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Abstract 

Objective:  Allelic imbalance (AI) is the differential expression of the two alleles in a diploid. AI can vary between 
tissues, treatments, and environments. Methods for testing AI exist, but methods are needed to estimate type I error 
and power for detecting AI and difference of AI between conditions. As the costs of the technology plummet, what is 
more important: reads or replicates?

Results:  We find that a minimum of 2400, 480, and 240 allele specific reads divided equally among 12, 5, and 3 
replicates is needed to detect a 10, 20, and 30%, respectively, deviation from allelic balance in a condition with 
power > 80%. A minimum of 960 and 240 allele specific reads divided equally among 8 replicates is needed to detect 
a 20 or 30% difference in AI between conditions with comparable power. Higher numbers of replicates increase 
power more than adding coverage without affecting type I error. We provide a Python package that enables simula‑
tion of AI scenarios and enables individuals to estimate type I error and power in detecting AI and differences in AI 
between conditions.
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Introduction
Gene expression in a diploid individual is the result of 
the combined expression of both alleles. Allele Specific 
Expression (ASE) is the amount of mRNA transcribed 
at each allele. The two alleles of a diploid individual 
can show significantly different expression, a condition 
termed allelic imbalance (AI) [1]. AI is a result of genetic 
variation in regulation in cis (e.g. promoters, enhancers, 
and other noncoding sequences), trans (e.g. transcription 
factors) or resulting from cis by trans interactions [1–7]. 
AI has been observed as a consequence of imprinting 
[8–10] and nonsense mediated decay [11] and has been 
shown to contribute to heterosis [12] and hybrid incom-
patibility [13]. The extent of AI in human tissues can give 
information on the impact of heterozygous mutations 

on the expression of the mutated allele in healthy [14] or 
cancerous human tissues [15]. Also, loss of heterozygo-
sity can be detected using AI [16, 17].

Several methods have been proposed for the detection 
of AI, [5, 15, 18–21]. However, there is currently only 
one model developed to formally test for difference in 
AI across conditions [22]. Comparing AI between condi-
tions or tissues can provide new insights into the mecha-
nisms of gene expression regulation [6, 9, 22–27]. Most 
often, these comparisons are heuristic without a formal 
statistical test. However, statistical comparisons have 
been made of heterogeneity in AI between mated and 
virgin Drosophila female head tissue [22], human tissues 
types within an individual [11, 26, 28], and cell subpopu-
lations in different developmental stages [29]. Some sta-
tistical tests have been performed to assess whether cis 
effects differ among alleles in a population [7] or in par-
ent of origin effects in mice [5].

Type I error in AI studies has been well explored and 
is known to be high, particularly when failing to account 
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for map bias [30], and/or using the binomial test [5, 19, 
20, 31–33]. What is currently absent from the literature 
is an understanding of the power for studies of AI and, 
in particular, what the best allocation of resources is for 
boosting power for detection of AI when the hypoth-
esis of interest is a comparison of AI between conditions. 
What is more important: more reads or more replicates? 
Is there a minimum number of replicates needed? A 
minimum number of allele specific reads? As sequenc-
ing costs are dropping in price and the per sample cost 
of library preparation dramatically lower than a decade 
ago, it is time to stop relying on the magic number 3 and 
determine the necessary size and scope of such studies 
to control type I for a particular type II error/power. It is 
common practice to assess power before embarking on 
association studies [34, 35], but no tool is currently avail-
able for assessing power for detecting AI and differences 
in AI between conditions.

To address this need, we present here the package 
BayesASE_power. It consists of tools to enable the user 
to simulate RNA-seq read counts under a previously 
published Bayesian model of AI [7, 20] with any number 
of replicates, reads, and AI. The results are aggregated 
across multiple simulated datasets to estimate Type I 
error and power. We demonstrate how to use BayesASE_
power to plan experiments to achieve the desired power 
in detecting AI within a condition and/or interactions of 
AI between conditions.

Main text
Methods
The model used for detection of AI in any condition 
and for comparing levels of AI between any two condi-
tions has been described earlier and implemented in the 
package BayesASE [7, 22]. We give here the basic defini-
tions and refer the reader to Additional file 1 for further 
details.

One important parameter in determining AI is the 
probability r of a read aligning to allele g1 (g2) given that 
it came from that allele, that we define as  ri,g1 ( ri,g2 ). Low 
values of these probabilities correspond to a high degree 
of ambiguously mapped reads, which occurs when there 
is little sequence divergence between the two alleles. 
Reads that do not map ambiguously are termed allele 
specific reads or informative reads.

AI in condition i is measured by the parameter θi rep-
resenting the proportion of reads originating from the 
allele g1, which that can be written as follows:

θi =
E(xi,k/ri,g1)

E(xi,k/ri,g1 + yi,k/ri,g2)
=

1/αi

αi + 1/αi

When θi is close to 0, we have one extreme case of 
AI with almost all the reads originating from g2. When 
θi = 0.5 , we have perfect allelic balance with 50% of the 
reads from each allele. With θi = 1 , we are in the oppo-
site direction of extreme AI with all the reads originating 
from g1.

The following null hypotheses are defined:

1.	 Allelic balance in condition 1, i.e. null H1: θ1 = 0.5 or 
equivalently α1 = 1.

2.	 Allelic balance in condition 2, i.e. null H2: θ2 = 0.5 or 
equivalently α2 = 1.

3.	 Level of AI is the same in both conditions, i.e. null 
H3:θ1 = θ2 or equivalently α1 = α2.

To test these hypotheses, three cases are defined 
(Fig. 1):

1.	 H1, H2 and H3 are satisfied
2.	 H1 is satisfied, H2 and H3 are violated
3.	 H1 and H2 are violated, H3 is satisfied

In our simulation, magnitudes of deviation from the 
null are reported as �AI . Given θ0 = 0.5,�AI1 =

|θ1−θ0|
θ0

 
for H1, �AI2 =

|θ2−θ0|
θ0

 for H2, and �AI3 = |θ2−θ1|
θ1

 for H3. 
Simulated deviations of �AI from the null are moderate, 
generally between 0.1 and 0.3, with a maximum of 0.5.

Scenarios that vary the number of allele specific reads, 
number of replicates, and AI in the different cases were 
simulated (Additional file 2).

The model used for the detection of AI in any condition 
and for comparing levels of AI between any two condi-
tions has been described earlier and implemented in the 
package BayesASE (https://​github.​com/​McInt​yre-​Lab/​
Bayes​ASE) [7, 22].

Results
Type I error is controlled except when total allele specific 
reads exceed 2400 allele specific reads dispersed across 8 
or more biological replicates (Fig. 2a, b). However, type I 
error is always less than 0.08.

Under all conditions Type I error is low (Fig. 2, Addi-
tional file 3), and only exceeds the nominal value of 5% in 
scenarios with very high numbers of allele specific reads 
(n > 2400) and biological replicates.

Power (Fig. 3) for detecting small deviations from the 
null (0.1) is less than 0.4 when the number of bioreps 
is 3 and only exceeds 0.6 when the number of bioreps 
is greater than 6 and the total number of allele specific 
reads is large. H1 is rejected with power > 80% when the 
total number of reads is at least 2400, and the number of 
independent biological replicates is at least 12 (an average 
of 200 allele specific reads per biological replicate). Power 
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for rejecting H3 is, as expected, lower than H1 (Fig.  3, 
Additional file 4). For �AI = 0.2 (central panels) and 960 
informative reads, H1 is rejected with power > 80% with 3 
biological replicates (average of 320 reads per replicate). 
H3 is rejected with power > 80% with 960 informative 
reads in 8 replicates (average of 120 reads per replicate). 
When �AI = 0.3 (bottom panels), power approaches 
100% except when the number of informative reads is 
low (120). As expected, the number of simulations does 
not affect estimates of power (Additional file  5). Power 
for the test of H3 for 3 biological replicates is maximal 
at 640 informative reads (Additional file 6). When �AI = 
0.3, most scenarios have power greater than 80% for both 
H1 and H3 (Fig.  3, Additional file  4). When �AI is 0.5, 
power for both H1 and H3 is ~ 100% even when the total 
number of informative reads is low. This represents an 

extreme scenario, but one that is often observed in situ-
ations with loss of heterozygosity, indicating that in these 
scenarios relatively few reads are needed to detect AI 
with confidence (Additional file 7).

Discussion
Type I error rarely exceeds the nominal value of 5% 
even for very high numbers of allele specific reads, while 
increasing the number of allele specific reads substan-
tially increases power. These observations are in agree-
ment with other approaches [5, 15, 21, 36], including with 
simulations performed using a previous version of this 
model [22]. However, except for Zou et al. [5], the power 
of these approaches was not assessed for jointly chang-
ing the number of allele specific reads and biological rep-
licates. BayesASE can directly test for a difference in AI 

Fig. 1  Read counts are simulated for different scenarios in two conditions. A scenario is defined as a specific number of simulations, number 
of allele specific reads, number of biological replicates (bioreps), level of allelic imbalance (AI) θ, and the probability of mapping an allele g1 (g2) 
specific read. Without loss of generality, let allele g1 be allele A and g2 be allele C (blue boxes). The number of allele specific reads (yellow reads) 
is the sum of unambiguously mapped reads in the experiment. Grey reads are reads that map equally well, i.e. ambiguously, to both alleles. 
Biological replicates in an experiment are samples from the same genotype and condition. In this example, there are k biological replicates, 12× k 
allele specific reads, and the probability of an allele specific read is ri,g1 = ri,g2 = 0.8 . The null H1 and H2 hypotheses are allelic balance θ1 = 0.5 
in condition 1 (ex. liver) and θ2 = 0.5 in condition 2 (ex. kidney), respectively. These cases are used to estimate the Type I error in rejecting allelic 
balance in conditions 1 (H1) and 2 (H2). In this example, θ1 = 0.55 under the alternative (alt) H1 hypothesis and θ2 = 0.55 under the alternative (alt) 
H2 hypothesis. These cases are used to estimate the power in rejecting allelic balance in conditions 1 (H1) and 2 (H2). θ1 = 0.5 and θ2 = 0.55 under 
the alternative (alt) H3 hypothesis, which allows estimation of the power rejecting equal levels of AI between the two conditions (H3). The null 
H3 hypothesis is simulated in both the complete null case: θ1 = θ2 = 0.5 and in the scenario where there is allelic imbalance in both conditions 
θ1 = θ2 = 0.55. These cases can be used to estimate the Type I error in rejecting equal levels of AI between the two conditions (H3)
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Fig. 2  Variations in type I error (y-axis) are shown as a function of the number of biological replicates, or bioreps (x-axis) assuming different 
numbers of allele specific reads. H1 and H3 refer to the null hypothesis of allelic balance within a condition (H1) and the null hypothesis of equal 
levels of AI between the two conditions (H3). The Type I Error (y-axis) is computed as the proportion of simulations for which the Bayesian evidence 
against allelic balance within a condition or equal AI between conditions is < 0.05. Plots a and b show eight simulated values of the number (#) of 
allele specific reads, which is the sum of the reads that map unambiguously to an allele in the experiment. Plots c and d show four simulated values 
of the number (#) of allele specific reads per bioreps, which is the number of allele specific reads divided by the number of bioreps. �AI is deviation 
from the null, i.e. deviation from allelic balance in condition ( �AI1 ) or the relative difference in the levels of allelic imbalance between the two 
conditions ( �AI3)The probability of an allele specific read is ri,g1 = ri,g2 = 0.8 and there are 1000 simulations

Fig. 3  H1 refers to simulations under the alternative hypothesis of allelic imbalance within a condition and H3 refers to unequal levels of AI 
between the two conditions. For H1, the x-axis is the effect size, which is the relative deviation from allelic balance �AI1 = |θ−θ0|

θ0
 , where θ0 = 0.5 . For 

H3, the x-axis is the relative difference in levels of AI between the two conditions �AI3 = |θ2−θ1|
θ1

 where the first condition is simulated under the null 
hypothesis and the second under the alternative hypothesis θ  = 0.5 . The power (y-axis) is computed as the proportion of simulations for which the 
Bayesian evidence against allelic balance within a condition or against equal levels of AI between conditions is < 0.05. There are 1000 simulations 
and the probability of an allele specific read is ri,g1 = ri,g2 = 0.8. Simulations for 3, 4, 5, 6, 8, and 12 biological replicates (bioreps, x-axis) for varying 
numbers (#) of allele specific reads are reported

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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between two conditions or genotypes and, accordingly, 
we can assess how variation in both the number of rep-
licates and reads affects the power to not only detect AI 
in a condition but differences in AI between conditions.

BayesASE has adequate power to detect moderate devi-
ations from the null hypothesis. However, the minimum 
number of reads and biological replicates to achieve this 
power is greater for smaller deviations from the null. Our 
simulations suggest that a minimum of 2400 informative 
reads across 12 replicates, 480 informative reads across 
5 replicates (or a minimum of 3 replicates with a total of 
960 informative reads), and 240 informative reads across 
3 replicates results in > 80% power to detect �AI1 (or 
�AI2) = 0.1, 0.2, and 0.3, respectively. While the power 
to detect �AI3 = 0.1 does not surpass 60% in our simu-
lations, we can detect a difference in AI between condi-
tions ( �AI3) of 0.2 and 0.3 with comparable power for 
the same deviation from the null within a condition with 
the same number of informative reads but only when 
spread over more replicates (i.e. 8). A deviation from the 
null of �AI = 0.3 has power > 80% in most scenarios and 
even higher deviations can be detected with almost 100% 
power. Such large differences are indicative of loss of het-
erozygosity as observed in cancers [17] and imprinting 
[9, 10].

The results presented here describe general trends. 
In order to estimate power (and type I error) for a par-
ticular scenario of interest, the simulator developed as 
a part of this work can be used. The simulator explic-
itly enables the exploration of the total number of reads 
relative to the number of informative reads. The number 
of informative reads depends on the length of the fea-
ture (exon, gene), and on the density of polymorphisms. 
While, it is possible to analyze individual SNPs, investiga-
tors should take care to ensure that individual reads are 
not used in support of multiple SNPs. In addition, both 
the number allele specific reads (dependent on the dis-
tribution of polymorphisms) and the overall number of 
reads (dependent on library size and expression levels) 
affect power and should be accounted for in any mode-
ling approach comparing AI between conditions.

One aspect that will be interesting to test in future 
studies is the behavior of nearby genes. In organisms, 
such as D. melanogaster, in which topologically asso-
ciated domains (TADs) aggregate genes with similar 
expression patterns [37], we could expect that TADs also 
discriminate different patterns of AI, if the imbalance is 
due to shared sequence (i.e. polymorphic enhancer), but 
not if the imbalance is due to gene-private sequence (i.e. 
polymorphic gene or promoter).

We present results of an extensive simulation study to 
quantify type I error and power in detecting AI using the 
model implemented in the BayesASE pipeline [7]. Both 

number of reads and number of replicates are important, 
and they both should be maximized. However, for any 
given number of reads, the best idea is to maximize the 
number of replicates. This is in agreement with previous 
studies that suggested that increased biological replica-
tion should be favored over increased depth of coverage 
[5, 38]. This of course should be balanced against the fact 
that having several replicates is more expensive. This said, 
we do not recommend designing any biological experi-
ment with less than three biological replicates.

Limitations
This simulation study, like most such studies, makes 
simplifying assumptions for computational ease and 
efficiency. It is performed under optimal scenarios for 
a single gene and, thus, may not account for all limita-
tions that are inherent to real data. Thus, the recom-
mendations based on the simulation results should be 
considered a minimum threshold for study size planning. 
However, despite their drawbacks, simulations are neces-
sary because it is not possible to estimate power without 
them.
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ated domain.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13104-​021-​05851-x.

Additional file 1. Additional Methods. This file contains the section 
additional methods, in which we summarize the definition of the Bayesian 
model used in this work. The model has been previously published and 
described, and we provide in additional methods a brief summary just to 
facilitate readers.

Additional file 2. List of simulation parameters. Excel file consisting of 
two worksheet. Worksheet “Data” contains the simulation parameters used 
in the various simulations performed for this work. Worksheet “Legend” 
contains the description of the parameters.

Additional file 3. Variation of type I error as a function of number of simu‑
lations, number of allele specific reads per bioreps and extent of deviation 
from allelic balance.

Additional file 4. Variation of power as a function of number of bioreps.

Additional file 5. Variation of power as a function of number of 
simulations.

Additional file 6. Variation of power as a function of number of allele 
specific reads per biorep.

Additional file 7. Variation of power as a function of the extent of devia‑
tion from allelic balance.

Acknowledgements
Authors acknowledge the HiPerGator High Performance Super Computer 
at the University of Florida, and are grateful to UFRC (University of Florida 
Research Computing) for valuable assistance.

https://doi.org/10.1186/s13104-021-05851-x
https://doi.org/10.1186/s13104-021-05851-x


Page 7 of 8Sherbina et al. BMC Research Notes          (2021) 14:436 	

Authors’ contributions
KS performed analysis and wrote the code, LGL-N developed the statistical 
model and wrote the code, SN interpreted the data, LMM developed the 
statistical model and interpreted the data, FM wrote the code and interpreted 
the data. All authors contributed to writing the manuscript. All authors read 
and approved the final manuscript

Funding
This work was financed by the National Institutes of Health (NIH) grant, 
National Institute of General Medical Sciences Grant Number GM128193/GM/
NIGMS), Lauren M. McIntyre.

Availability of data and materials
This study was performed using programs written in Python and R that are 
available using the MIT license as the package BayesASE_power: https://​
github.​com/​McInt​yre-​Lab/​Bayes​ASE_​power. The package requires the installa‑
tion of BayesASE available on PyPI: https://​pypi.​org/​proje​ct/​Bayes​ASE/. All the 
additional files are available at https://​osf.​io/​sw3r2/, with the following https://​
doi.​org/​10.​17605/​OSF.​IO/​SW3R2

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Quantitative and Computational Biology Section, University of Southern 
California, Los Angeles, CA 90046, USA. 2 Department of Biostatistics and Data 
Science, The University of Texas Health Science Center at Houston-School 
of Public Health, Houston, TX 77030, USA. 3 Molecular and Computational 
Biology Section, University of Southern California, Los Angeles, CA 90046, USA. 
4 Genetics Institute and Department of Molecular Genetics and Microbiology, 
University of Florida, Gainesville, FL 32603, USA. 5 Dipartimento di Scienze 
Agroalimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy. 

Received: 16 July 2021   Accepted: 15 November 2021

References
	1.	 Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans 

gene regulation. Nature. 2004;430:85–8.
	2.	 Genissel A, McIntyre LM, Wayne ML, Nuzhdin SV. Cis and trans regulatory 

effects contribute to natural variation in transcriptome of drosophila 
melanogaster. Mol Biol Evol. 2007;25:101–10.

	3.	 Graze RM, McIntyre LM, Main BJ, Wayne ML, Nuzhdin SV. Regulatory 
divergence in Drosophila melanogaster and D. simulans, a genomewide 
analysis of allele-specific expression. Genetics. 2009;183:547–61.

	4.	 Graze RM, Novelo LL, Amin V, Fear JM, Casella G, Nuzhdin SV, et al. Allelic 
imbalance in drosophila hybrid heads: exons, isoforms, and evolution. 
Mol Biol Evol. 2012;29:1521–32.

	5.	 Zou F, Sun W, Crowley JJ, Zhabotynsky V, Sullivan PF, de Pardo-Manuel 
Villena F. A novel statistical approach for jointly analyzing RNA-Seq data 
from F1 reciprocal crosses and inbred lines. Genetics. 2014;197:389–99.

	6.	 Fear JM, León-Novelo LG, Morse AM, Gerken AR, Van Lehmann K, Tower J, 
et al. Buffering of genetic regulatory networks in Drosophila melanogaster. 
Genetics. 2016;203:1177–90.

	7.	 Miller BR, Morse AM, Borgert JE, Liu Z, Sinclair K, Gamble G, et al. Test‑
crosses are an efficient strategy for identifying cis -regulatory variation: 
bayesian analysis of allele-specific expression (BayesASE). G3. 2021. 
https://​doi.​org/​10.​1093/​g3jou​rnal/​jkab0​96.

	8.	 Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, et al. High-
resolution analysis of parent-of-origin allelic expression in the mouse 
brain. Science. 2010;329:643–8.

	9.	 Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, et al. 
The landscape of genomic imprinting across diverse adult human tissues. 
Genome Res. 2015;25:927–36.

	10.	 Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, et al. Analy‑
ses of allele-specific gene expression in highly divergent mouse crosses 
identifies pervasive allelic imbalance. Nat Genet. 2015;47:353–60.

	11.	 Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, et al. 
Impact of predicted protein-truncating genetic variants on the human 
transcriptome. Science. 2015;348:666–9.

	12.	 Shao L, Xing F, Xu C, Zhang Q, Che J, Wang X, et al. Patterns of genome-
wide allele-specific expression in hybrid rice and the implications on the 
genetic basis of heterosis. PNAS. 2019;116:5653–8.

	13.	 Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, et al. 
Tissue-specific patterns of regulatory changes underlying gene expres‑
sion differences among Ficedula flycatchers and their naturally occurring 
F1 hybrids. Genome Res. 2020. https://​doi.​org/​10.​1101/​gr.​254508.​119.

	14.	 Kukurba KR, Zhang R, Li X, Smith KS, Knowles DA, Tan MH, et al. Allelic 
expression of deleterious protein-coding variants across human tissues. 
PLoS Genet. 2014;10:e1004304.

	15.	 Mayba O, Gilbert HN, Liu J, Haverty PM, Jhunjhunwala S, Jiang Z, et al. 
MBASED: allele-specific expression detection in cancer tissues and cell 
lines. Genome Biol. 2014;15:405.

	16.	 Tuch BB, Laborde RR, Xu X, Gu J, Chung CB, Monighetti CK, et al. Tumor 
transcriptome sequencing reveals allelic expression imbalances associ‑
ated with copy number alterations. PLoS ONE. 2010;5:e9317.

	17.	 Liu Z, Dong X, Li Y. A genome-wide study of allele-specific expression in 
colorectal cancer. Front Genet. 2018;9:570.

	18.	 Pandey RV, Franssen SU, Futschik A, Schlötterer C. Allelic imbalance metre 
(Allim), a new tool for measuring allele-specific gene expression with 
RNA-seq data. Mol Ecol Resour. 2013;13:740–5.

	19.	 Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM. A powerful and 
flexible statistical framework for testing hypotheses of allele-specific 
gene expression from RNA-seq data. Genome Res. 2011;21:1728–37.

	20.	 León-Novelo LG, McIntyre LM, Fear JM, Graze RM. A flexible Bayesian 
method for detecting allelic imbalance in RNA-seq data. BMC Genomics. 
2014;15:920.

	21.	 Edsgärd D, Iglesias MJ, Reilly S-J, Hamsten A, Tornvall P, Odeberg J, et al. 
GeneiASE: Detection of condition-dependent and static allele-specific 
expression from RNA-seq data without haplotype information. Sci Rep. 
2016;6:21134.

	22.	 León-Novelo L, Gerken AR, Graze RM, McIntyre LM, Marroni F. Direct 
testing for allele-specific expression differences between conditions. G3. 
2018;8:447–60.

	23.	 Guo M, Yang S, Rupe M, Hu B, Bickel DR, Arthur L, et al. Genome-wide 
allele-specific expression analysis using Massively Parallel Signature 
Sequencing (MPSSTM) Reveals cis- and trans-effects on gene expression 
in maize hybrid meristem tissue. Plant Mol Biol. 2008;66:551–63.

	24.	 Castel SE, Aguet F, Mohammadi P, Aguet F, Anand S, Ardlie KG, et al. A vast 
resource of allelic expression data spanning human tissues. Genome Biol. 
2020;21:234.

	25.	 Springer NM, Stupar RM. Allele-specific expression patterns reveal biases 
and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell. 
2007;19:2391–402.

	26.	 Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al. 
Landscape of X chromosome inactivation across human tissues. Nature. 
2017;550:244–8.

	27.	 Ardlie KG, Deluca DS, Segre AV, Sullivan TJ, Young TR, The GTEx Consor‑
tium, et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitis‑
sue gene regulation in humans. Science. 2015;348:648–60.

	28.	 Pirinen M, Lappalainen T, Zaitlen NA, Dermitzakis ET, Donnelly P, GTEx 
Consortium, et al. Assessing allele-specific expression across multiple 
tissues from RNA-seq read data. Bioinformatics. 2015;31:2497–504.

	29.	 Choi K, Raghupathy N, Churchill GA. A Bayesian mixture model for the 
analysis of allelic expression in single cells. Nat Commun. 2019;10:5188.

	30.	 Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of 
read-mapping biases on detecting allele-specific expression from RNA-
sequencing data. Bioinformatics. 2009;25:3207–12.

https://github.com/McIntyre-Lab/BayesASE_power
https://github.com/McIntyre-Lab/BayesASE_power
https://pypi.org/project/BayesASE/
https://osf.io/sw3r2/
https://doi.org/10.17605/OSF.IO/SW3R2
https://doi.org/10.17605/OSF.IO/SW3R2
https://doi.org/10.1093/g3journal/jkab096
https://doi.org/10.1101/gr.254508.119


Page 8 of 8Sherbina et al. BMC Research Notes          (2021) 14:436 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	31.	 Wang M, Uebbing S, Ellegren H. Bayesian inference of allele-specific 
gene expression indicates abundant cis-regulatory variation in natural 
flycatcher populations. Genome Biol Evol. 2017;9:1266–79.

	32.	 van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific soft‑
ware for robust molecular quantitative trait locus discovery. Nat Methods. 
2015;12:1061–3.

	33.	 Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T. 
Tools and best practices for data processing in allelic expression analysis. 
Genome Biol. 2015;16:195.

	34.	 Sham PC, Purcell SM. Statistical power and significance testing in large-
scale genetic studies. Nat Rev Genet. 2014;15:335–46.

	35.	 Hong EP, Park JW. Sample size and statistical power calculation in genetic 
association studies. Genomics Inf. 2012;10:117–22.

	36.	 Fontanillas P, Landry CR, Wittkopp PJ, Russ C, Gruber JD, Nusbaum C, et al. 
Key considerations for measuring allelic expression on a genomic scale 
using high-throughput sequencing. Mol Ecol. 2010;19(Suppl 1):212–27.

	37.	 Torosin NS, Anand A, Golla TR, Cao W, Ellison CE. 3D genome evolution 
and reorganization in the Drosophila melanogaster species group. PLoS 
Genet. 2020;16:e1009229.

	38.	 Main BJ, Bickel RD, McIntyre LM, Graze RM, Calabrese PP, Nuzhdin 
SV. Allele-specific expression assays using Solexa. BMC Genomics. 
2009;10:422.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Power calculator for detecting allelic imbalance using hierarchical Bayesian model
	Abstract 
	Objective: 
	Results: 

	Introduction
	Main text
	Methods
	Results
	Discussion

	Limitations
	Acknowledgements
	References




