
RESEARCH ARTICLE

ABC- and SLC-Transporters in Murine and
Bovine Mammary Epithelium - Effects of
Prochloraz
Yagmur Yagdiran1, Agneta Oskarsson1, Christopher H. Knight2, Jonas Tallkvist1*

1 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural
Sciences, SE-750 07 Uppsala, Sweden, 2 Department of Veterinary Clinical and Animal Sciences,
University of Copenhagen, 1870 Frederiksberg C, Denmark

* Jonas.Tallkvist@slu.se

Abstract
Some chemicals are ligands to efflux transporters which may result in high concentrations

in milk. Limited knowledge is available on the influence of maternal exposure to chemicals

on the expression and function of transporters in the lactating mammary gland. We deter-

mined gene expression of ABC and SLC transporters in murine mammary tissue of different

gestation and lactation stages, in murine mammary cells (HC11) featuring resting and

secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on trans-

porter expression and function of the imidazole fungicide prochloraz, previously reported to

influence BCRP in mammary cells, was investigated on transporter expression and function

in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2,

OCTN1 and OCT1. Gene expressions of BCRP andOCT1 in murine mammary glands

were increased during gestation and lactation, whereasMDR1,MRP1,OATP1A5 and

OCTN1 were decreased, compared to expressions in virgins. All transporters measured in

mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while

onlyMDR1 andMRP1 were detected in BME-UV cells. Prochloraz treatment induced

MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and

increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1

substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine

(BME-UV) mammary epithelial cells can be applied to characterize expression and function

of transporters as well as effects of contaminants on the mammary transporters. An altered

expression, induced by a drug or toxic chemical, on any of the transporters expressed in the

mammary epithelial cells during lactation may modulate the well-balanced composition of

nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-

fed infants and dairy consumers.
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Introduction
Milk and dairy products are valuable foods for humans constituting an important nutrient
source [1] but may also contain hazardous compounds [2–4]. Chemicals are secreted from
blood to milk either via passive diffusion or active transport. Passive diffusion of chemicals can
be predicted by taking physical and chemical properties into account [5] and result in levels of
hydrophilic compounds in milk equal to or lower than in plasma. However, in cases where
active transport mechanisms are operative chemical compounds may be concentrated in milk
to a high extent which may pose a health threat to both breast-fed infants and dairy consumers
[6, 7].

Transporters are transmembrane proteins involved in cellular in- and efflux of essential and
non-essential chemicals. Because these transporters are highly expressed in epithelia of tissues
they serve an important role in absorption, tissue distribution and excretion of drugs and other
chemicals [8]. Although a vast knowledge has been gained during the last decades concerning
transport protein function, localization and expression in many tissues of the body, there is
limited data on transporters in the mammary gland and their role for secretion of contami-
nants into milk [7–12]. In addition, very little attention has been paid to the influence of mater-
nal exposure to chemicals on the expression and function of transporters in the lactating
mammary gland.

Expressions of transport proteins belonging to both the ATP-binding cassette (ABC-) and
Solute Carrier (SLC-) superfamilies vary with lactation stage of the mammary gland [7, 9, 10].
The transporters play pivotal roles in the delivery of e.g. vitamins, fatty acids, sterols, porphy-
rins, thyroid hormones, carnitine, and amino acids to the breast-fed offspring [6, 13, 14]. How-
ever, some of these transporters feature broad substrate specificities and have been
demonstrated to mediate active transport also of drugs and toxic chemicals into milk [7, 9, 14–
16]. Transporters with broad substrate specificities and altered expressions in lactating as com-
pared to resting mammary epithelial cells include breast cancer resistance protein (BCRP/
ABCG2) [6, 7, 13, 17, 18], multidrug resistance protein 1(MDR1/ABCB1) [7, 18], multidrug
resistance-associated protein 1 (MRP1/ABCC1) [7, 10], solute carrier organic anion trans-
porter family member 1A2 (OATP1A2/SLCO1A2), organic cation transporter novel protein
type 1 (OCTN1/SLC22A4) [10] and organic cation transporter 1 (OCT1/SLC22A1) [16]

Prochloraz (N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]-1H-imidazole-1-carboxamide),
an imidazole fungicide used in agriculture and horticulture [19] is an endocrine disruptor with
various modes of action [20, 21]. It has been reported that prochloraz treatment increases
BCRP expression and efflux activity through AhR activation in primary bovine mammary epi-
thelial cells and in Madin-Darby canine kidney II (MDCK II) cells transfected with caprine
BCRP cDNA [22, 23].

Cell models are valuable to get information on active transport of chemicals. MDCK II cells
and human intestinal epithelial Caco-2 cells are examples of models used to study substrate
specificity and function of transporters [24]. In the present study we used non-tumorigenic cell
lines derived from mammary tissue, in order to study molecular expression and function of
endogenous transporters. HC11 cells are derived from mammary gland tissue of BALB/C mice
during gestation and can be differentiated by treatment with lactogenic hormones. After treat-
ment the cells feature a secreting phenotype [25–27]. We have recently demonstrated that
BCRP and MDR1 are expressed in HC11 cells and are up- and downregulated, respectively by
differentiation of the cells, similar to the situation in vivo during lactation [18]. In the present
study we also used bovine mammary epithelial BME-UV cells, derived from a lactating Hol-
stein cow, and previously reported to expressMDR1 [28].
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The aims of the present study were to (i) investigate gene expressions of endogenous BCRP,
MDR1,MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1 in mammary glands of mice in virgins
and at various gestation and lactation stages as well as in mammary glands of lactating cows
(ii) characterize gene expressions of the transporters in HC11 and BME-UV cells and (iii)
assess the effect of prochloraz on expression and function of transporters in the two cell lines.

Materials and Methods

Reagents and chemicals
Roswell Park Memorial Institute (RPMI) 1640 basal medium, gentamicin, heat–inactivated
fetal bovine serum (FBS), Ham’s F12, NCTC 135 and 0.05% Trypsin-EDTA, Hank’s Balanced
Salt Solution with CaCl2 and MgCl2 were from Gibco (Invitrogen). Human insulin, epidermal
growth factor (EGF), prolactin, hydrocortisone, lactose, lactalbumin hydrolysate, GSH, L-
ascorbic acid, prochloraz (N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]-1H-imidazole-1-car-
boxamide) and N-(2-hydroxyehtyl) piperazine-N’-(2-ethanesulfonic) acid (HEPES) were
obtained from Sigma-Aldrich. Nucleospin RNA purification kit was purchased from
Macherey-Nagel and Quant-iT™ RiboGreen1RNA Assay Kit from Life Technologies. One-
tube QuantiTect™SYBR1Green RT-PCR Kit was obtained from Qiagen and Cell TagTM 700
Stain In-Cell WesternTM Assay Kit was purchased from Li-Cor. Digoxin was kindly provided
by Dr. Per Artursson, Department of Pharmacy, Uppsala University, Sweden and 3H-digoxin
purchased from PerkinElmer.

Mammary gland isolation from mouse and cow
NMRI-mice were given a standard pellet diet and tap water ad libitum under standard condi-
tions of temperature and light. Animals were killed by cervical dislocation and mammary
glands from virgin, pregnant (gestation days 13 and 18), lactating (lactation days 2 and 9) and
weaning (weaning day 2) mice were rapidly excised, placed in RNAlater (Invitrogen), snap-fro-
zen in liquid nitrogen and stored at -70°C pending isolation of total RNA. Animal experiments
were reviewed and approved by the Council for Animal Experimentation of the Danish Minis-
try of Food, Agriculture and Fisheries at the Danish Veterinary and Food Administration (per-
mit no. 2012-15-2934-00587) and conducted at the Danish Technical University, Copenhagen,
Denmark.

Mammary gland tissues of lactating cows were collected fresh at the Funbo-Lövsta abattoir
located at the Swedish Livestock Research Centre, Uppsala, Sweden, placed in RNAlater and
stored at -70°C pending isolation of total RNA.

Cell culture
The HC11 murine mammary epithelial cell line was a generous gift from Dr. Nancy Hynes
(Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) [29] and used with
the permission of Dr. Bernd Groner (Institute for Biomedical Research, Frankfurt, Germany).
Cells were cultured in sterile filtered RPMI 1640 medium containing 10% heat-inactivated
FBS, 5 mg/L insulin and 10 μg/L EGF and 50 μg/ml gentamycin in polycarbonate flasks at 37°C
in 5% CO2. Medium was changed routinely every 2 or 3 days and cells subcultured by trypsina-
tion every 3 or 4 days. Cells of passage numbers 8–15 were used. To induce lactogenic differen-
tiation of the cells they were seeded at a density of 500,000 cells/well into 6 well plates and
cultured to confluency. Six days post-confluency the cells were incubated in medium without
EGF for 24 h. Following this EGF depletion step differentiation of the cells was accomplished
by culturing the cells for an additional 72 h in serum-free medium containing 1 μg/ml prolactin
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and 1μM hydrocortisone. Differentiation of the cells was assessed by measuring induction of β-
casein (CSN2) gene expression as well as examination of cellular morphology as described pre-
viously [18].

The BME-UV bovine mammary epithelial cell line deriving from lactating and pregnant
Holstein cow was kindly provided by Dr. Bruce Schultz, College of Veterinary Medicine, Kan-
sas State University, USA and cultured as described by [30]. Briefly, BME-UV cells were cul-
tured in sterile filtered RPMI 1640 medium containing 10% heat-inactivated FBS, 40% Ham’s
F12, 20% NCTC 135, 0.1% lactose, 0.1% lactalbumin hydrolysate, 1.2 mM GSH, 10 μg/ml L
ascorbic acid, 1 μg/ml hydrocortisone, 1 μg/ml insulin and 50 μg/ml gentamycin in polycar-
bonate flasks at 37°C in 5% CO2. In some instances, BME-UV cells were prolactin treated for
72 h as previously described [31].

Cell viability
MTS reduction test was applied to measure mitochondrial activity in viable cells where the tet-
razolium compound is transformed to colored formazan. A total of 17,000 cells/well were
seeded into 96-well plates in a volume of 100 μl, cultured and differentiated as described above.
Stock solutions of prochloraz were dissolved in dimethyl sulfoxide (DMSO) and added to the
basal medium, 1:1000, to achieve the decided concentrations of the chemical in the presence of
0.1% DMSO. Cells were treated for 24 h with prochloraz (vehicle control, 0.1, 1, 10, 30 and
100 μM) in serum-free RPMI 1640 medium. DMSO at 10% was used as a positive control in
the MTS test. The cells were exposed to test substances for 24 h and 20 μl CellTiter 961 AQueos

One Solution Reagent (Promega Corporation) was added to each well, according to manufac-
turer’s instructions. After 1 hour incubation at 37°C absorbance was measured at 490 nm using
a Wallac Victor21420 microplate reader (Perkin-Elmer). Cell viability was assessed by compar-
ing mean absorbance values from prochloraz treated cells and vehicle controls based on six
replicates.

Cell exposure
HC11 and BME-UV cells were seeded in 6-well culture plates and HC11 cells differentiated as
described above. After differentiation of the HC11 cells and accomplished confluency of the
BME-UV cells an additional 24 h incubation with exposure-medium (basal medium supple-
mented with prochloraz to a final concentration of 0.1, 1, 10, 30 μM and vehicle control) was
performed. After prochloraz exposure, cells were washed with 2.5 mL 1 x PBS and then lysed
with RA1 buffer (Macherey-Nagel) for RNA isolation. RA1 lysates were stored at -70°C freezer
prior to isolation of RNA and gene expression analyzes as described below.

Isolation of total RNA and RT-qPCR analysis
Total RNA from tissues and cells was isolated by using the NucleoSpin RNA kit containing
DNAse I (Macherey-Nagel) as recommended by the manufacturer. To check the integrity of
the RNA the 28S and 18S ribosomal RNA bands were examined by UV-visualization following
agarose gel electrophoresis. Quantification of the RNA was performed with the RNA specific
Quant-iT RiboGreen protocol (Molecular Probes) as described by the manufacturer.

Gene specific intron spanning primers to murine and bovine CSN2 (β-casein), BCRP,
MDR1,MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1 were designed by the use of Univer-
sity of California Santa Cruz (UCSC) Genome Browser and Primer3 software. The primers
were synthetized by Cybergene (Huddinge, Sweden). The sequences of the primers and the
accession numbers for the mouse and bovine sequences are given in Table 1.

Mammary Transporters and Effects of Prochloraz

PLOS ONE | DOI:10.1371/journal.pone.0151904 March 30, 2016 4 / 17



Quantitative gene expression was examined by RT-qPCR using a Rotor-Gene 3000 (Corbett
Research) by applying the One-tube QuantiTect™SYBR1Green RT-PCR Kit (Qiagen), accord-
ing to the manufacturer’s recommendations. Murine and bovine lactating mammary tissue,
respectively, was used as positive amplification controls and all primer-pairs tested on RNA
isolated from these tissues generated specific RT-PCR products with anticipated amplicon sizes
and single melting curve peaks. Final primer concentration for all target genes was 0.4 μM and
75 or 150 ng total RNA was used as template in 12.5 μl RT-qPCR reactions. Non-template con-
trols served as blanks and melt curve analysis was performed for each sample to check the spec-
ificity of the obtained PCR products. Expressions of target genes were normalized to the
geometric average expression of three appropriate reference genes [32]. Murine reference
genes were hypoxanthine-guanine phosphoribosyltransferase (Hprt), ribosomal protein L13A
(Rpl13a) and glyceraldehyde 3-phosphate dehydrogenase (Gapdh) [33] and bovine reference
genes were ubiquitously expressed transcript isoform 2 (UXT), ribosomal protein S9 (RPS9)
and ribosomal protein S15 (RPS15) [34]. Relative quantification of mRNA expressions was per-
formed by comparing the quantification cycle (Cq) between the tissues and treatment groups
of cells according to the 2-(deltadeltaCq)–method [35]. Cq cycle 35 was used as cut-off for limit of
detection of gene expression. Fold differences were calculated setting virgins or untreated con-
trol cells to one.

In-Cell Western Assay
HC11 and BME-UV cells were seeded at a density of 17,000 cells/well in 96-well plates. The
cells were cultured and differentiated as described above prior to treatment with 30 μM pro-
chloraz. Control cells were treated with only vehicle. After 24 h of treatment cells were washed
once with 1X PBS and fixed with 4% formaldehyde (1X PBS) for 20 min. Cells were then
treated with permeabilization solution (1X PBS containing 0.1% Triton X-100) 5 times for 5
min. After permeabilization cells were incubated in blocking buffer (Li-Cor) for 90 min at RT.
Primary Mdr1 antibody (JSB-1, Abcam) diluted 1:200 in blocking buffer, was added to the
wells and incubation was performed for 2.5 h under gentle shaking. Cells were then washed
five times with 1X PBS containing 0.1% Tween-20 (PBS-T) and then hybridized for 1 h with a
polyclonal secondary antibody (IRDye 800CW anti-mouse IgG (H+L) (Li-Cor) diluted 1:1000
in blocking buffer. Cell Tag 700 (Li-Cor) was used for normalization and added (1:500) to the

Table 1. Primer sequences used for the RT-qPCR analyses. Abbreviations, m: murine; b: bovine.

Genes and accession numbers Primer sequences

mCSN2 NM_009972 CTTAACCCCACCGTCCAAT (forward) AGCATGATCCAAAGGTGAAA (reverse)

mBCRP NM_011920.3 CGCAGAAGGAGATGTGTT (forward) TTGGATCTTTCCTTGCTGCT (reverse)

mMDR1 NM_011076.2 ATTTGGCAAAGCTGGAGAGA (forward) ACCCTGTAGCCCCTTTCACT (reverse)

mMRP1 NM_008576.3 CTGTGCTCACGATTGCTCAT (forward) CAGAGACCAGCTCACACCAA (reverse)

mOAPT1A5 NM_001267707.1 GCACAGAGAAAAAGCCAAGG (forward) CTCCAGGTATTTGGGCAAGA (reverse)

mOCTN1 NM_019687.3 CCTGTTCTGTGTTCCCCTGT (forward) GGTTATGGTGGCAATGTTCC (reverse)

mOCT1 NM_009202.5 CAGGTTTGGCCGTAAGCTCT (forward) GCAACATGGATGTATAGTCTGGG (reverse)

bCSN2 M16645.1 GTGAGGAACAGCAGCAAACA (forward) AGGGAAGGGCATTTCTTTGT (reverse)

bBCRP EU570105.1 AACGGCATTCCAGAGACAAC (forward) ATGTGGATCCTTCCTTGCAG (reverse)

bMDR1 XM_590317.6 GCAACATTCTTCACCGGTTT (forward) TTGTCCTCCAAATGCAATCA (reverse)

bMRP1 AB082124.1 CCGTCCCTGTTCAAAGTGTT (forward) TGACGAAGCAGATGTGGAAG (reverse)

bOATP1A2 NM_174654.2 GCTTGTCTTGCTGGTTGTGA (forward) CAGGGATGGCAGATAAGGAA (reverse)

bOCTN1 NM_001206989.1 TTCTCGGCTCCTTTGTGTCT (forward) GCCACCACGTAGTTGGAGAT (reverse)

doi:10.1371/journal.pone.0151904.t001
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diluted secondary antibody hybridization solution. For background subtraction some wells
were used as controls and only incubated with secondary antibody. Cells were washed five
times with PBS-T and plates were scanned with detection at both 700 and 800 nm using an
Odyssey instrument (Li-Cor Biosciences) and data were analyzed by applying Odyssey soft-
ware. In each well, secondary antibody signal from the 800 nm channel was normalized to Cell
Tag 700 signal from the 700 nm channel. Fold differences were calculated setting vehicle-
treated controls to one. The whole procedure was performed at room temperature.

The JSB-1 antibody is reported to cross react with pyruvate carboxylase (PC) with a MW of
130 kDa [36]. However, cross reactivity was not apparent in the HC11 cells under the condi-
tions used in our experiments (S1 Fig). Furthermore, data from human mammary glands dem-
onstrates that the abundance of PC is very low [37].

Accumulation studies
HC11 and BME-UV cells were seeded in 12 well plates and cultured and treated as described
above. Digoxin (Sigma) was chosen as a marker to examine the function of MDR1 in the cells
using 3H-digoxin (Perkin-Elmer Life Sciences), with a specific radioactivity of 5 Ci/mmol, as
tracer. Cells were rinsed with 2 x 1.5 ml of 37°C Hank’s Balanced Salt Solution with CaCl2 and
MgCl2 (Invitrogen), pH 7.4 containing 25 mMHEPES (HBSS) and then pre-incubated for 30
min at 37° in 1.5 ml HBSS. After pre-incubation the cells were incubated at 37°C for 60 min
with 37°C HBSS containing 1–5 μM digoxin and 3000 Bq 3H-digoxin/ml as tracer. At the end
of the experiment the cells were rinsed with 3 x 1.5 ml ice-cold HBSS and thereafter lysed by
adding 1 ml 0.5 M NaOH to each well. The digoxin concentration in the cells was calculated
from the radioactivity measurement by β-spectrometry using a 2810 TR Tri-Carb1Liquid
Scintillation Analyzer (PerkinElmer) and normalized to total protein concentration in each
sample measured by applying the BCA-method.

Statistical analysis
Statistical analyses were performed by using Minitab 16 software. The results were analyzed by
Kruskal-Wallis to detect any significant differences among the various treatment groups, fol-
lowed by Mann-Whitney to examine statistically significant differences between two groups.
The level of significance was set at p� 0.05.

Results

Gene expressions in mouse mammary gland
Messenger RNA expressions of CSN2, BCRP,MDR1,MRP1, OATP1A5, OCTN1 and OCT1 in
mammary gland tissues were measured in virgins and at different stages of gestation and lacta-
tion from mice. Expressions were normalized to the geometric average of three reference genes
and results are presented as relative to virgins (Fig 1). A gradual increase in CSN2 expression
through gestation days 13 and 18 was observed, which continued at lactation day 2 and reached
a maximum at day 9 (Fig 1A). At weaning day 2 the gene expression of CSN2 was reduced to
the levels observed at GD 18 (Fig 1A). BCRP expression in the mice followed a similar pattern
as CSN2 expression with a continuous increase during gestation and lactation and a relative
reduction at weaning day 2 (Fig 1B). In contrast, expression ofMDR1 was decreased through
gestation and lactation (Fig 1C). Gene expression ofMRP1 followed a similar pattern asMDR1
(Fig 1D). OATP1A5 gene expression was statistically significantly decreased during lactation
(Fig 1E). OCTN1 gene expression had a similar profile asMDR1 andMRP1 (Fig 1F). OCT1
expression was increased at the end of lactation and decreased at weaning day 2 (Fig 1G).
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A limited number of cows and without specific data on lactation stages was analyzed. In the
bovine mammary gland tissue CSN2, BCRP,MDR1,MRP1, OATP1A2 and OCTN1 gene
expressions were detected (data not shown).

Fig 1. Relative gene expression of CSN2 and transporters (A-G) in the mammary gland of mice.Mammary glands were taken from virgin, pregnant
(gestation day 13 and 18), lactating (lactation day 2 and 9) and weaning (weaning day 2) mice. Normalized gene expressions (A-G) are shown relative to
virgin and the data is presented as means ± SD; n = 3–4. Statistically significant differences as compared to virgins *p�0.05; **p�0.01.

doi:10.1371/journal.pone.0151904.g001
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Gene expressions in cultured mammary epithelial cells
Statistically significant up-regulation in CSN2 gene expressions was observed in the differenti-
ated HC11 cells as compared to the undifferentiated controls (Fig 2A).MDR1 gene expression
was statistically significantly reduced in the differentiated HC11 cells as compared to the undif-
ferentiated controls (Fig 2C). No statistically significant difference due to differentiation was
observed on BCRP,MRP1, OATP1A5, OCTN1 and OCT1 gene expressions (Fig 2B, 2D, 2E, 2F
and 2G, respectively).

Among the bovine genes examined onlyMDR1 andMRP1 were detected in the BME-UV
cells (Fig 3). No difference was observed inMDR1 orMRP1 gene expressions after prolactin
treatment of the cells (Fig 3A and 3B).

Cell viability in prochloraz-treated cells
Cell viability after prochloraz treatment of cells was assessed by MTS. For both cell lines cell
viability remained>80% after incubation with prochloraz up to 30 μM compared to vehicle
control and declined dramatically after treatment with 100 μM prochloraz (Fig 4).

Gene expression in prochloraz-treated cells
The effect of prochloraz on gene expression of CSN2 and transporters was studied in mammary
epithelial cells from both cell lines. Prochloraz treatment at non-cytotoxic concentrations
resulted in a down regulation of gene expressions of BCRP in differentiated HC11 cells (Fig
5B). In contrast,MDR1 gene expression was significantly up-regulated at the two highest con-
centrations of prochloraz (10 and 30 μM) (Fig 5C) and OCT1 was significantly up-regulated at
the highest concentration (Fig 5G). No statistically significant differences were observed for
gene expressions of CSN2,MRP1, OATP1A5 and OCT1 after prochloraz treatment (Fig 5A,
5D, 5E and 5G).

In BME-UV cells, gene expressions ofMDR1 andMRP1 were induced at the highest con-
centration of prochloraz (30 μM) (Fig 6A and 6B).

Protein expression in prochloraz-treated cells
Differentiated HC11 and confluent BME-UV cells were exposed to 30 μM prochloraz for 24 h
and MDR1 protein expression was examined by an In-Cell Western Assay. MDR1 protein
expression was significantly upregulated following 30 μM prochloraz treatment in both HC11
and BME-UV cells (Fig 7).

Accumulation assay in prochloraz-treated cells
Differentiated HC11 and confluent BME-UV cells were exposed to 30 μM prochloraz for 24 h
and the function of MDR1 was studied using digoxin as a substrate. Accumulation of digoxin
was statistically significantly reduced in prochloraz treated HC11 cells compared to controls
cells (Fig 8A). Also in BME-UV cells a lower, although not statistically significant, accumula-
tion of digoxin was observed after prochloraz treatment (Fig 8B).

Discussion
The expression patterns of ABC- and SLC- transporters in mammary epithelial cells vary dur-
ing lactation [9, 10, 16]. The function of the transporters in the mammary gland is not known
in detail, but includes the delivery of nutrients across the mammary epithelium to the suckling
infants via milk. However, some drugs and toxic compounds are ligands to efflux transporters
which may result in high concentrations of the chemicals in milk. To identify exogenous
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Fig 2. Relative gene expression of CSN2 and transporters (A-G) in undifferentiated and differentiated HC11 cells. Normalized gene expressions
(A-G) are presented as means ± SD; n = 6 pooled from 2 separate experiments. Statistically significant differences as compared to undifferentiated controls
*p�0.05; **p�0.01.

doi:10.1371/journal.pone.0151904.g002
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Fig 3. Relative gene expression of transporters in BME-UV cells without (control) and with lactogenic
hormone stimulation (prolactin treated). Normalized gene expressions are presented as means ± SD;
n = 6). Experiment repeated twice and data shown from one representative experiment.

doi:10.1371/journal.pone.0151904.g003

Fig 4. Cell viability in HC11 and BME-UV cells treated with prochloraz for 24h. The data represent
means ± SD; n = 6. Statistically significant differences as compared to vehicle controls *p�0.01. Experiment
repeated twice and data shown from one representative experiment.

doi:10.1371/journal.pone.0151904.g004
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substrates for transporters in mammary gland and study the function of transporters, cell mod-
els are valuable tools.

We have previously demonstrated gene expressions of BCRP andMDR1 in HC11 cells [18].
In the present investigation we identified gene expressions ofMRP1, OATP1A5, OCTN1 and

Fig 5. Relative gene expression of CSN2 and transporters (A-G) following prochloraz treatment in differentiated HC11 cells.Normalized gene
expressions are presented as means ± SD; n = 6 pooled from 2 separate experiments. Statistically significant differences as compared to vehicle controls
*p�0.05; **p�0.01.

doi:10.1371/journal.pone.0151904.g005
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OCT1 in HC11 cells. In the bovine mammary epithelial BME-UV cells onlyMDR1 andMRP1
gene expressions were detected. The lack of expressions of BCRP, OATP1A2 and OCTN1 in the
BME-UV cells may be due to a number of reasons such as loss of transcription factors and
selection of cells during passages and experimental conditions [38–40].

In line with previous reports our results demonstrate that both BCRP and OCT1 were most
abundant during peak lactation as assessed by the peak in CSN2 (β-casein) expression, whereas
MDR1 andMRP1 expressions were reduced at this stage [7, 9, 10, 16, 41, 42]. Stage dependent
expression profiles of BCRP and CSN2 were similar, as were the profiles ofMDR1,MRP1 and
OCTN1.

In the present investigation the imidazole fungicide prochloraz was chosen as a test com-
pound to examine the effect on the transporters expressed in the HC11 and BME-UV cell lines.
Interestingly, the results showed that prochloraz induced gene and protein expression of
MDR1 in both differentiated HC11 and in BME-UV cells. In addition,MRP1 expression was
upregulated by prochloraz in BME-UV cells. Based on predominant expressions ofMDR1 and
MRP1 in excretory organs which have roles in elimination of drugs and xenobiotics, one possi-
ble explanation can be that both MDR1 and MRP1 undertake protective roles as efflux pumps
in order to prevent accumulation of chemicals and toxic effects in the cells. The apical

Fig 6. Relative gene expression ofMDR1 (A) andMRP1 (B) following prochloraz treatment in BME-UV
cells.Normalized gene expressions are presented as means ± SD; n = 8–12 pooled from 2 separate
experiments. Statistically significant differences as compared to vehicle controls, **p�0.01; ***p�0.001.

doi:10.1371/journal.pone.0151904.g006
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Fig 7. Relative expression of MDR1 following 30 μM prochloraz treatment for 24 h in HC11 and
BME-UV cells. The data is presented as means ± SD; n = 4–10. Statistically significant differences as
compared to vehicle controls *p�0.05; **p�0.01.

doi:10.1371/journal.pone.0151904.g007

Fig 8. Accumulation of 3H-digoxin in differentiated HC11 (A) and confluent BME-UV (B) cells, treated
with 30 μM prochloraz for 24 h. The data is presented as means ± SD of 3–4 samples and expressed as
pmol mitoxantrone/mg cellular protein. Statistically significant differences between groups, *p� 0.05.

doi:10.1371/journal.pone.0151904.g008
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localization and induction of MDR1 in the apical membranes of mammary epithelial cells may
result in an active transport of toxic compounds into milk.

Both gene and protein expressions of MDR1 were increased after treatment of HC11 and
BME-UV cells with prochloraz. Our accumulation studies with digoxin, a MDR1 substrate,
showed a reduced accumulation in HC11 cells after treatment with prochloraz, indicating an
increased function of the efflux transporter MDR1. Also in BME-UV cells treated with pro-
chloraz the accumulation of digoxin tended to be reduced although not statistically significant.
The increased MDR1 expression and reduced digoxin accumulation in prochloraz-treated
murine mammary epithelial cells emphasizes the risk that chemicals may affect the expression
and function of transporters and increase secretion of hazardous chemicals in milk.

The endogenous role of the ABC transporter BCRP has not been clarified, but has been sug-
gested to involve secretion of vitamins including vitamin K3, riboflavin and folic acid into milk
[6, 43, 44]. Thus, the induced BCRP expression during lactation in mammary glands may be
important for the milk composition in terms of vitamin content. Prochloraz has been reported
to increase BCRP expression in primary bovine mammary epithelial cells [22] and is trans-
ported to milk [45]. However, in the differentiated HC11 cells prochloraz did not induce, but
rather reduce BCRP expression. Causes for this discrepancy can only be speculated upon but
may depend on differences in experimental conditions such as prochloraz concentrations used,
exposure times, or species differences in the display of transcription factors and regulation in
BCRP gene expression. It can be noted that 2,3,7,8-tetrachlorodibenso-p-dioxin (TCDD) treat-
ment in the human intestinal C2bbe1 (a subclone of Caco2) cells as well as in other human sec-
ondary carcinoma cells of the colon, liver, and mammary glands resulted in induction of BCRP
transcripts but failed in mouse-derived hepatic (hepa1c1c7), mammary (EMT 6), and intestinal
(CMT93) cell lines [46].

In summary, the results demonstrate that murine mammary epithelial HC11 cells featuring
a secreting phenotype express endogenous BCRP,MDR1,MRP1, OATP1A5, OCT1 and
OCTN1. Gene and protein expression of the efflux protein MDR1 is upregulated by prochloraz
treatment in both murine HC11 and in bovine mammary epithelial BME-UV cells, which in
the HC11 correlates to a decreased accumulation of the MDR1 substrate digoxin. Our findings
demonstrate that murine (HC11) mammary epithelial cells can be applied to characterize
effects of toxic compounds on expression or function of BCRP,MDR1,MRP1, OATP1A5,
OCTN1 and OCT1, whereasMDR1 andMRP1 can be assessed in bovine (BME-UV) mammary
epithelial cells. An altered expression on any of the transporters expressed in the mammary
epithelial cells during lactation may modulate the composition of nutrients and/or secretion of
contaminants in milk with potential adverse effects on breastfed infants and dairy consumers.

Supporting Information
S1 Fig. Western blot of HC11cell lysates showing distinct MDR1 bands (170 kDa) and only
weak bands at other MWs, including 130 kDa, which is the MW of pyruvate carboxylase.
Cells were cultured in T75 tissue culture flasks at 37°C in 15 ml sterile filtered RPMI 1640
medium containing L-glutamine and 25 mMHEPES supplemented with 50 μg/ml bovine insu-
lin, 10 ng/ml epidermal growth factor, 7.5% NaHCO3 and 10% heat-inactivated fetal bovine
serum in an atmosphere of 95% air and 5% CO2 in 95% relative humidity. Cells were harvested
by trypzination and homogenized with 5 volumes of RIPA lysis buffer in 1.5 ml Eppendorf
tubes by pipetting. Homogenates were incubated on ice for 30 min and then centrifuged at
16,000xg for 30 min at 4°C and supernatant protein concentrations determined by the BCA
method. Triplicate samples of 20, 50 and 100 μg of cellular protein were separated on a 10%
Tris-Glycine polyacrylamide gel under reducing conditions and blotted to nitrocellulose.
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Blocking was performed with 5% non-fat dry milk powder in Tris-buffered saline containing
0.05% Tween-20 (TBS-T) overnight at 4°C. Hybridization was then performed with primary
MDR1 antibody (JSB1, Abcam) diluted 1:200 in TBS-T. Primary MDR1 antibodies were
detected by HRP-conjugated secondary antibodies (ab6728, Abcam) diluted 1:7.500 in TBS-T.
HRP was detected by ECL Advance (GE Healthcare) and ChemiDoc instrument (Bio-Rad).
(TIF)
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