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Brain areas’ functional repertoires are shaped by their incom-
ing and outgoing structural connections. In empirically measured
networks, most connections are short, reflecting spatial and ener-
getic constraints. Nonetheless, a small number of connections
span long distances, consistent with the notion that the func-
tionality of these connections must outweigh their cost. While
the precise function of long-distance connections is unknown,
the leading hypothesis is that they act to reduce the topolog-
ical distance between brain areas and increase the efficiency
of interareal communication. However, this hypothesis implies
a nonspecificity of long-distance connections that we contend
is unlikely. Instead, we propose that long-distance connections
serve to diversify brain areas’ inputs and outputs, thereby pro-
moting complex dynamics. Through analysis of five weighted
interareal network datasets, we show that long-distance connec-
tions play only minor roles in reducing average interareal topo-
logical distance. In contrast, areas’ long-distance and short-range
neighbors exhibit marked differences in their connectivity pro-
files, suggesting that long-distance connections enhance dissim-
ilarity between areal inputs and outputs. Next, we show that—in
isolation—areas’ long-distance connectivity profiles exhibit non-
random levels of similarity, suggesting that the communication
pathways formed by long connections exhibit redundancies that
may serve to promote robustness. Finally, we use a linearization
of Wilson–Cowan dynamics to simulate the covariance structure
of neural activity and show that in the absence of long-distance
connections a common measure of functional diversity decreases.
Collectively, our findings suggest that long-distance connec-
tions are necessary for supporting diverse and complex brain
dynamics.

complex networks | connectome | communication | wiring cost

The functional repertoire available to any given brain area
is shaped by its structural connections (1–5). The complete

set of all areas and all connections comprises a connectome
(6), which can be represented as a network and analyzed using
tools from network science (7). The network-based approach for
studying neural systems is central to the growing field of net-
work neuroscience (8), which seeks to uncover the architectural
principles by which the brain is organized and to both gener-
ate and test hypotheses of how the brain’s structure supports
its function.

Among the most salient organizational features of brain net-
works is their cost-efficient spatial embedding. Across scales and
species, neural elements are arranged such that the brain’s wiring
cost—the total length of its connections—is small (9–14). Low
wiring cost helps curtail the material and metabolic expense of
forming, using, and maintaining connections and is thought to
offer evolutionary advantages across species (15, 16). Despite
favoring short-range, low-cost connections, brain networks also
exhibit a small proportion of long, costly connections, poten-
tially conferring additional functionality. The opposing drives to
reduce wiring cost and promote functionally adaptive structural
topology may allow nervous systems to maintain function with a
low energy budget (17–19).

The precise function of long-distance connections is a matter
of debate. According to the most widely accepted account, long-
distance connections act as bridges to reduce the topological dis-
tance between brain areas, thereby facilitating rapid and efficient
interareal communication (20–22). Though widespread, this
account is unsatisfactory for two reasons. First, with advances
in imaging and reconstruction techniques, it has become clear
that connection weights tend to decay monotonically with inter-
areal Euclidean distance (23–26). As a result, the most effi-
cacious communication pathways—networks’ shortest weighted
paths—involve predominantly strong, short-range connections
(27, 28). Second, reductions in topological distance can occur in a
nonspecific manner: Any long-distance connection that reduces
topological distance is as good as any other, irrespective of its
origin or termination. However, recent empirical evidence indi-
cates that the brain’s long-distance architecture is conserved
across and replicable within individuals, suggesting a high level
of connectional specificity (29–32).

If long-distance connections are not simply random topolog-
ical shortcuts, what are they? Here, we address this question
through analysis of five weighted interareal network datasets
representing mouse, Drosophila, macaque, and human (high-
and low-resolution) connectomes. First, we characterize the
spatiostructural architecture of brain networks, demonstrating
remarkable consistency across species. Drawing upon decades
of research in theoretical neuroanatomy, we demonstrate that
clustering brain areas based on their connections’ spatial statis-
tics recapitulates aspects of the brain’s intrinsic functional
network organization, suggesting a spatiostructural basis for
brain function. Next, we show that the brain’s most efficacious

Significance

Interareal communication occurs along physical pathways.
The prevailing hypothesis is that long-distance connections
reduce the processing length between brain areas, facilitating
efficient communication. We show, in five weighted interareal
network datasets, that the correlation of connection weight
with distance implies that long-distance connections play only
a minor role in reducing path length. Instead, long-distance
connections add diversity to brain area inputs and outputs,
leading to increasingly complex brain dynamics. These find-
ings help to clarify our understanding of how brain structure
contributes to interareal communication.

Author contributions: R.F.B. and D.S.B. designed research; R.F.B. performed research;
R.F.B. contributed new reagents/analytic tools; R.F.B. analyzed data; and R.F.B. and D.S.B.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1 To whom correspondence should be addressed. Email: dsb@seas.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1720186115/-/DCSupplemental.

Published online May 8, 2018.

E4880–E4889 | PNAS | vol. 115 | no. 21 www.pnas.org/cgi/doi/10.1073/pnas.1720186115

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dsb@seas.upenn.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720186115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720186115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1720186115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1720186115&domain=pdf


N
EU

RO
SC

IE
N

CE
M

A
TH

EM
A

TI
CS

communication pathways—its shortest weighted paths—are
dominated by short-range connections, undermining the hypoth-
esis that it is the brain’s long-distance connections that reduce
its average topological distance. Instead, we hypothesize that
long-distance connections introduce diverse inputs and outputs
to specific brain areas, in the process promoting dynamical
complexity. In support of this hypothesis, we demonstrate the
dissimilarity of the connectivity profiles of brain areas’ long-
distance and short-range neighbors and that long-distance con-
nectivity profiles form clusters, suggesting that the brain’s long-
distance architecture is both specific and also robust. Finally,
using dynamical simulations, we show a reduction in the diver-
sity of functional profiles when long-distance connections are
removed, whereas the opposite is true when we remove short-
range connections. These findings help to clarify the func-
tional role of the brain’s long-distance network architecture
and inform future studies investigating network structure and
function.

Results
Past studies of unweighted brain networks have reported that
long-distance connections act to reduce the topological dis-
tance between brain areas, supporting efficient communication
over long distances (12, 20). We argue, however, that with
new empirical estimates of connections’ weights, this functional
interpretation must be revisited. In its place, we propose an
alternative set of functional roles for long-distance connections,
building on the intuition that brain areas inherit functionality
from their patterns of incoming and outgoing connections (1, 5,
33). We claim that the primary function of long-distance connec-
tions is to deliver unique inputs to brain areas and to serve as
novel targets for brain areas’ outputs, thereby enhancing those
areas’ functional diversity. We further hypothesize that long-
distance connections are not “one-offs” but instead are insulated
and reinforced by other long-distance connections. This archi-
tecture naturally leads to increased robustness. In support of
these hypotheses, we performed a number of computational
experiments involving five interareal connectivity datasets repre-
senting four different organisms: mouse, Drosophila, macaque,
and human (low-resolution and high-resolution) (Fig. 1). In
each network, nodes represent brain areas and connections
represent physical pathways (e.g., fiber bundles or axonal projec-
tions). Nonetheless, each dataset was distinct in terms of imaging
modality, reconstruction technique, and connection weighting
scheme. This variability in processing strategy was unintentional,
though we exploit this feature to demonstrate the universality

of our findings and their robustness to acquisition and process-
ing schemes. Details of network reconstruction and all network
measures are provided in SI Appendix, Supplementary Materials,
Network Datasets and SI Appendix, Supplementary Materials, Net-
work Analysis. We describe the results of these experiments in
the following sections.

Distance Shapes Weighted Network Architecture. We sought to
demonstrate that many network-level properties of weighted
interareal networks depend upon distance. We focused on four
properties in particular: (i) connection weight, (ii) cosine sim-
ilarity of connectivity profiles, (iii) frequency of long-distance
connections among connections of different lengths, and (iv)
connection probability as a function of distance.

First, we computed the Pearson correlation of the logarithm
of connections’ weights with Euclidean distances (Fig. 2A). We
observed strong negative correlations across all species and
scales (maximum p< 10−15; FDR-corrected). Second, we com-
puted the pairwise cosine similarity among all areas’ connectivity
profiles and computed its correlation with Euclidean distance
(Fig. 2B). As before, we found that cosine similarity was nega-
tively correlated with Euclidean distance (maximum p< 10−15;
FDR-corrected). Third, we estimated the distributions of the
logarithm of the connections’ weights and separately labeled
the top 5%, 10%, 20%, and 25% of all connections by length.
We then identified within each histogram bin the contributions
made by long-distance connections relative to the contributions
made by connections of any length (Fig. 2C). We observed
that the weakest connections were most often associated with
the longest connections, while the strongest connections almost
always excluded long-distance connections. Finally, we computed
the distribution of all possible interareal Euclidean distances—
that is, the elements of the Euclidean distance matrix. Within
each histogram bin, we identified which of those possible connec-
tions existed and compared with those that did not (Fig. 2D). We
found that when possible, short-range connections were almost
always observed, whereas many of the possible long-distance
connections were not observed.

Collectively, these results highlight the powerful role that
interareal Euclidean distance plays in shaping the structural
organization of weighted interareal brain networks. The consis-
tency of these relationships across five datasets is remarkable
considering the range of acquisition and reconstruction tech-
niques and the gross differences in binary network density (the
fraction of existing connections irrespective of weight out of all
possible connections).
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Fig. 1. Connectivity (Top) and Euclidean distance (Bottom) matrices for (A) mouse, (B) Drosophila, (C) macaque, (D) human (low-resolution), and (E) human
(high-resolution) connectome data.
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Fig. 2. Network distance dependence. (A) Edge weight versus distance. (B) Cosine similarity versus distance. (C) Frequency of edge weights across all
connections (gray) and long-distance connections (color; top 25% longest connections). (D) Frequency of connection lengths (gray) and lengths of existing
connections (color).

Similarity of Connection Length Distributions Shapes Areal Function.
The functionality of brain areas depends on the configuration
and weights of their incoming and outgoing connections (1,
5). However, these network properties are correlated with and
shaped by distance. It follows, then, that the spatial embedding
of a brain area and the lengths of its connections indirectly shape
its function. Here, we tested this hypothesis directly by compar-
ing areas’ connection length distributions with their assignments
to putative functional systems (see SI Appendix, Supplementary
Materials, Network Analysis for definitions of systems).

First, we computed each area’s connection length distribution
(Fig. 3 A and B). Distributions showed rich topography and var-
ied widely across the cortex. Some were focused and sharply
peaked, while others were broad and included connections of
different lengths. To quantify an area’s diversity of connection
lengths, we computed the interquartile range of its connection
length distribution (Fig. 3C). Broadly, we found that interquar-
tile range varied across functional systems, with dorsal attention
and limbic systems exhibiting the greatest levels of diversity in
both low- and high-resolution network datasets (Fig. 3D).

Next, we clustered areas using a k -means algorithm by treating
their connection length distributions as features. We imple-
mented the algorithm with 100 random restarts, and we varied
the number of clusters from k =2 to k =15. We compared
areas’ cluster and functional system assignments using a nor-
malized mutual information (NMI), where larger NMI values
indicate greater overall similarity of clusters. In comparing the
observed NMI values with those obtained by randomly permut-
ing areas’ cluster assignments, we observed that NMI was con-
sistently greater than expected by chance (1,000 permutations;

p< 10−3, FDR-corrected) (Fig. 3E). Finally, to determine which
functional systems were responsible for driving this similarity,
we computed the co-cluster density between every pair of sys-
tems. This density represents the fraction of times that pairs of
brain areas within those systems were coassigned to the same
cluster by the k -means algorithm (Fig. 3F). In general, we find
that pairs of areas within systems are more likely to be co-
clustered than expected by chance. With the exception of the
visual system in the low-resolution dataset, all z score mean
co-cluster densities were greater than zero, and with the excep-
tions of the low-resolution visual, dorsal attention, somatomotor,
and salience systems, all z scores were statistically significant
(p< 0.05, FDR-corrected).

Collectively, these results demonstrate that functional spe-
cialization of a brain area can be associated with the diversity
of its connections and their lengths. This observation suggests
that areas with dissimilar connection length distributions tend to
have different functional roles within the network, allowing us to
ascribe functional significance to connections and their lengths.

Long Connections Contribute Little to Shortest, Weighted Paths.
According to current literature, long-distance connections play
important roles in networks’ shortest path structure and reduce
the number of processing steps between brain areas (20). This
observation, however, was made using binary networks where
edges carry no weight (34). It is less clear what role long-distance
connections play when connections are weighted and when those
weights span multiple orders of magnitude. We hypothesized
that, due to the disparity between the strongest and weakest con-
nection weights and their dependence on distance, the network’s
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Fig. 3. Regional connection length profiles relate to functional specificity in the human network dataset. (A) Schematic illustrating connection length pro-
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shortest weighted paths would be dominated by short-range
connections.

To test this hypothesis, we computed a parameterized ver-
sion of edge betweenness centrality, Bij (α). The α parameter,
which we varied in increments of 1/3 over the range [0, 4],
controlled the decay rate of the necessary mapping of connec-
tion weights to length. For each network and for each value of
α, we obtained an estimate of Bij (α), the fraction of shortest
paths that contained the connection {i , j}. Then, we calcu-
lated the fraction of long-distance connections (top 25% by
length) involved in at least one shortest path. We observed
that long-distance connections played a minor role when α was
small but an increasingly small role as α→ 4 (Fig. 4A). We
investigated this behavior further by computing the distribu-
tion of connection distances for all pairs of brain areas that
participated in at least one shortest path (Fig. 4B). We found
that across all datasets, the observed distributions were skewed
toward short-range connections, while a null model in which
connection topology was preserved but brain area locations
were randomly permuted exhibited a broader distribution that
involved many more long-distance connections (p< 10−5; FDR-
corrected). These results demonstrate that long-distance connec-

tions play relatively minor roles in the shortest path structure of
weighted interareal brain networks. Because a network’s shortest
paths are interpreted as routes along which brain areas commu-
nicate with one another (see, however, refs. 28, 35 for alternative
perspectives), these findings suggest that routing information
along high-weight pathways composed of short-range connec-
tions is more efficient than using weak, long paths for interareal
communication.

Next, and for completeness, we demonstrated that removing
short-range connections has a much greater impact on statis-
tics related to small worldness than removing the same frac-
tion of long connections. Specifically, we calculated the percent
change in mean weighted path length and mean weighted clus-
tering coefficient (Fig. 4 C and D). (Note: The percent change
in weighted clustering coefficient and path length are shown
as absolute values.) We systematically varied our definition of
short-range versus long-distance connections, focusing on the
shortest versus longest 5%, 10%, 20%, and 25% of connec-
tions according to the Euclidean distances. For all datasets, we
observed that the effect of removing strong, short connections
was consistently greater than that of removing long connections.
These results paint a picture in which nervous system function
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Fig. 4. Shortest path use in weighted interareal networks. (A) The fraction of total connections used in shortest paths. The total fraction is shown in
gray; the long-distance fraction (top 25% length) is shown in color. The x axis represents the edge strength-to-distance parameter, α. Larger values of
α increase the relative strength of already-strong connections compared with weak connections. (B) Edge length distributions of connections partici-
pating in shortest paths. Gray curves show the mean distribution under a permutation-based null model; colored curves show α= 1, 2, 3, 4. (C) Percent
change in weighted clustering coefficient as a result of removing different fractions of long and short connections. (D) Percent change in weighted char-
acteristic path length as a result of removing different fractions of long and short connections. Note: bar plots in D are shown with α= 1

3 . At larger
values of α, long-distance connections play no role in shortest path structure and removing them leads to no change in the weighted characteristic
path length.

and communication is dominated by strong, low-cost structural
connections. These findings are inconsistent with the view of
nervous system function in which most communication path-
ways are funnelled through a small proportion of long-distance
connections.

Long and Short Connections Deliver Dissimilar Inputs and Outputs.
If long-distance connections play little or no role in the short-
est weighted path structure of brain networks, what do they
contribute? To understand the functional roles of long-distance
connections, we compared them against short-range connections
in terms of the character of connectivity profiles. An area’s con-
nectivity profile specifies the other areas it can influence and be
influenced by, thereby shaping its functional properties.

We considered the neighbors of brain area i and examined
the average connectivity profile of those nearest and those most

distant. We hypothesized that, compared with short-range con-
nections, long-distance connections would deliver unique inputs
to and novel targets for an area, i , and as a result their respec-
tive connectivity profiles should be dissimilar. We quantified
this dissimilarity with cosine similarity and compared the value
observed in the empirical data to a null distribution generated by
keeping the network topology fixed but permuting areas’ spatial
locations (Fig. 5A). We computed the similarity of each area’s
long-distance and short-range neighbors’ connectivity profiles,
while varying the definition of long versus short connections
(top/bottom 5%, 10%, 20%, and 25%). We observed that the
distribution of standardized similarity scores was consistently
negative, indicating that long-distance and short-range connec-
tions are more dissimilar from one another than expected by
chance (Fig. 5B). More quantitatively, we observed that the
cumulative distribution of standardized similarity scores reached
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Fig. 5. Similarity of long- and short-range connectivity profiles. (A) Schematic of processing pipeline for assessing the similarity of long- and short-range
inputs. The network depicted is the human, low-resolution network, thresholded to a binary density of ρ= 0.25 and with subcortical areas removed for
visualization purposes only. For the empirical analysis, we performed no thresholding and retained all areas in all computations. All connections incident
upon area i are identified and their lengths are tabulated. Node i’s neighbors are then classified as either nearby or distant. Note: The same distance
threshold was applied uniformly to all brain areas. Separately, the connectivity profiles of nearby versus distant neighbors are summed. The summed
profiles, which represent possible inputs to node i from its neighbors, are compared with one another using the cosine similarity measure. This process
results in a single similarity score for each area (node). We compare these scores against a null distribution obtained by randomly reclassifying neighbors
as nearby versus distant. (B) Cumulative distributions of area-level z scores for each network. The different panels represent variation of the threshold for
classifying neighbors as nearby versus distant. From Left to Right, nearby (distant) neighbors were those connected by the top (bottom) 5%, 10%, 20%, and
25% of connection lengths.

95% before a positive value was encountered (with the exception
of the macaque and in one case the mouse dataset). These results
confirm that the patterns of incoming and outgoing connections
to brain areas are dissimilar compared with one another on the
basis of their lengths. This observation suggests that a wealth
of long-distance connections may enhance an area’s functional
repertoire, by providing unique inputs as well as novel targets
for output.

Long-Distance Connections Exhibit Degeneracies. Short-range and
long-distance connections lead to neighbors with dissimilar con-
nectivity profiles. However, there are many scenarios in which
this could occur. For instance, long-distance connections could
be dissimilar not only from short-range connections but also from
other long-distance connections. That is, each long-distance con-
nection could link area i to another area whose connectivity
profile is not similar to the connectivity profile of any of area
i ’s other long-distance neighbors. In this scenario, each long-
distance connection provides a truly unique set of inputs and
output targets with respect to one another. This uniqueness,
however, could belie a weakness; damage to a single connection
would result in the absence of inputs or outputs to or from area
i . Another possibility is that long-distance connections are rein-
forced in some way with built-in degeneracy. That is, from area
i ’s perspective, its long-distance connections lead to areas with
similar connectivity profiles, so that if one or a small number of
connections were damaged, then area i would still receive similar
inputs and deliver similar outputs.

To determine the relative evidence supporting either of these
possibilities, we imposed distance thresholds on connectivity
matrices so that connections below a certain length were

excluded (Fig. 6A). We computed the pairwise similarity of
each area’s long-distance connectivity profile, and we then com-
puted the mean similarity over all pairs. Larger mean simi-
larity scores are indicators of increased levels of degeneracy.
In parallel, we compared these empirical scores against those
obtained from a randomized null model in which a network’s
degree sequence and edge weight distribution were exactly pre-
served and in which a network’s connection length distribu-
tion and length–weight relationship were preserved approxi-
mately (code available at https://www.richardfbetzel.com/code/).
We repeated this process as we varied the definition of “long
distance” (the top 5%, 10%, 20%, and 25% according to con-
nection lengths). We observed that the mean similarity of
long-distance connectivity profiles consistently exceeded that of
the null model (nonparametric test, p< 0.01; FDR-corrected).
The lone exception was observed in the Drosophila dataset
when using the most exclusive definition of long distance (top
5%). Otherwise, this result was observed across all network
datasets.

These findings indicate that the long-distance architecture of
brain networks exhibits nonrandom correlations. This observa-
tion is inconsistent with recently proposed stochastic models of
brain network formation in which connections of all lengths are
generated by the same wiring rules (23, 36). Instead, areas’ long-
distance connections are organized in such a way that many brain
areas exhibit highly similar patterns of incoming and outgoing
connections.

Long-Distance Connections Lead to Diverse Patterns of Functional
Coupling. The results presented in the previous sections described
the structural architecture of brain networks. Though we

Betzel and Bassett PNAS | vol. 115 | no. 21 | E4885

https://www.richardfbetzel.com/code/


5 10 20 25

Percentile long

0

0.01

0.02

0.03

M
ea

n 
co

si
ne

 s
im

ila
rit

y

5 10 20 25

Percentile long

0

0.02

0.04

0.06

0.08

M
ea

n 
co

si
ne

 s
im

ila
rit

y

5 10 20 25

Percentile long

0

0.02

0.04

0.06

M
ea

n 
co

si
ne

 s
im

ila
rit

y

5 10 20 25

Percentile long

0

0.05

0.1

M
ea

n 
co

si
ne

 s
im

ila
rit

y

5 10 20 25

Percentile long

0

0.02

0.04

M
ea

n 
co

si
ne

 s
im

ila
rit

y

Node

N
od

e

Node

N
od

e

Node

N
od

e

Node

N
od

e

-3

-2

lo
g1

0 
w

ei
gh

t
-3

-2

lo
g1

0 
w

ei
gh

t

0

1

co
si

ne
 s

im
ila

rit
y

0

1

co
si

ne
 s

im
ila

rit
y

Long connections,
empirical

Long connections,
randomized

Cosine similarity,
empirical

Cosine similarity,
randomized

A

B
MacaqueMouse Drosophila Human (low res) Human (high res)

Fig. 6. Redundancy of long-range connectivity. (A) Example empirical and randomized networks thresholded to retain the 25% longest connections (Left-
most). We then compute the pairwise cosine similarity between areas’ long-range connectivity profiles (Rightmost). (B) Pairwise similarity measures are
averaged for the empirical and randomized networks. We repeat this process using four different definitions of “long range”: 5%, 10%, 20%, and 25%
longest connections as defined by Euclidean distance between regional center of mass.

interpreted these results in terms of brain function and infor-
mation transmission, the link between structure and function is
complicated, and recent findings have cast doubt on the role of
shortest paths in network communication (27, 35). In this sec-
tion, we ground these intuitions in a dynamical model of neural

activity and demonstrate that long-distance connections support
the functional diversity of brain areas.

Specifically, we used a linearization of the Wilson–Cowan
population model (37) and computed from this model the
covariance matrix of brain areas’ temporal activity. The rows
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Fig. 7. Linearized dynamics and participation coefficient. (A) Schematic illustrating analysis pipeline. The structural connectivity matrix is used to constrain
a linearization of Wilson–Cowan dynamics, which results in an estimated covariance (FC) matrix. We compute network modules ahead of time, and based
on those modules and on the simulated covariance structure, we compute brain areas’ functional participation coefficients. (B) Schematic illustrating the
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bars) has the opposite effect. Note that for the low- and high-resolution human datasets, we computed the participation coefficient with respect to structural
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of this matrix represent brain areas’ functional fingerprints—
their pattern of functional coupling to the N − 1 other brain
areas (Fig. 7A). We define an area’s functional diversity to
be equal to its participation coefficient (P) computed given
its corresponding covariance matrix and given modules esti-
mated from the structural connectivity network using modu-
larity maximization (Fig. 7B). The functional diversity of the
whole brain is defined as the average participation coeffi-
cient over all brain areas. We then repeated this procedure,
removing the same number of short-range and long-distance
connections, and computed the resultant change in average par-
ticipation coefficient. Across all network datasets, we found
that removing long-distance connections always resulted in
decreased average participation coefficient, while removing
short-range connections resulted in increased average partic-
ipation coefficient. This finding suggests that reductions in
the number of long-distance connections in the network will
tend to decrease the overall functional diversity of the brain,
resulting in a more specialized and less integrated network as
a whole.

Discussion
Brain areas’ functional repertoires are shaped by their incoming
and outgoing structural connections. Most connections are short-
range and incur minimal cost to the network in terms of material
and energy. Nonetheless, a small proportion of connections span
long distances, leading to the hypothesis that the functionality
conferred by these connections must outweigh their cost. Their
precise function, however, is a matter of debate. The current
hypothesis is that long-distance connections reduce the average
topological distance between brain areas, facilitating interareal
communication.

Here, we challenge this hypothesis on the grounds that it
is not necessarily true for weighted brain networks and that
it implies a nonspecificity of long-distance connections. We
propose, instead, that long-distance connections serve to diver-
sify brain areas’ inputs and outputs and to promote complex
network dynamics. To test this hypothesis, we analyze five
weighted interareal brain network datasets. As expected, we
find that brain areas’ long-distance and short-range neighbors
exhibit marked differences in terms of their connectivity pro-
files, suggesting that long-distance connections contribute to the
specificity of areas’ connectivity profiles and serve as sources
of dissimilar inputs and outputs for brain areas. Next, we
show that in isolation, areas’ long-distance connectivity pro-
files exhibit nonrandom levels of similarity, suggesting that the
communication pathways formed by long connections exhibit
redundancies, which may help promote robustness. Finally, we
simulate the covariance structure of neural activity using a lin-
earization of Wilson–Cowan dynamics. We show that in the
absence of long-distance connections, one measure of func-
tional diversity—the mean participation coefficient—decreases,
indicating that from a functional perspective, long-distance con-
nections are necessary for supporting diverse and complex brain
dynamics.

Interpreting the Functional Roles of Long-Distance Connections.
One of the open challenges of theoretical neuroanatomy is
understanding how brain function is shaped by structure (38).
Long-distance connections, because they are prevalent despite
high material and metabolic cost, are believed to play criti-
cal functional roles. The earliest network analyses argued that
long-distance connections acted as integrative structures that
reduced topological distance between brain areas, which con-
tributed to efficient interareal communication (20). This per-
spective was largely based on analogy between brain networks
and other sociotechnical networks whose functions are better
understood (39).

In the decade and a half since these early analyses, however,
this narrative has largely remained unrefined (though there have
been some recent advances; see, for example, ref. 22). In general,
long-distance connections are almost universally regarded as key
integrative structures. Recently, however, the functional role
of long-distance connections has been revisited. In ref. 40, the
authors demonstrated that in the macaque brain, the similarity
of areas’ connectivity profiles decreased with distance, suggesting
that long-distance connections contributed to an area’s speci-
ficity. More recently and using a different macaque network
dataset, ref. 41 suggested that long-distance connections, those
unanticipated by a model that penalized the formation of costly
connections, form a dense cluster and may also perform some
segregative functions.

Our work builds on these and other recent papers investigat-
ing the functional consequences of the brain’s spatial embed-
ding and the roles of costly, long-distance connections (13, 19,
23, 26, 36, 42–44). Our findings show that, across species and
scales, interareal communication along shortest paths is dom-
inated by strong short-range connections, with long-distance
connections contributing minimally. Instead, we find that brain
areas’ neighbors via long-distance connections have markedly
different connectivity profiles than their short-range neighbors.
This finding is a clear demonstration that, from a structural
perspective, long-distance connections allow brain areas to inter-
act through novel configurations of inputs and outputs. The
consistency of this observation across species is also sugges-
tive of an evolutionarily conserved mechanism of interareal
communication.

The Specificity of Long-Distance Connections. In our work, we
also showed that brain areas’ profiles of long-distance connec-
tions were similar to one another, a feature not accounted
for by degree sequence, distance and weight distributions, and
weight–distance relationships. This observation suggests that the
organization of long-distance connections (and possibly connec-
tomes as a whole) is shaped by an underlying latent structure
that is a function of brain areas’ spatial locations but also
some set of unknown factors, including cytoarchitectonic and
transcription profile similarity (45–47), higher order topological
organization (44, 48), or temporal staging in which connec-
tions are formed during developmental windows when brain
areas are proximal to one another (49). The similarity of areas’
long-distance connectivity profiles also suggests a sense of con-
nectional specificity that may not be explained by recent papers
that proposed stochastic and globally enforced wiring princi-
ples (13, 23, 36). While these and other models can provide
insight into brain-wide organizational principles (44, 48, 50, 51),
they oftentimes lack the ability to accurately predict area-level
statistics (41).

Communication Dynamics. The aim of our study was to gain insight
into how long-distance connections shape interregional commu-
nication patterns in brain networks. We focused on shortest
path communication, in line with most studies in network neu-
roscience, where long-distance connections are thought to act
as shortcuts to reduce the number of steps between nodes (52).
Elsewhere, other communication strategies have been consid-
ered, including some that take into account suboptimal paths of
various lengths (53) or that use decentralized navigation strate-
gies to pass information from source to target nodes (54). These
and other mechanisms contribute to our knowledge of the func-
tional roles played by long-distance connections in facilitating
efficient communication and information transfer in social, tech-
nological, and biological networks (55). Our study builds upon
and extends this past work, finding the counterintuitive result
that the longest physical connections in weighted brain networks
contribute little to the efficiency of communication by weighted
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shortest paths. Instead, we find that these connections repre-
sent unique sources and targets for brain regions’ inputs and
outputs and are arranged redundantly, rendering these path-
ways robust to perturbations. Our study motivates more detailed
examinations of communication mechanisms in brain networks
(27, 52, 56).

In dismissing the role of long-distance connections as topolog-
ical shortcuts, we are not suggesting that they have no bearing
on interareal communication (52). Rather, we propose that they
serve as communication pathways in a nongeneric sense. Rather
than simply increasing or decreasing global measures of efficiency
and path length, long-distance connections help confer functional
specificity to brain areas, enabling access to and transmission of
novel inputs and outputs. Additionally, long-distance connections
are clustered, forming robust and reinforced bridges between spa-
tially specific neighborhoods and brain areas, ensuring reliable
communication along specific pathways.

Interpreting Connection Weights. The process of enumerating a
network’s shortest paths does not incorporate information about
spatial relationships. The observation that shortest paths are
dominated by short-range connections is a direct result of the
inverse relationship between connection weight and distance
as well as the assumption that connections’ weights represent
the communication efficacy between connected brain areas.
This interpretation, however, exposes a shortcoming common in
most empirical analyses of connectome data—namely, that the
weights of connections are estimated from structural data alone
and, while we ascribe functional significance to their values,
may have no true bearing on brain function or communication
(e.g., the number or fraction of reconstructed streamlines or
projections does not imply that they are consistently used for sig-
naling). Are we justified, then, in our functional interpretation of
connection weights?

At the scale of brain areas, communication is determined in
part by axonal diameter and myelination status, which place
limits on nerve conduction velocity (57, 58). Interestingly, a
number of studies have reported roughly lognormal-distributed
fiber diameters (59), which is in broad agreement with the con-
nection weight distributions reported here. Moreover, due to
volumetric (11) and cost constraints (18), the probability of
axonal projections spanning long distances is small (17, 60). So
while the distributions of connection weights are both consis-
tent across datasets and agree with previously reported results
in which other variables relevant to communication were also
measured, it still remains unclear whether the weights can be
directly interpreted in terms of interareal communication. Ulti-
mately, addressing this question remains an empirical challenge
but would be of tremendous practical value as it would inform
network modeling efforts, both of brain structural networks (51)
but also of their function (61–63).

Limitations. This study has a number of methodological limita-
tions. First, we assume that we can make meaningful claims
about the functional properties of nervous systems and brain
areas by studying their structural networks alone. The validity of
this assumption is built upon decades of empirical observations
and recent simulation studies demonstrating that the covariance
structure of temporally evolving neural activity can be predicted
from properties of the structural matrix (35, 64–66). Our claims,
however, are more nuanced than simply stating that function
and structure are related to one another. We claim, specifically,
that the shortest path structure of brain networks is of func-
tional importance, a view that has been challenged of late (28,
35). While the precise role of shortest paths is, indeed, unclear,
disruptions to shortest paths have been associated with disease,
suggesting an important—if poorly understood—functional role
(67, 68).

Second, the networks studied here were composites built from
many single-subject observations. It remains unclear to what
extent these networks are representative of the average indi-
vidual. Moreover, it is important to note that in the absence
of connection weights, long-distance and short-range connec-
tions are effectively weighted the same. In this extreme case,
it is likely that networks’ shortest paths will, in fact, include
many long-distance connections. We can begin to see this when
we tune the parameter α closer to zero. In any case, the
“correct” edge-weighting scheme is unknown. Lastly, diffusion
imaging and tractography exhibit known biases that make it chal-
lenging to detect long-distance cortico–cortical tracts (69, 70).
While future methodological advances may prove helpful (71),
our results are bolstered by the inclusion of a high-resolution
multiband diffusion imaging scan marking 257 diffusion
directions.

Lastly, in line with previous studies (23–26), we treat a connec-
tion’s length as a proxy for its cost. While length plays a central
role in determining cost (18), other factors also contribute,
including connection diameter, axon packing density, and mate-
rial composition (72, 73). However, experimentally quantifying
these factors is often difficult and, due to technological limita-
tions, is in some cases impossible for more than a small brain
volume. In addition, the contribution of a connection’s weight to
its cost remains unclear (73). Future work should be directed to
establish more physically grounded estimates of connection cost
at the level of the whole brain.

Conclusion
In conclusion, we present evidence that long-distance connec-
tions are not merely topological shortcuts. Instead, they intro-
duce diversity among brain areas’ neighbors, which we show
in human data can be related to brain function. We also con-
firm using simulations of brain dynamics that in the absence
of long-distance connections, brain networks exhibit a decrease
in their functional diversity. Lastly, long-distance connections
exhibit degeneracies, so that many different areas have similar
patterns of long-distance connectivity. We speculate that this
degeneracy confers robustness to the system. Our findings con-
tribute to a growing body of literature aimed at refining our
understanding of how brain structure shapes its function.

Materials and Methods
We analyzed mouse, Drosophila, macaque, and human weighted, interareal
network datasets. Each dataset was distinct in terms of imaging modality,
reconstruction technique, and connection weighting scheme. In the case of
the human data, all experimental procedures were approved by the Institu-
tional Review Board of the University of Pennsylvania, and all participants
gave informed consent. In the case of the mouse connectome data, and
as per Oh et al. (72), “all experimental procedures related to the use of
mice were approved by the Institutional Animal Care and Use Committee
of the Allen Institute for Brain Science, in accordance with NIH guide-
lines.” In the case of the macaque connectome data, and as per Markov et
al. (32), “surgical and histology procedures were in accordance with Euro-
pean requirements 86/609/EEC and approved by the ethics committe of the
region Rhône-Alpes.” See SI Appendix, Supplementary Materials, Network
Datasets for information on the origins and processing details of these
datasets. See SI Appendix, Supplementary Materials, Network Analysis for
derivations of network statistics and definitions of structural and functional
modules.
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27. Mišić B, et al. (2015) Cooperative and competitive spreading dynamics on the human
connectome. Neuron 86:1518–1529.

28. Avena-Koenigsberger A, et al. (2017) Path ensembles and a tradeoff between com-
munication efficiency and resilience in the human connectome. Brain Struct Funct
222:603–618.

29. Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H (2006) Between ses-
sion reproducibility and between subject variability of diffusion MR and tractography
measures. Neuroimage 33:867–877.

30. Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and
variable architecture of human white matter connectivity. Neuroimage 54:1262–1279.

31. Cammoun L, et al. (2012) Mapping the human connectome at multiple scales with
diffusion spectrum MRI. J Neurosci Methods 203:386–397.

32. Markov NT, et al. (2012) A weighted and directed interareal connectivity matrix for
macaque cerebral cortex. Cereb Cortex 24:17–36.

33. Betzel RF, Medaglia JD, Bassett DS (2018) Diversity of meso-scale architecture in
human and non-human connectomes. Nat Commun 9:346.

34. Muldoon SF, Bridgeford EW, Bassett DS (2016) Small-world propensity and weighted
brain networks. Sci Rep 6:22057.

35. Goñi J, et al. (2014) Resting-brain functional connectivity predicted by analytic
measures of network communication. Proc Natl Acad Sci USA 111:833–838.

36. Song HF, Kennedy H, Wang XJ (2014) Spatial embedding of structural similarity in the
cerebral cortex. Proc Natl Acad Sci USA 111:16580–16585.

37. Galán RF (2008) On how network architecture determines the dominant patterns of
spontaneous neural activity. PloS One 3:e2148.

38. Kötter R (2001) Neuroscience databases: Tools for exploring brain structure–function
relationships. Philos Trans R Soc Lond B Biol Sci 356:1111–1120.

39. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature
393:440–442.

40. Markov NT, et al. (2013) The role of long-range connections on the specificity of the
macaque interareal cortical network. Proc Natl Acad Sci USA 110:5187–5192.

41. Chen Y, Wang S, Hilgetag CC, Zhou C (2017) Features of spatial and functional seg-
regation and integration of the primate connectome revealed by trade-off between
wiring cost and efficiency. PLOS Comput Biol 13:e1005776.

42. Samu D, Seth AK, Nowotny T (2014) Influence of wiring cost on the large-scale
architecture of human cortical connectivity. PLoS Comput Biol 10:e1003557.

43. Betzel RF, et al. (2017) The modular organization of human anatomical brain
networks: Accounting for the cost of wiring. Network Neurosci 1:42–68.

44. Betzel RF, et al. (2016) Generative models of the human connectome. Neuroimage
124:1054–1064.

45. Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in con-
text: Principles of connections of the cortical visual system. NeuroImage 134:685–
702.

46. Beul SF, Grant S, Hilgetag CC (2015) A predictive model of the cat cortical connectome
based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184.

47. Richiardi J, et al. (2015) Correlated gene expression supports synchronous activity in
brain networks. Science 348:1241–1244.

48. Henriksen S, Pang R, Wronkiewicz M (2016) A simple generative model of the mouse
mesoscale connectome. Elife 5:e12366.

49. Kaiser M (2017) Mechanisms of connectome development. Trends Cogn Sci 21:703–
717.
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