, spirochete B. burgdorferi, is transmitted to
humans by a tick vector. 'e main vector of LD is I.
scapularis in the northeastern and midwestern Unites States,
and Ixodes pacificus in the Pacific Northwest [1].

'e first evidence of Lyme disease dates back to 1883,
when a German physician described acrodermatitis chronica
atrophycans, which was later recognized as the late der-
matological manifestation of LD [2, 3]. Later on, other
seemingly unassociated manifestations were reported such

as erythema chronicum migrans in 1913 by Lipschutz [4]. In
1930 Hellstrom associated neurological symptoms with
dermatologic manifestations of the disease [5]. Nevertheless,
it was not until 1976, when an outbreak of juvenile arthritis
and skin rash occurred in Connecticut’s city of Lyme, that
LD was described [6]. Several years after, in 1982, the
American entomologist Willy Burgdorfer described the
causative agent of LD, a spirochete, named after him B.
burgdorferi [7].

If not treated, LD progresses through three stages. 'e
first stage—early localized disease—manifests by erythema
migrans, which is an erythematous macule or papule that
occurs one to two weeks following the tick bite and sub-
sequently enlarges [1]. 'is rash can be uniformly
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erythematous or might have central clearing (“bull’s eye”)
with a median diameter around 15 cm [8]. Left untreated, B.
burgdorferi disseminates from the site of the bite, and the
disease progresses to the early disseminated stage. In this
stage, which occurs three to five weeks following the initial
bite, multiple (secondary) erythema migrans occur. 'ese
lesions tend to be similar to the primary erythema migrans
but are usually smaller [8]. Cardiac and neurologic mani-
festations are also seen in the early disseminated stage, with
atrioventricular heart block being the most common cardiac
manifestation. Peripheral nerve palsy (particularly facial
nerve) and meningitis are the most common neurological
manifestations of this stage of LD. In the United States, the
most common manifestation of the late disseminated stage
of LD is Lyme arthritis [1, 8]. Lyme arthritis is usually mono
or oligoarticular, affects large joints (knee, most commonly),
and occurs weeks to months after the bite. Unlike in Europe,
neurological manifestations of late LD are rare in the United
States [8].

'e major reservoirs for B. burgdorferi are birds and
small mammals such as mice and chipmunks [1, 9]. While
deer are not competent hosts for B. burgdorferi, they are
essential for the I. scapularis life cycle. 'e tick I. scapularis
has three stages of development: larva, nymph, and adult tick
[1]. In North America, the life cycle of I. scapularis takes
approximately two years to complete [9]. Egg laying usually
begins in May; hence, larvae are the most abundant during
the summer.'ese larvae feed on small mammals such as the
white footed mouse during summer, at which point
transmission of B. burgdorferi occurs. As the winter ap-
proaches, the tick larvae enter a dormant stage in which they
stay throughout the winter. In the beginning of the spring of
the second year, the larvae that survived the winter mold into
the next stage of tick development—nymph. During the
spring/summer of the second year those nymphs seek
suitable hosts for feeding, including humans. Following
a bloody meal, the nymphs mold into adults. If an adult tick
survives the winter, it will seek another host (usually a large
mammal such as deer) on which it will feed and be able to lay
eggs. At that point the two year life cycle is completed [8, 9].

Nymphs are usually responsible for the majority of the
infection transmission to humans. 'ey are abundant
during the spring and summer months when humans’
outdoor activities are at the peak. 'eir small size (only few
millimeters in diameter unlike common dog ticks) and
the secretion of bradykininases (enzymes that break
bradykinins—enzymes of inflammation) contribute to the
fact that the majority of patients do not remember the tick
bite [8, 10]. 'e risk of infection transmission from the
infected tick depends on the duration of feeding. 'e ticks
are most likely to transmit infection after a prolonged period
of feeding, such as 36 hours or more. Yet, infection can be
transmitted even after as little as 24 hours of feeding [10].

'ere is a growing body of evidence showing that climate
change may affect the incidence and prevalence of certain
vector-borne diseases such as malaria, dengue, West Nile
fever, and LD. Unlike weather, which defines a condition of
the atmosphere over a short period of time, climate rep-
resents atmospheric “behavior” over a relatively long period

of time [11]. Climate change, therefore, refers to changes in
long-term averages of daily weather including temperature,
humidity, air pressure, and precipitation. 'e incidence of
tick-born zoonoses such as LD is particularly likely to be
affected by climate change because ticks spend the majority
of their life cycle outside the host in an environment where
temperature and humidity directly affect their development,
activity, survival, and host-seeking behavior [12]. 'e
number of annually reported cases of LD in the United States
has sharply increased over the last three decades, from about
10,000 in 1991 to about 28,000 annually in recent years [13].
Not only did the incidence of the disease increase, but also its
geographical distribution. While climate change might
significantly contribute to the emergence of new infections,
it is interesting to contrast this change in the incidence of
tick-borne diseases in the United States with the changes
happening in Europe.'ere, during the 9 years prior to 2015,
the growth of the cases of louse-born relapsing fever (due to
B. recurrentis) has been associated to the increase in refugees
[14–16]. Furthermore, in the last few decades, newly rec-
ognized tick-borne rickettsioses have been shown to be
present. R. conorii sub sp. Israelensis has been detected in
human cases in Sicily and Sardinia in Italy and in different
regions of Portugal [17].

'is emergence of Lyme disease in the United States is at
least partially attributed to climate change [12]. However, the
magnitude of impact is still unclear. In this study, we in-
vestigate the effect of climatic variables on the incidence of
LD in 15 U.S. states with the highest incidence of the disease.
'ose states contribute to 95 percent of reported cases.

2. Materials and Methods

We merged two types of data to conduct the fixed effects
analysis in this study: annual county-level epidemiological
data on LD cases from the Centers for Disease Control and
Prevention (CDC) and meteorological data from the Na-
tional Oceanic and Atmospheric Administration (NOAA).
Both databases are publicly available.

2.1. Epidemiological Data. LD cases have been voluntarily
reported to the CDC since 1991 by state and territorial health
departments as part of the National Notifiable Disease
Surveillance System (NNDSS). 'e annual county-level
number of cases for the period 2000–2016 is publicly
available at http://.cdc.gov/lyme/stats/ and is the main input
for our analysis. A total of 482,297 cases were reported
during that period (see the evolution of the number of cases
in annual maps elaborated by the CDC, also available at http:
//.cdc.gov/lyme/stats/). Until 2007, a case of LD was defined
as either (1) a physician-diagnosed erythemamigrans rash of
more than 5 cm in diameter or (2) at least one objective late
manifestation (i.e., musculoskeletal, cardiovascular, or
neurologic) with laboratory evidence of infection with B.
burgdorferi (CDC 1997). 'e national surveillance case
definition was revised in 2008 to include probable cases.
State or local health departments are responsible for en-
suring that cases reported to the CDC meet the case
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definition, and state health officials have used various
methods to ascertain cases including provider-initiated
passive surveillance, laboratory-based surveillance, and
enhanced or active surveillance [18]. Over 95 percent of LD
cases in the United States occurred in 15 states during our
study period, primarily in the Northeast and Upper Midwest
(Connecticut, Delaware, Maine, Maryland, Massachusetts,
Minnesota, New Hampshire, New Jersey, New York,
Pennsylvania, Rhode Island, Vermont, Virginia, West Vir-
ginia, and Wisconsin). 'ese are the “high-incidence states,”
where the average incidence was at least 10 confirmed cases
per 100,000 persons in the previous three reporting years (see
http://.cdc.gov/lyme/stats/tables.html). We focus our analysis
on counties from those states and present results for the
incidence of LD—cases per 100,000 population—including
all cases reported during our period of analysis. Because the
case definition changed in 2008, we also provide estimates
based on the LD incidence reported before and after 2008.
Annual population data used to calculate the LD incidence is
publicly available from the U.S. Bureau of Economic Analysis
(http://.bea.gov/itable/index_regional.cfm).

2.2. Meteorological Data. For meteorological data, we used
daily measurements of maximum and minimum tempera-
ture as well as total precipitation from NOAA, publicly
available at http://.ncdc.noaa.gov/cdo-web/datasets. 'is
dataset provides detailed weather measurements at over
20,000 weather stations across the country. Daily average
temperature was calculated as the arithmetic average of daily
maximum and minimum temperatures, in degree Celsius
(°C). Annual average temperature for the period 2000–2016
was obtained by averaging all daily observations throughout
the year. For counties with no weather stations, we imputed
annual average temperature by computing a weighted av-
erage of that variable from the counties within 50 miles of
the original county centroid using inverse distance weights.
With measures of annual county-level average temperatures
in hand, indicator variables for bins of annual average
temperature were generated straightforwardly. Each in-
dicator variable takes the value one if the annual average
temperature for a county is in the prespecified range, and
zero otherwise. We created indicators for the following
ranges: below 5, 5–7, 7–9, 9–11, 11–13, 13–15, and above
15°C. 'e shares of observations in each bin are reported in
Table 1. Annual total precipitation for the period 2000–2016
was obtained by summing all daily precipitation for
a county, in centimeters (cm). Imputation for counties with
no weather stations was done as described for temperature.
Indicator variables for bins of annual total precipitation were
generated in a fashion similar to temperature for the fol-
lowing ranges: below 70, 70–120, 120–170, 170–220, 220–
270, and above 270 cm. Again, the shares of observations in
each bin are reported in Table 1. 'e average annual total
precipitation for the counties in our sample is approximately
174 cm. For reference, the average annual rainfall is 20 cm in
Phoenix (Arizona), 87 cm in Madison (Wisconsin), 120 cm
in Providence (Rhode Island), 157 cm in Miami (Florida),
and 300 cm in Mt. Rainier (Washington).

Once we merged the information of LD cases with
climatic variables, our sample contained a balanced panel of
468 U.S. counties over the period 2000–2016. Figure 1
displays the counties in our sample in the map of the
United States, with color code based on the incidence of LD.
Table 1 reports the summary statistics of our sample. Ob-
serve that most of the counties used in our sample come
from Minnesota, Wisconsin, New York, Pennsylvania,
Virginia, and West Virginia. Also, notice that the temper-
ature bins with the highest shares of observations cover the
range 7–13°C and the precipitation bins with the largest
shares cover the range 70–220 cm.

2.3. Empirical Strategy. Using standard longitudinal or fixed
effects methods [19–21], the typical panel regression model
to examine the impact of climatic variables C—in our case,

Table 1: Summary statistics from our sample.

Variable Obs. Mean Std.
dev. Min. Max.

Incidence of Lyme
disease 7,956 41.75 76.24 0 1581.15

Avg. temp.: below 5°C 7,956 0.07 0.25 0 1
Avg. temp.: 5–7°C 7,956 0.16 0.36 0 1
Avg. temp.: 7–9°C 7,956 0.26 0.44 0 1
Avg. temp.: 9–11°C 7,956 0.19 0.39 0 1
Avg. temp.: 11–13°C 7,956 0.18 0.38 0 1
Avg. temp.: 13–15°C 7,956 0.11 0.31 0 1
Avg. temp.: above 15°C 7,956 0.03 0.18 0 1
Total prcp.: below 70 cm 7,956 0.05 0.22 0 1
Total prcp.: 70–120 cm 7,956 0.20 0.40 0 1
Total prcp.: 120–170 cm 7,956 0.27 0.44 0 1
Total prcp.: 170–220 cm 7,956 0.22 0.42 0 1
Total prcp.: 220–270 cm 7,956 0.15 0.35 0 1
Total prcp.: above 270 cm 7,956 0.10 0.31 0 1
Connecticut 7,956 0.01 0.12 0 1
Delaware 7,956 0.01 0.08 0 1
Maine 7,956 0.03 0.18 0 1
Maryland 7,956 0.04 0.19 0 1
Massachusetts 7,956 0.03 0.17 0 1
Minnesota 7,956 0.17 0.37 0 1
New Hampshire 7,956 0.02 0.14 0 1
New Jersey 7,956 0.04 0.20 0 1
New York 7,956 0.12 0.32 0 1
Pennsylvania 7,956 0.12 0.33 0 1
Rhode Island 7,956 0.01 0.09 0 1
Vermont 7,956 0.03 0.17 0 1
Virginia 7,956 0.12 0.33 0 1
West Virginia 7,956 0.10 0.29 0 1
Wisconsin 7,956 0.15 0.35 0 1
Note: this table presents the summary statistics regarding the sample used in
our, not or analysis. Our sample contains 7,956 observations from 468
counties over 17 years (2000–2016). 'ose counties are from the 15 states
considered by the CDC as the states with the highest incidence of LD (over
95 percent of all cases in the United States). All variables with the exception
of the incidence of LD are indicator variables taking the value of one if the
statement on the far left is valid, and zero otherwise. Hence, the means for
those indicator variables represent shares of the total number of obser-
vations. For example, 26 percent of the county-year observations have
annual average temperature between 7 and 9°C, and 17 percent of the
county-year observations come from Minnesota.
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annual average temperature and annual total precip-
itation—on an outcome of interest y—in our case, the in-
cidence of LD (cases per 100,000 population)—takes the
form

yit � βCit + cZit + μi + θt + λsf(t) + εit, (1)

where i indexes different geographic areas (in our case,
counties), t indexes time (in our case, years), and s indexes
a larger geographical area (in our case, states) [22]. 'e
additional explanatory variables will be explained below, but
the error process ε is typically modeled using robust stan-
dard errors, allowing for arbitrary correlation over time and
space in the covariance matrix by clustering at the county
level.

Noting that C varies plausibly randomly over
time—i.e., “weather” draws from the county “climate”
distribution—this approach resembles an experimental
design and, therefore, β identifies the causal effect of weather
shocks on the incidence of LD [22]. 'e fixed effects for
county, μi, absorb fixed spatial characteristics, whether
observed or unobserved, disentangling the shock frommany
possible sources of omitted variable bias, such as geographic
features (e.g., elevation and ruggedness) and county baseline
economic characteristics (e.g., GDP, population, and
number of hospital beds and number of physicians per
100,000 population) that are likely to be correlated to cli-
matic variables. Time-fixed effects, θt, further neutralize any
common trends and thus help ensure that the relationships
of interest are identified from idiosyncratic local shocks.
State-specific time trends, λsf(t), are added to allow for
differential trends in subsamples of the data, controlling for
a number of observed and unobserved factors affecting the
outcome of interest that vary over time at the state level, such

as state health expenditures and state public awareness
campaigns regarding the incidence of particular diseases. In
our preferred specification of Equation (1), f(t) is a quadratic
function of time, that is, it includes state-specific quadratic
time trends, as will be explained in more details in Results
and Discussion.

It is imperative to explain the choice of temperature and
precipitation as our climatic variables. One can assume that
the incidence of LD might be related to tick activity. In fact,
laboratory studies indicate that temperature determines
whether or not, and to what extent, I. scapularis can move to
seek hosts, whereas humidity determines how high ticks
quest above ground level, where their resource for re-
hydration exists, and for how long they can remain actively
host-seeking before retreating to rehydrate [23–25]. We use
precipitation instead of the ideal measure of relative hu-
midity because the latter is only available for half of our
county-year observations. Nevertheless, in unreported
analysis available upon request, we find similar results when
using the subsample with information on relative humidity.
Besides the biological effects of climate on tick vector
abundance and activity, there may be behavioral impacts of
climate on human exposure to ticks. Previous studies have
found that individuals spend more time outdoors as tem-
perature rises, up to a point where being outside becomes
undesirable due to the excessive heat [26, 27]. Additionally,
individuals may engage in adaptive responses to avoid ex-
posure to ticks such as the use of deer-baiting devices to kill
ticks [28].

A fundamental issue in Equation (1) is regarding the
functional form of C. Following previous studies [29–32], we
use indicator variables for bins of annual average temper-
ature and for bins of annual total precipitation. 'ese bins

(54.68312, 655.8712)
(19.39744, 54.68312)
(4.908877, 19.39744)

(0, 4.908877)
No data

Figure 1: Map of the United States with highlighted counties from our Sample. Note: this map displays our sample of 468 counties in the 15
states considered by CDC as the states with the highest incidence of LD (over 95 percent of all cases in the United States). Darker blue colors
represent higher incidence of the disease—cases per 100,000 population.
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are listed in Table 1 and were described in the data section.
'us, the only functional form restriction is that the impact
of the annual average temperature on the incidence of LD is
constant within 2°C intervals. 'e choice of narrow tem-
perature bins represents an effort to allow the data, rather
than parametric assumptions, to determine the incidence-
temperature relationship, while also obtaining estimates that
are precise enough that they have empirical content [29–32].
'is degree of flexibility and freedom from parametric as-
sumptions is only feasible because we are using 16 years of
data from a large area of the United States. Similarly, we use
simple indicator variables for precipitation based on annual
rainfall in county i in year t. Each indicator corresponds to
a 50-cm bin, ranging from less than 70 cm to more than
270 cm.

Another important methodological decision to make
when implementing panel regression models concerns the
inclusion of other time-varying observables, Zit. Including
Zit may absorb residual variation, hence producing more
precise estimates. However, adding more controls will not
necessarily produce an estimate of β that is closer to the true
β. If the Z’s are themselves an outcome of C, which may well
be the case for controls such as GDP, institutional measures,
and population, including them will induce an “over-
controlling problem” (in the language of the model, if Z is in
fact Z(C), then Equation (1) would instead be written as y �

f(C), Z(C)) and estimating an equation that included both Z
and C would not capture the true net effect of C on y (again,
see Dell et al. [22]). For example, suppose that poorer
counties in the United States tend to be both hot and have
low-quality institutions. If hot climates were to cause low-
quality institutions, which in turn cause low income, then
controlling for institutions in Equation (1) can have the
effect of partially eliminating the explanatory power of
climate, even if climate is the underlying fundamental cause.
'erefore, if the incidence of LD is the outcome of interest,
for example, then controlling for changes in health per-
sonnel or infrastructure would be problematic if the climatic
variables influence those changes, directly or indirectly. Our
preferred specification of Equation (1) does not include
additional time-varying explanatory variables, but we also
report separate estimates for counties above and below the
U.S. median per capita income. 'is variable should reflect
patterns of development across the nation.

3. Results and Discussion

Tick-borne diseases are an important public health concern
and the incidence of these infections is increasing in the
Unites States and worldwide [33]. Complex interactions
between humans and climate change are contributing to the
emergence of new diseases and the spread of already known
ones to regions where they were unable to exist before.
Environmental factors such as temperature and humidity
have been shown to influence tick abundance, availability of
hosts, their survival, and disease transmission. LD is a classic
example of linkage between environmental factors and disease
occurrence and spread (the U.S. Environmental Protection
Agency (EPA) is actually using the number of LD cases as

a climate change indicator (http://.epa.gov/climate-indicators/
climate-change-indicators-lyme-disease)). For a region to be
suitable for LD occurrence and transmission, the climate
needs to allow the survival of both ticks andmammalian hosts
necessary for completion of tick life cycle [25].'e emergence
of LD in the northeast of the Unites States in 1970 was thought
to be due to the expansion of the tick population associated
with reforestation and expansion of the key host for tick life
cycle—deer [34]. However, a recent study from Canada
demonstrated the expansion of I. scapularis population de-
spite deforestation [35]. Previous studies, both empirical and
simulation-based, have demonstrated that a warming climate
has a positive effect on the expansion of the tick population
through an increase in tick survival and improved access to
hosts necessary for feeding [36, 37]. Our study aimed to
determine the influence of temperature and humidity on the
incidence of LD within 15 U.S. states that account for the
majority of reported cases.

Our estimated impacts of climatic variables on the in-
cidence of LD—cases per 100,000 population—are reported
on Table 2. Recall that the main sample contains only
counties from those 15 U.S. states with the highest incidence
of LD cases according to CDC. In column 1, we controlled
for observed and unobserved time-varying factors affecting
all sample counties equally in each year such as macro-
economic conditions and changes in health law and health
expenditure at the federal level, and for observed and un-
observed time-invariant factors affecting each county over
the sample period such as county geographical features and
historical (baseline) health infrastructure. In column 2, we
added state-specific linear time trend to control for observed
and unobserved changes in state variables affecting the
health outcomes such as expansion of Medicaid, campaigns
to raise awareness of healthy behaviors, etc. For our pre-
ferred specification in column 3, we allowed those state-
specific time trends to reverse direction over time by adding
quadratic terms. For example, we are controlling for ob-
served and unobserved increases in state health expenditures
in a number of years as well as decreases afterwards, or
decreases in funds for campaigns raising awareness of LD,
and increases in funding once more cases are confirmed.
Column 3 is our preferred specification not only because the
increase in the R-squared relative to previous columns in-
dicates an improvement in the goodness-of-fit of our
econometric model, but also because it takes into account
important controls. In fact, the similarity in the increase in
the R-squared and in the adjusted R-squared indicates that
the additional explanatory variables are indeed relevant to
explain the incidence of LD. Otherwise, the adjusted
R-squared would have penalized our column-3 econometric
specification. Both the R-squared and the adjusted
R-squared reveal that our model explains over 70 percent of
the variation in the incidence of LD in the United States over
the period 2000–2016.

We now describe the results from our preferred speci-
fication (Table 2, column 3). Relative to counties with annual
average temperature above 15°C, counties with annual av-
erage temperature below 5°C have 1.6 additional cases of LD
per 100,000 population, but this estimate is not statistically
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significant (not distinguishable from zero, or alternatively
not distinguishable from the reference group). 'at estimate
jumped to 10.7 cases per 100,000 population for counties
with annual average temperature between 5 and 7°C, and to
15.1 for counties with annual average temperature between 7
and 9°C. 'en, it stabilized for counties with annual average
temperature between 9 and 11°C—14.4 cases per 100,000
population—but dropped to 5.3 and 3.9 for counties with
annual average temperature between 11 and 13°C, and 13
and 15°C, respectively. We display these estimates more
clearly in Figure 2, where we can see the approximately
concave or inverted-U shape of the incidence of LD response
to temperature.

'ree features of these results are worth discussing. First,
the sharp increase in the number of LD cases per 100,000
population happens in the 5–7 and 7–9°C annual average
temperature bins. 'is might be associated with tick activity
(Schulze et al. provided suggestive evidence that pre-
cipitation and temperature played a limited role in pre-
dicting the abundance of I. scapularis nymphs at an LD-
endemic area over the period 1998–2005. 'us, we focus on
tick activity in understanding our findings, as in Burtis
et al.). Indeed, Duffy and Campbell [38] used flagging
samples of adults I. scapularis through the winter to infer
a minimum temperature threshold for activity of approxi-
mately 4°C. Clark [23] used laboratory experiments to de-
termine a minimum temperature threshold for activity by
adult I. scapularis of 9–11°C, but some individual nymphs
were capable of movement and coordinated movement at
much lower temperatures, 4.2 and 6.3°C, respectively.
(Notice that, by definition, annual average temperature
includes a range of observed temperatures throughout the

year. 'erefore, our temperature bins do not have to match
precisely the thresholds highlighted in those studies. It is
remarkable, however, that the correspondence is approxi-
mately accurate.) Second, the similarity of estimates for the
ranges of annual average temperature 11–13°C, 13–15°C, and
above 15°C. In fact, Vail and Smith [24] found no significant
difference in the mean distance moved or time spent in
questing posture for I. scapularis nymphs held at 10 versus
15 or 20°C.'ird, the concave or inverted-U shape of the LD

Table 2: 'e impacts of temperature and precipitation on the incidence of LD.

Main results
Dep. var.: LD incidence (1) (2) (3)
Avg. temp.: below 5°C 7.9101 (6.1820) 4.9673 (5.9583) 1.6156 (5.7073)
Avg. temp.: 5–7°C 17.2713∗∗∗ (5.6208) 13.3615∗∗ (5.4461) 10.7294∗∗ (5.0919)
Avg. temp.: 7–9°C 21.3359∗∗∗ (5.2593) 16.2189∗∗∗ (5.2152) 15.1306∗∗∗ (4.8862)
Avg. temp.: 9–11°C 19.9290∗∗∗ (4.3244) 15.4690∗∗∗ (4.5382) 14.4033∗∗∗ (4.2444)
Avg. temp.: 11–13°C 9.7629∗∗∗ (2.9059) 6.5636∗∗ (3.1989) 5.3232∗ (2.9025)
Avg. temp.: 13–15°C 6.6229∗∗∗ (2.0306) 4.7761∗∗ (2.1972) 3.8847∗∗ (1.9730)
Reference: above 15°C 0 0 0
Total prcp.: below 70 cm 13.0452∗∗ (5.4358) 13.5556∗∗∗ (4.5898) 4.6664 (4.5738)
Total prcp.: 70–120 cm 10.7113∗∗ (4.7829) 11.8325∗∗∗ (4.0619) 4.2597 (3.9230)
Total prcp.: 120–170 cm 8.1580∗∗ (4.1505) 10.4118∗∗∗ (3.6474) 5.3288 (3.4688)
Total prcp.: 170–220 cm 3.7551 (3.1761) 6.3591∗∗ (2.8603) 3.6003 (2.6573)
Total prcp.: 220–270 cm 1.8596 (2.8608) 2.3633 (2.8913) 1.2022 (2.8126)
Reference: above 270 cm 0 0 0
Year fixed effects Yes Yes Yes
County fixed effects Yes Yes Yes
Linear trend by state Yes Yes
Quadratic trend by state Yes
Observations 7,956 7,956 7,956
R2 0.6771 0.7068 0.7226
Adjusted R2 0.656 0.687 0.703
Note: this table presents the estimated impacts of climatic variables on the incidence of LD–cases per 100,000 population. Avg. temp. is annual average
temperature, and total prcp. is annual total precipitation. Robust standard errors clustered at the county level are reported in parentheses. ∗∗∗Significance at 1
percent; ∗∗significance at 5 percent; ∗significance at 10 percent.
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Figure 2: 'e impact of temperature on the incidence of LD. Note:
this figure presents the estimated impacts of temperature on the
incidence of LD—cases per 100,000 population—reported in the
last column of Table 2 and represented here by blue squares. 'e
vertical dashed lines around each blue square represent the 95
percent confidence interval.
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incidence response to temperature. Vail and Smith [24, 39]
and Ogden et al. [25] found laboratory and field evidence
that tick survival and activity peaked at certain temperatures,
and then decreased, with peak temperatures varying con-
siderably depending on the outcome of interest.'e inverted
U-shaped relationship between temperature and LD in-
cidence is also consistent with the pattern of human ex-
posure to ticks. In fact, temperature has been shown to have
nonlinear impacts on the time adults and children allocate to
outdoor activities. As temperature rises, individuals engage
in more outdoor activities, but after it reaches a maximum
tolerable temperature, they decrease the time spent outdoors
[26, 27]. Similarly, as temperature rises, society may engage
in adaptive actions to avoid exposure to ticks such as the
deployment of deer-baiting devices called four-posters to kill
ticks [28]. Feeder stations that resemble four-poster beds
lure deers with corn. Rollers soaked with the pesticide
permethrin rub the animals’ necks as they eat the corn,
killing ticks. As an example, this year, dozens of those de-
vices were installed in Shelter and Fire Islands, NY, as part of
a $1.2 million tick-removal effort.

While temperature is supposed to influence the extent to
which I. scapularis can move to seek hosts, humidity is
supposed to affect how high ticks quest above ground level,
where resources and rehydration are available, and for how
long they can remain actively host-seeking [23–25]. In our
longitudinal analysis, we included bins of total precipitation
during the year as a proxy for humidity. As we can see in our
preferred specification (column 3) in Table 2, there was no
statistical difference in the incidence of LD between counties
with more than 270 cm of total precipitation—the reference
group—and counties with less rainfall. 'is result seems to
be consistent with laboratory evidence provided by Vail and
Smith [39] who found no difference in the time in questing
posture across any levels of relative humidity, and no dif-
ference in questing height at levels of relative humidity
below 100 percent. Berger et al. [40] also found that mean
weekly daytime relative humidity did not significantly
predict tick activity in the field. Given such findings, we have
focused on the relationship between temperature and LDs
cases per 100,000 population in our discussion (it is worth
mentioning that although our findings are consistent with
laboratory and field evidence on tick activity and survival,
and corroborate Subak’s [9] findings of a weak relationship
between the incidence of LD and a same-year moisture index
for seven northeastern U.S. states during 1993–2001, they are
different from the results found by McCabe and Bunnell;
using data for seven northeastern U.S. states during the
1992–2002 period, those authors found that late spring/early
summer precipitation was a significant climate factor af-
fecting the occurrence of LD, but that temperature did not
seem to explain the variability in LD reports).

Table 3 reports the impacts of climatic variables on the
incidence of LD for counties above and below the U.S.
median income per capita, and for cases reported before and
after 2008. Although richer counties might have more re-
sources to deal with clinical and public health issues, we did
not find any statistical difference between our estimates in
richer versus poorer counties. With respect to post-2008,

when probable cases of LD were included along with con-
firmed cases, we noticed a much noisier relationship be-
tween temperature and LD incidence. 'is is not surprising
because attenuation bias from measurement error is usually
exacerbated in panel data regressions.

Our results imply that climate change will have a sizable
impact on the number of cases of LD in the United States in
the coming decades. Using the estimated impacts of tem-
perature on the incidence of the disease in Table 2, column 3,
and the distribution of county-year observations in each bin
of annual average temperature from Table 1, we have pre-
dicted an increase of 8.6 cases of LD per 100,000 population
per county-year, an increase of about 21 percent relative to
the average incidence of the disease over the period
2000–2016. 'is was done by assuming a 2°C increase in
annual average temperature in the northern area of the
United States by mid-century (2036–2065). ('e 2°C in-
crease in annual average temperature implies that the share
of counties in one 2°C bin in Table 1 would show up in the
following 2°C bin. For example, the 26 percent of counties in
the 7–9°C temperature bin in Table 1 would show up in the
9–11°C bin. 'e calculation of the impact of that increase in
annual average temperature then used the estimates re-
ported in Table 2, column 3, and the shift up of the shares
presented in Table 1.) 'is temperature increase is assumed
to be an approximation for the change the region we focus
on might experience in the future. In fact, it is slightly below
the mid-century (2036–2065) projections for the Northeast
(2.21°C or 3.98°F) and Midwest (2.34°C or 4.21°F) from the
Fourth National Climate Assessment (NCA4) (USGCRP
2017). 'is is under the more conservative Representative
Concentration Pathway (RCP) 4.5, which assumes global
annual greenhouse gas emissions peaking around 2040, then
declining. Under the RCP 8.5, which assumes that emissions
will continue to rise throughout the twenty-first century,
those mid-century (2036–2065) predicted increases in an-
nual average temperature would be 2.83°C (5.09°F) for the
Northeast and 2.94°C (5.29°F) for the Midwest (see defini-
tion of the NCA4 regions at scenarios.globalchange.
gov/regions_nca4).

Given the increase of 8.6 cases of LD per 100,000
population per county-year associated with a 2°C increase in
temperature and the average population for a county-year in
our sample of 149,606 persons, we have predicted an in-
crease in the number of LD cases by approximately 6,040 per
year in the counties in our sample (again, they represent over
95 percent of the cases in the entire country). Because the
average annual number of LD cases in United States over the
period 2000–2016 was 28,370, that amount translates into an
increase of roughly 21 percent in the number of LD cases in
the coming decades.

4. Conclusion

In this study, we have shown that a sizable increase in the
incidence of LD cases in endemic areas of the United States
due to climate change is imminent. 'ese findings should
alert public health agencies, physicians, and patients. On the
one hand, better education and increased awareness among
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patients and physicians is important because early recog-
nition and treatment are usually highly effective in pre-
venting debilitating consequences of untreated Lyme disease
and the potential post-Lyme syndrome. On the other hand,
public health authorities should be alert to work on strategies
to limit tick and host population and consequently decrease
the incidence of LD not only in endemic areas, but also in
neighboring locations where the disease has only been
sporadically reported, or not reported at all. In fact, climate
change may make those areas suitable for the establishment
of tick and host populations.

Our study has a number of limitations. First, because of
data limitations, we have used annual data to examine the
relationship between the incidence of LD and climatic
variables. 'us, we were unable to address the seasonality of
LD cases throughout the year, as highlighted by Moore et al.
[41] and the climate change influences on the annual onset of
LD, as studied by Monaghan et al. [42]. Second, we have
focused our analysis on counties from the highest incidence
states, regardless of the spatial distribution of blacklegged
ticks. Hence, we cannot comment on whether these reported
cases were autochthone—most likely the vast majority of the
cases—or imported. In an ongoing research project, we are
examining the climate-LD incidence relationship over U.S.
counties with established tick population versus counties
with ticks reported, but not yet established. 'ird, although
we have overcome a number of omitted variable bias issues
with the fixed effects analysis, we have not scaled our results
relative to areas with few LD cases. In work still in progress,
we are using a border approach to compare our estimates for

the places with high incidence of LD with estimates for their
corresponding neighboring areas.
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