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Abstract

Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐

mediated etiology. Clinically, these diseases appear to be unrelated, but

pathogenic pathways have been shown to connect them. While inflammation is

a common occurrence in the body, it may either stimulate a favorable immune

response to protect against harmful signals or cause illness by damaging cells and

tissues. Nanomedicine has tremendous promise for regulating inflammation and

treating IMIDs. Various nanoparticles coated with nanotherapeutics have been

recently fabricated for effective targeted delivery to inflammatory tissues. RNA

interference (RNAi) offers a tremendous genetic approach, particularly if

traditional treatments are ineffective against IMDs. In cells, several signaling

pathways can be suppressed by using RNAi, which blocks the expression of

particular messenger RNAs. Using this molecular approach, the undesirable

effects of anti‐inflammatory medications can be reduced. Still, there are many

problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including

poor localization of the siRNAs in target tissues, unstable gene expression, and

quick removal from the blood. Nanotherapeutics have been widely used in

designing siRNA‐based carriers because of the restricted therapy options for

IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA

nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and

cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA

nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nano-

formulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based

delivery systems. We have also introduced novel siRNA‐based nanocarriers to
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control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel

disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way

for new avenues of research into the diagnosis and treatment of IMDs.
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1 | INTRODUCTION

Immune‐mediated diseases (IMDs), including rheumatoid arthritis (RA),

systemic lupus erythematosus, inflammatory bowel disease (IBD),

ulcerative colitis (UC), Crohn's disease, psoriasis, and other inflammatory

conditions, are complex conditions affected by both environmental

and genetic factors. The relationships between genetic markers and

predisposition to these disorders have been widely investigated, and

hundreds of risk factors have emerged over the last 20 years, with

scientists identifying similar inherited patterns between them

(Axelrad, 2021; Borren & Ananthakrishnan, 2019; González‐Serna

et al., 2020; Lo et al., 2021). The inflammation process could be

stimulated by physical, chemical, biological, or psychological events in

acute and chronic states (Chen et al., 2017). On the other hand, chronic

inflammation is a significant influencer in diseases like cancer, auto-

immune disorders, asthma (Hunter, 2012), bone diseases [arthritis

(Moudgil & Choubey, 2011; Rojas et al., 2018), osteoporosis (Hoffmann

et al., 2016) and gout (Bohatá et al., 2021)], heart diseases, diabetes

(Lopez‐Candales et al., 2017), neurodegenerative diseases (Barcelos

et al., 2019), Crohn's disease and UC (Deepak et al., 2019). The human

immune response to protect the steady functionality of the body is a

complex network of immune cells and molecules. Autoimmune diseases

refer to abnormal responses with systemic or localized disorder origins,

which could include the mechanisms like cytokine dysregulation (Moudgil

& Choubey, 2011), T‐cell mediated (Sasaki et al., 2019), B cell receptor‐

mediated (Taher et al., 2017), dendritic cell (DC) apoptosis (Ganguly

et al., 2013), molecular mimicry (Rojas, Restrepo‐Jiménez, 2018), etc.

Abnormal inflammation response contributes to several autoimmune

diseases and inflammation regulatory methods are promising therapeutic

options (Duan et al., 2019). As a treatment view of IMDs, gene

expression knockdown could stop the disease's main pathways.

Regulation of gene expression could modify DNA, transcriptional,

posttranscriptional, and translational regulations by changing the rates,

structure, factors, and stabilities. Gene knockdown therapies with RNA

interference (RNAi) pathways have recently received great attention

(Mocellin & Provenzano, 2004).

Small interfering RNAs (siRNAs) are silencing RNAs (noncoding

double‐stranded RNA molecules) with approximately 20–25 base pairs

(bps) that with phosphorylated 5′ end, hydroxylated 3′ end, and two

overhanging nucleotides, involved in RNAi pathways. Stable siRNA

could deliver as stem‐loops in multiple promoter/shRNA, long hairpin

RNA (hpRNA), and microRNA (miRNA)‐embedded structures. The

siRNA could be introduced to cells by exogenous origin, uptaking,

vectors (virus, transposons) (Cambon & Déglon, 2013), electroporation

(Muller et al., 2015), or direct injection. According to clinical trials, there

are currently 90 registered siRNA‐related projects, including Cosdosiran,

Nedosiran, Tivanisiran, Teprasiran, Vutrisiran, and Fitosiran in phase 3,

which 40 of them stated as completed (2022). Commercial siRNA

therapeutics are patisiran, givosiran, Inclisiran, and lumasiran, which

gained the US Food and Drug Administration (FDA) approvals. Patisiran

is formulated with a lipid nanoparticle (NP) delivery system for

polyneuropathy patients (FDA, 2018). Givosiran is formulated with

GalNAc conjugation for hepatic porphyria disease (FDA, 2019).

Lumasiran formulation with GalNAc conjugation is approved to treat

primary hyperoxaluria type 1 (FDA, 2020).

Nanotechnology's emergence in medicine has excellent applica-

tions in pharmaceutical delivery (Mei et al., 2013), high‐quality

diagnostics (Mukhtar et al., 2021; Sheervalilou et al., 2021), and

regenerative medicine (Garbayo et al., 2020). Several commercial

nanotechnology‐enabled drugs have been FDA‐approved, including

Cabenuva, Rapamune, Doxil, Abraxane, VYXEOS, Copaxone,

Onivyde, Abelcet Estrasorb, Avinza, Feraheme, etc. (2022, Albalawi

et al., 2021; FDA, 2022). Furthermore, the application of nano-

technology has a great impact on medical devices such as thin‐film

protection, sensors, actuators, and delivery mechanisms, which

reduces the size while improving efficiency. In this connection,

nanotechnology‐assisted drug delivery is a promising solution to the

issues above and precise control of the delivery process. A broad

range of nanomaterials (NMs), including organic and inorganic NPs,

are fabricated in the forms of nanoemulsions, dendrimers, polymers,

liposomes, lipids, mesoporous silicon, etc. (Patra et al., 2018).

Nanodelivery has advantages of targeted stability, biocompatibility,

and bioavailability. Despite the advantages, the toxicity and

biodegradability of NMs pose a great challenge to in vivo applica-

tions, which could be viewed as an opportunity (Albalawi et al., 2021).

Inflammation‐induction issues and immune stimulation of NMs are

the main concerns as they could easily cross barriers and persist in

organs which require accurate controlling of the physicochemical

properties (Jeong et al., 2022). Proinflammatory cytokines are

activated in case of lung inflammation by triggering tumor necrosis

factor‐α (TNF‐α) production for initiation in the preliminary lung

infections, mainly referred to as chronic obstructive pulmonary

disease, asthma, acute respiratory distress syndrome, acute lung

injury, and COVID‐19 (Subhan et al., 2022). Therefore, siRNA can be

modulated for localized and targeted delivery through airways by

inhalation via nasal route, as shown in Figure 1, to exert its action
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directly on the inflamed tissues and achieve rapid onset of action,

reduced dosing frequency, and reduced side effects (Mahinfar

et al., 2022).

In MS complex autoimmune cases, nanocarriers like nanostruc-

tured lipid carriers could cross the blood‐brain barrier (BBB)

(Chountoulesi & Demetzos, 2020), carrying lipophilic and hydrophilic

drug loads with high capacity and release controls (Chauhan

et al., 2020). In a RA case, Sun et al. (2019b) synthesized pH‐

sensitive polymeric NPs for siRNA‐delivery with neutral degradation

products, rapid‐controlled release, and a faster degradation profile.

Pandi et al. (2018) had compared dendriplexes and lipoplex carriers

for topical siRNA‐delivery safe formulation to treat psoriasis. Such

studies show nanomedicine's important role in overcoming the

specific challenges in inflammation/autoimmune diseases treatment.

The ideal in vivo siRNA delivery mechanism should be

biocompatible and nonimmunogenic, protect siRNA against serum

nucleases, and allow siRNA delivery by endocytosis to target cells

after systemic administration (Oh & Park, 2009). Over the last

decade, nanotechnology has proven to be a fast and effective way to

specifically target cell types with potential therapies such as siRNA in

autoimmune conditions (Tarner & Fathman, 2001; Verma et al., 2021).

The small size of immune‐inert NPs leads to targeted delivery of

cargo to the destination, as well as small biodegradable NPs can

significantly evade trap by the reticuloendothelial system that serves

as a system for particles cleaning and soluble substances in the

blood circulatory system resulting in prolonging the presence of

the therapeutics (Alexis, Tang et al., 2019). Positively charged peptide

NPs could embed the negatively charged siRNA with charge‐charge

interaction, assembled on a core NP to treat breast cancer

(Lee et al., 2017).

Carbon nanotubes (CNTs) have toxicity that could accumulate in

the body, and researchers have studied the functionalized CNTs to

overcome the disadvantages (Li et al., 2016). Virus‐like particles

assembly of siRNA in the lumen area to treat the osteoporosis in a rat

model (Hoffmann, Böker, 2016). In photodynamic therapy (PDT) for

cancer treatment, NMs have increased efficiency, specificity,

stability, drug load capacity, upconversion, and therapy resistance

(Chen et al., 2020). Laroui et al. have combined noninvasive PDT and

gene silencing methods with a novel cationic guanidylated porphyrin

(H2‐PG)‐siRNA NPs therapy to treat breast cancer, indicating the

potential of nanomedicine in modern therapies (Laroui et al., 2019).

Li et al. (2021) have synthesized polyethyleneimine (PEI) modified

carbon dots (CDs) for siRNA‐based downregulation of HDGF with

enhanced stability, emission‐independent excitation (traceable), and

transfection efficiency (Li et al., 2021), which indicates nanomedicine

potential in novel treatment methods.

Many therapeutic goals against IMDs are ineffective due to their

lack of focus on the specific target cells for treatment. However, the

increase in the number of patients with autoimmune disorders and

the convergence of nanotechnology and biotechnology has led to the

development of methods based on defective gene silencing

specifically, which can be an appropriate solution to coverage of

traditional methods disadvantages.

Following the granted patents, commercial application, and

approval of the siRNA‐based gene expression regulatory drugs, great

interests have focused on the siRNA‐based therapeutics market to

treat various diseases. This review article will attempt to briefly

discuss the mechanisms of siRNA‐based Gene knockdown therapies

and by focusing on nanotherapeutic approaches against IMDs. In

addition, the possible challenges and potential strategies from

treatment view to commercial scale‐up are addressed. Finally, we

will discuss the challenges of applying siRNA‐based nontherapeutic

approaches and future prospects.

2 | IMDS

2.1 | Psoriasis

Psoriasis is an immune modulated chronic inflammatory skin infection

affecting about 2–3% of the population worldwide (Roslan

et al., 2020). As far as the pathophysiology of psoriasis is concerned,

it is multifactorial, depending on either genetic causes or epigenetic

changes (Novelli et al., 2021). However, it can be characterized as

excessive epidermal proliferation via lymphocytes and neutrophils

(Novelli et al., 2021). Furthermore, due to the involvement of immune

responses, inflamed tissues can be infiltrated by leucocytes (Novelli

et al., 2021; Sun et al., 2019a). Overexpression of the psoriasis

phenotype is due to the underlying interaction between innate

immunity cells, cytokines like interleukins (IL‐17, IL‐22, and IL‐23), as

well as TNF‐α (Ricardo & Lipner, 2020). Symptomatically, psoriasis is

diagnosed by the presence of plaques in the squamous and

erythematous skin layers (Zhang, 2019). In addition, as far as

treatment of psoriasis is concerned, various strategies have been

utilized to overcome the severity and progression of the disease

(Arshad et al., 2019). Most common topical therapies include

corticosteroids, vitamin D, and antibodies (Hosseinikhah et al., 2021).

Systemic‐based therapies include the use of retinoid, immuno‐

suppressants, and methotrexate (uz Zaman et al., 2021). However,

F IGURE 1 siRNA can be modulated for localized and targeted
delivery through airways by inhalation via nasal route. siRNA,
short‐interfering RNA
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these treatments are limited owing to their compromised safety

profile and reduced therapeutic index (Arshad et al., 2021c).

2.2 | Inflammatory bowel disease

Intestinal epithelial cells are embellished with various microorgan-

isms, dietary antigens, and specific antimicrobial proteins and toxoids

to maintain homeostasis and activate the normal immune response of

the immune system in the form of inflammation (Goto, 2019).

Inflammation is the most important component of the immune

system's defense against intestinal infections or injuries

(Jarmakiewicz‐Czaja et al., 2020). To keep the digestive system in

balance, the body's immune cells go through normal inflammatory

processes. These processes account for intestinal mucosal and

epithelial barriers, intestinal immune components, and proinflamma-

tory pathways (Curciarello et al., 2019; Yue et al., 2019). All these

three natural mechanistic intestine approaches help limit the over‐

burden of notorious pathogenic bacteria and over‐activated immune

responses (De La Fuente et al., 2019). Notwithstanding, any

alteration in the intestinal flora, such as stress, genetics, and age,

can alter the balance when preserving intestinal homeostasis and

allow pathogenic bacteria to enter the intestinal epithelium,

contributing to excessive inflammation and IBD pathogenesis

(Kim et al., 2019b). Moreover, IBD can be further propagated

towards chemical phenomena of CD and UC, and the situation can be

worsened with the relapse of this disease followed by chronic

inflammation at various sites resulting in abdominal pain, diarrhea,

and most importantly, lead to colorectal cancer. We have previously

reported several advancements in the treatment and detection of

IBD using NP‐based systems (Barani et al., 2021).

2.3 | Ulcerative colitis

IBD is associated with further inflammatory responses leading

toward UC, affecting mucosal and sub‐mucosal linings of the

intestine (Arshad et al., 2021b). UC is disastrous because it leads

to an increased risk of colorectal cancer if the prognosis is left

unaddressed (Arshad et al., 2021c). However, now a day,

treatment protocols for UC involve 5‐ASA (5‐aminosalicylic acid)

and steroids, but this therapy leads to the remission of infection,

thus needing novel therapeutic evaluations (Kanwal et al., 2019).

In recent years, novel antibody‐based medications have been

involved in treating UC with high levels of effectiveness in severe

cases. However, antibodies related therapy leads to therapeutic

failure in case of systemic infections. Moreover, antibodies‐based

treatments originated from animal sources and are very expensive

compared to other treatments. Systemic infection of UC cannot

be effectively treated with the siRNA due to rapid degradation via

nucleases. It seems urgent to develop nanotechnology‐based

drug delivery platforms for the targeted delivery of siRNAs

(Arshad et al., 2021a).

2.4 | Rheumatoid arthritis

RA is an autoimmune disease associated with other disorders

affecting bone structure and framework leading to disability.

However, with time as diagnosis techniques have been improved,

pathogenesis has been simplified to some extent. Current treatment‐

based strategies highlight the need for quick onset prognosis time

and therapeutic evaluation and interventions based on the use of

anti‐rheumatic and nonsteroidal anti‐inflammatory medications

(Janakiraman et al., 2018). Therefore, novel treatment strategies

based on nanotechnology and siRNA leading to RNA silencing proved

to be a hallmark in drug development technology. RA has been

characterized by raised cytokines and immune cells, leading to

inflammatory endothelial cells and activating the accumulation of

immune responses. In addition, in RA, inflammation is associated with

the infiltration of many macrophages in the synovial tissues, leading

to cartilage damage and infiltration leading to proinflammatory

cytokines like TNF‐α, IL‐1, and IL‐6. One of the main issues regarding

the delivery of siRNA is its degradable nature. Therefore, cationic

ligands are in demand for penetration enhancement and targeted

delivery and can be considered a gold standard for gene delivery

owing to the presence of ample amino acid (Han et al., 2021).

2.5 | Brain inflammation

Intracerebral hemorrhage (ICH) is the worst health condition with

increased morbidity and mortality (Almarghalani & Shah, 2021;

Mukhtar et al., 2020; Zheng et al., 2018). However, survival cases

after this deadliest disease are determined based on its levels of

severity (Mishra et al., 2022). ICH is often associated with

inflammation reactions and modulation of inflammatory responses

(Mishra, Ashique et al., 2022). Yet, current treatment opportunities

for the hemorrhage involved no particular involvement in the

therapeutic preferences (Kandil et al., 2020). Similarly, glioblastoma

(GBM) is also related to aggression in chronic inflammation, where

IL‐6 cytokines are highly associated with GBM (Akhilesh et al., 2022).

One of the novel treatment strategies is gaining huge interest due to

the successful target binding and crossing of biological brain barriers

(Del prado‐Audelo et al., 2019; Zhang et al., 2021).

3 | IMMUNOSTIMULATORY SIRNAS AND
THEIR MECHANISM OF ACTION

siRNAs are characterized by low cellular uptake and are vulnerable to

degradation by nucleases in the blood circulation or within cells

(Alshaer et al., 2021). They can suppress the expression of target

genes and provide an alternative treatment option to treat various

disorders, including inflammatory diseases (Jiang et al., 2013; Judge

et al., 2009; Yang et al., 2011). However, determining the underlying

mechanism of their therapeutic benefits remains a major challenge.

RNAi‐specific messenger RNA (mRNA) cleavage products were also
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detected in diseased cells, and their abundance was linked to the

duration of target mRNA suppression. RNAi‐mediated gene suppres-

sion substantially decreases the target's biological activity, according

to histological biomarkers (Judge, Robbins, 2009).

To modulate gene expression, briefly, the Dicer enzyme (an

endo‐ribonuclease 3) cleaves the long dsRNA/hpRNA to RNAi/

siRNA, which in cells (cytoplasm) forms RNA‐Induced Silencing

Complex (RISC) with single‐stranded antisense part of siRNA (guide

strand) as sense strand take apart by RNA Helicase enzyme after

attachment (Bernstein et al., 2001). The low thermodynamically

stability of siRNAs (nucleotides in 5′ end) allows them to stand as a

part of the RISC complex to bind a complementary messenger RNA

(mRNA) entirely from 5′ seed part (2nd to 8th nucleotides) and

induce a slicing mechanism by Argonaute protein (AGO part of RISC).

The cleaved mRNAs degrade as abnormal molecules before transla-

tion. miRNA, as a small single‐stranded noncoding RNA molecule

(~22 nucleotides), has a similar mechanism to siRNA, in which they

bind to the target mRNA partially in the seed part and inhibit the

translation process. hpRNAs (siRNAs) can be processed via Dicer in

cell cytoplasm before the RNAi pathway (Figure 2) (Mack, 2007).

RNAi mediated gene therapies have recently gained much

attention in treating IMDs (Bunse et al., 2014; Courties et al., 2009;

Jakymiw et al., 2006). In common cases, multiple mechanisms such as

decreased drug absorption (Longley & Johnston, 2005), drug efflux

(Zhang et al., 2020), detoxifying systems activation, inhibition of

apoptosis (Gillet & Gottesman, 2010; Mishra et al., 2017), and

silencing of drug‐resistant genes (Edson & Kwon, 2014). However, a

higher dose of drugs can increase the adverse effects (Cooper

et al., 2019). RNAi has been widely used in molecular medicine

research as an alternative therapeutic method in the last decade. In

particular, significant achievements have been made in various

diseases treatment, including autoimmune conditions (Li et al., 2020;

Scheinman et al., 2011).

Mammalian innate immunity relies on Toll‐like receptors (TLRs),

which recognize pathogen‐associated molecular patterns, and con-

served components of microbes (PAMPs). siRNAs may activate TLRs,

including TLR3, TLR7, and TLR8, which can detect double‐stranded

RNAs in the viral genome (Sioud, 2006). When employed therapeuti-

cally, siRNA detection via TLR7 of innate immune cells might lead to

undesired inflammatory effects (Sioud, 2007). A variety of transcription

factors, including interferon regulatory factor 3 (IRF‐3) and 7 (IRF‐7), and

nuclear factor (NF)‐B, are activated by siRNAs in inflammatory

processes. Activation of TLRs via siRNAs can contribute to the

activation of DCs and T lymphocytes in particular tissues (Hornung

et al., 2005). Evidence supports the hypothesis that 5′‐triphosphate

siRNA can activate natural killer cells and DCs via triggering the RIG‐I

pathway (Poeck et al., 2008; Wang et al., 2013). To eliminate diseased

cells, therapeutic DC vaccines depend on immune responses. Such

vaccines can be turned into powerful immune stimulators by using anti‐

immunosuppressive siRNAs in the development process of DCs.

For adoptive immunotherapy, siRNA alteration of ex‐vivo‐expanded T

cells increased their ability to destroy diseased cells (Figure 3). In

preclinical and clinical trials, siRNAs that block most common immune

inhibitory components have shown the greatest therapeutic outcomes.

There is a compelling argument for the future development of DC

vaccines using siRNA‐modified DCs in therapeutic modalities

(Sioud, 2019). The potential activation of TLRs has been identified as

a major disadvantage for the development of anti‐inflammatory siRNAs

(Avenoso et al., 2018), as inflammatory response stimulation goes in the

opposite direction as expected gene inhibition of cytokines.

When considering RNAi as a therapeutic approach, stability and

delivery of siRNA molecules in in vitro and in vivo models are vital

factors. The siRNA molecules must overcome rapid degradation by

plasma enzymatic system, membrane uptake, immune system response

as extracellular barriers, and endosomal escape, off‐target effects as

intracellular limitations. However, the bare siRNA molecule has little

F IGURE 2 Schematic of siRNA/miRNA silencing pathway. RISC,
RNA‐induced silencing complex (Sioud, 2019). miRNA, microRNA;
mRNA, messenger RNA; siRNA, small interfering RNA; TRBP, TAR
RNA‐binding protein

F IGURE 3 Schematic representation of boosting the immune
responses by combining siRNAs with DC vaccinations. For this
purpose, DCs may be electroporated with siRNAs. The assembly
process is found to be easy and does not add any additional
manufacturing expenses (Sioud, 2019). DC, dendritic cell; siRNA,
small interfering RNA; TLR7/8, Toll‐like receptors 7 and 8
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chance of targeting gene silencing due to its short half‐life (Pauley &

Cha, 2013; Sajid et al., 2020). To prevent the stimulation of the immune

system, as a side effect of siRNA‐based therapies, using more efficient

methods of delivery or performing chemical modifications can be

applied (Gorabi et al., 2020). Although various chemical modifications

have been applied to enhance their function and stability, siRNAs are

still vulnerable to degradation by plasma and nucleases (Watts

et al., 2008).

The treatment of autoimmune diseases with siRNA by NPs‐

mediated with prolonged blood circulation and associated with

extravasation along leaky vasculature and subsequent inflammatory

cell‐mediated sequestration (ELVIS) (Wei et al., 2017;Wei et al., 2018)

has recently focused much consideration because of its capacity to

specifically select defective genes and overcome the disadvantages

of standard therapeutic processes (Khurana et al., 2010; Merlo

et al., 2020; Yi Xue et al., 2015). Below, we will briefly discuss the

potential of different nanovehicles to deliver siRNAs to target

locations.

4 | SIRNAS NANO‐DELIVERY SYSTEMS

siRNA plays a crucial role in gene silencing as one of the most critical

drug candidates, so many siRNA delivery systems have been

developed (Naik et al., 2021). It is approved that siRNAs can disrupt

the translation process, silence genes, and even inhibit corresponding

proteins' expression via targeting a specific mRNA. Nevertheless,

naked siRNA is not long‐lasting in circulation, and it is difficult for

siRNA to enter cells, requiring appropriate gene carriers to aid

intracellular and systemic delivery (Sousa et al., 2019). Different

delivery systems have been offered for siRNA delivery. Although viral

vectors have been the most effective in siRNA delivery, there are

many concerns over biosafety, especially regarding immunogenicity

(Jiang et al., 2021). Therefore, there is an interest in investigating and

studying nonviral carriers. These carriers are typically easier to create

and safer to use within the body, albeit less efficient than viral

carriers. Nonviral carriers that have been proposed for siRNA delivery

include lipid‐based, polymeric‐based, and inorganic material‐based

systems (Goswami, 2021). The ideal nonviral siRNA carriers must

meet the following prerequisites: biocompatibility, biodegradability,

stability, non‐toxicity, compress siRNA to NP size, induce endosomal/

lysosomal escape, facilitate cellular uptake, and protect siRNA from

enzymatic degradation and/or inactivation (Raftery et al., 2013).

Although the most common nonviral carriers of siRNA include lipids,

polymers, and inorganic NMs, modified naked siRNAs have also

shown remarkable ability to obtain further benefits such as more

stability and circulation in vivo (Hu et al., 2020).

4.1 | Lipid‐based siRNA nanocarriers

Due to amphipathic properties, lipid nanocarriers can spontaneously

form lipid bilayers consisting of hydrophobic tails and hydrophilic

head groups so that they will be able to entrap hydrophilic drugs in

the core and hydrophobic drugs in the bilayer membrane. Since

cellular membranes are composed of lipids and phospholipids, lipid‐

based siRNA nanocarriers can interact favorably with the cell

membrane and increase siRNA uptake (Yi Xue, Guo, 2015). The use

of lipid‐based nanocarriers is further practical for siRNA delivery

because they are commercially available without chemical synthesis;

however, the most prominent problem with lipid systems is their

clinical toxicity and nonspecific activation of inflammatory cytokines

(Dokka et al., 2000). In addition, it has been confirmed that

encapsulating RNA with lipids reduces the RNA degradation rates

and increases the nucleic acid material cellular uptake (Gomes‐da‐

Silva et al., 2012; Mashaghi et al., 2013). Several lipid‐based

nanocarriers have been examined for siRNA delivery, including

liposomes, lipoplexes, and stable nucleic acid‐lipid particles (SNALPs)

(Nguyen et al., 2021) (Figure 4).

4.1.1 | Liposomes and cationic lipids

Lipid‐based nanocarrier systems are broadly utilized in pharmaceuti-

cal sciences due to their structural similarity to cell membranes

and desirable properties such as great biodegradability (Pathak

et al., 2011). The spherical nanostructure of liposomes contains an

aqueous core entrapped by one or more phospholipids bilayers. As

nanocarriers, these powerful platforms have the potential to

encapsulate a wide range of therapeutic agents, antibodies,

proteins, peptides, and nucleic acids; they can also serve as a vehicle

for photosensitizers (PS), which are essential for enhancing PDT

(Guimarães et al., 2021).

F IGURE 4 Schematic representation of lipid‐based siRNA
nanocarriers. siRNA, small interfering RNA
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F IGURE 5 (a) Schematic representation of the cationic lipid (lipoplex) coating with anionic polymers for siRNA delivery. (b) Schematic
representation of anionic polymers chemical structure added in siRNA lipoplexes. siRNA, small interfering RNA

Liposomes, both cationic and neutral, have been shown to be

effective carriers of siRNA. There are three major elements in

cationic lipids, and they are as follows: (I) the lipid tail(s); (II)

the cationic head group; and (III) the linkers that connect the two

components together. These nanovehicles can enhance RNA en-

capsulation efficiency (EE) due to electrostatic interactions; this

process sometimes results in siRNA/lipid complexes formation known

as lipoplexes (Berger et al., 2021). Although the preparation of

lipoplexes is straightforward and has good transfection efficiency,

their drawback is poor stability and low reproducibility. Also, some

RNAs may be exposed to the carrier surface, promoting immunogenic

responses; therefore, minimizing undesired toxicity remains vital

when forming lipoplexes (Yi et al., 2015). Cationic liposomes (e.g.,

DOTAP, AtuFECT01, and DC‐Cholesterol) combined with associate

lipids (e.g., DPhyPE, Cholesterol, and DOPE) have shown excellent

results in siRNA delivery at optimized N/P ratios. (Tagami et al., 2011).

Neutral liposomes [e.g., 1, 2‐dioleoyl‐sn‐glycero‐3‐phosphatidyl‐

choline (DOPC)] have reduced such toxicity, although their entrap-

ment efficiency might be decreased. Various strategies have been

offered to reduce lipoplex toxicity and improve the in vivo delivery of

siRNA. To this end, researchers have coated the cationic lipoplexes

with nontoxic and biodegradable anionic polymers, such as poly

(acrylic acid) sodium salt, dextran sulfate sodium salt, hyaluronic acid

sodium salt, alginic acid sodium salt, heparin sulfate sodium salt,

carboxymethylcellulose sodium salt, and poly‐L‐glutamic acid sodium

salt. Among these anionic polymers, polyglutamate did not have any

apparent toxicity over many sizes. The coated cationic liposomes

showed enhanced siRNA delivery in the liver and lung tissues

compared to uncoated lipoplexes (Figure 5) (Anionic polymers for

decreased toxicity and enhanced in vivo delivery of siRNA complexed

with cationic liposomes).

To achieve efficient delivery of siRNA mediated by lipid‐based

systems, various parameters must be considered: cargo encapsulation

ratio, electrostatic charge, and particle size. Also, to increase the

stability of the nanocarrier system and efficient nucleic acid delivery,

polymeric compounds can be used alongside lipid‐based siRNA

delivery systems (Ozpolat et al., 2014). Recently, ONPATTRO®

(patisiran) was developed by Alnylam® Pharmaceuticals as the first

FDA‐approved therapeutic For the treatment of polyneuropathy in

cases with hereditary transthyretin‐mediated amyloidosis, in addition

to the first targeted RNA‐based gene therapy, siRNA‐lipid NPs

mediated (Garber, 2018; Hoy, 2018). Osteoporosis and cartilage

degradation are common complications of RA (Goldring, 2003).

During the developmental cycle of the RA, several genes and

regulatory pathways lead to the production of inflammatory cytokines

such as TNF‐α, nuclear factor kappa‐light‐chain‐enhancer of activated

B cells (NF‐κB), and interleukin 1 beta (IL‐1β)are involved, silencing

these genes and pathways by siRNA represents a promising treatment

approach (Yonezawa et al., 2020). Herman et al. (2015) developed a

liposome‐based siRNA delivery system to silence Heterogeneous

nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) in mouse models

due to collagen‐induced arthritis. hnRNP A2/B1 appears to be a
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fundamental coactivator for involved transcription factors in the

proinflammatory processes (Cloonan & Choi, 2012). Cationic lipo-

some RPR209120/DOPE was used as a lipid‐based delivery

system (Khoury et al., 2006). Dynamic light scattering (DLS) and zeta

potential determination were carried out to characterize formed

lipoplex particles. Eventually, the results showed that inhibition of

hnRP A2/B1 as an innate immune system regulator affects the

release of proinflammatory mediators levels (TNF‐α, IL‐23) and

alleviates the disease.

4.1.2 | Stable nucleic acid‐lipid particles

Protecting cationic liposomes using hydrophilic molecules, such as

poly (ethylene glycol) (PEG), have been used to extend their

circulation and reduce inflammatory responses as they reduce

phagocytic opsonization activity (Qelliny et al., 2021). SNALPs are

among the PEGylated cationic liposomes that provide hydrophilicity

and a neutral layer to stabilize these particles in circulation (Ali

et al., 2021). An exciting feature of SNALPs is that they show a

positive charge at acidic pH while neutral at physiological pH (Rudorf

& Rädler, 2012). These systems comprise a systemic lipid bilayer

based on fusogenic and cationic lipids that enable endosomal release

and facilitate the absorption of siRNA into cells, respectively

(Figure 6) (Abd Ellah et al., 2021). SNALPs have become a promising

platform for silencing therapeutically relevant genes in different

animal models (Subhan & Torchilin, 2019). Nonhuman primate Apo B

gene expression was silenced using SNALPs for the first time by

Zimmermann et al. (2006). Moreover, SNALP has been successfully

used to silence mTTR gene expression, and 100 clinical investigations

proved the practicality of this SNALP‐siRNA carrier in humans (Lin &

Tam, 2019; Nikam & Gore, 2018).

4.2 | Polymeric‐based siRNA nanocarriers

In the last decades, natural or synthetic nano‐polymers as colloidal

solids have been extensively developed to degrade in vivo without

having toxic ingredients (Rozema et al., 2007). The advantage of

polymeric carriers is their diverse and flexible nature; moreover, they

do not strongly stimulate the immune response as liposomes do

(Srivastava et al., 2015). Polymeric carriers are generally divided into

polycations and polymeric NPs (Cavallaro et al., 2017). These polymers'

high positive charge content fuses with the negative charge of nucleic

acids to form a polyplex. Electrostatic binding of siRNA is readily

achieved by the presence of positively charged units on polymeric

platforms such as thiol‐maleimide or disulfide linkages, making it

feasible to covalent involving siRNA and polymers (Parmar et al., 2014).

Polymers' versatility and simple manipulation have resulted in

different polymeric carriers for reliable delivery to the target tissue/

cell (Gary et al., 2007). Cationic polymers are divided into two

branches of synthetic such as PEI, poly‐L‐lysine, and natural Polymers

(i.e., chitosan, atelocollagen) that usually contain a cationic part

involved in siRNA and polymer formulations (Farshbaf et al., 2018).

F IGURE 6 Schematic of the SNALP delivery system. Reprinted from ref (Alabi et al., 2012) (Copyright 2022 Elsevier). SNALP, stable nucleic
acid‐lipid particle
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Late, the advancement of natural cationic polymers has led to a highly

efficient delivery strategy with non‐cytotoxicity, biodegradability, and

biocompatibility. The siRNA rigid structure provokes weak interactions

with polycations. As a result, polyplexes are less efficient in protecting

siRNA against nucleases. Increasing the polycations amount can

improve this imperfection but increases toxicity (Miele et al., 2012).

Also, dendrimers have been considered synthetic globular lipid

nanostructures with high flexibility in their physicochemical features,

great potential in pharmaceutical applications, and proficient loading of

siRNA (Figure 7) (Kim et al., 2019a).

4.2.1 | PEI‐based nanosystems

The PEI synthetic polymer has a high utility due to its high efficiency

in siRNA transfection and is considered the gold standard for gene

transfer. However, its transfection efficiency also relies on its

molecular weight and the number of branches. Although high

molecular weight PEI has good transfection potential, it shows

considerable toxicity. Many studies examined different bonding

agents to reduce cytotoxicity while preserving the gene delivery

capacity (Fischer et al., 1999). Less toxicity is expected using lower

molecular weight PEIs or fusing them with liposomes in the structure

of lipopolyplex (Ewe et al., 2017). The lipopolyplex gene delivery

system combines polynucleotide molecules, liposomes, and cationic

polymers with noncovalent bonds to escape the endosome (Rezaee

et al., 2016) (Figure 8). Lipopolyplex, due to its extensive surface area,

can connect many functional groups to a liposomal or polymeric part

and has been proposed as a manipulative platform (Emilian

Leucuta, 2013). Therefore, depending on the composition of

liposomes and polymer types, various lipopolyplex have been

designed. For example, dexamethasone‐loaded lipopolyplex bound

to PEI has been transferred to mouse A2Neuro neuroblastoma cells

(Malaekeh‐Nikouei et al., 2018). In a study that compared PEI and

PEI‐PEG polyplexes for siRNA transfer to the lung, the PEI‐PEG

system showed higher efficiency in silencing the EGFP gene by up to

42%. However, PEI‐PEG polyplexes also had moderate proinflamma-

tory effects on elevated levels of IL‐6 and TNF‐α cytokines (Merkel

et al., 2009). Various studies have been performed to modify the

structure of PEI to increase the transmutability of a genetic agent

(siRNA) into the cell and reduce the toxicity of this realistic vector. Xu

et al. (2008) used Poly (ester amine)‐mediated PEG to modulate PEI's

high toxicity and biodegradability in siRNA in vivo delivery. The

transfer of this siRNA‐carrying complex to lung cancer cells to reduce

F IGURE 7 Schematic illustration of PAMAM‐mediated siRNA and pDNA delivery for EGFR‐targeted tumor therapy. Specific binding to the
EGFR overexpressing receptors on the tumor cells causes receptor‐mediated endocytosis captured by the lysosomes, lysosomal escape, gene
release, and induces apoptosis. Reprinted from ref (Li et al., 2018) (Copyright 2022 Elsevier). siRNA, small interfering RNA
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Akt1 gene expression in mice showed a significant reduction in

cancer cell progression without significant toxic effects (Xu

et al., 2008). Polymers such as PEI can escape the endosome. This

ability called the proton sponge is due to the PEI high buffering

capacity, in which polymer protonates (releases protons) over a wide

range of pH, causing CL‐ions to enter the endosome, then water

followed enters the endosomes. Eventually, the endosome ruptures,

releasing its contents into the cytoplasm due to the high osmotic

pressure (Creusat et al., 2010). Although in synthetic polymers such

as PEI, the transfection rate is high due to the proton sponge effect,

cytotoxicity remains as a serious challenge (Brunot et al., 2007).

4.2.2 | Chitosan‐based nanoformulations

Chitosan has received great attention as a potential vector in siRNA

transfection due to its naturalness, biocompatibility, and biodegrad-

ability properties. We recently showed that chitosan nanomaterials

could be extensively used for gene (i.e., microRNA) delivery (Sargazi

et al., 2022). Unfortunately, the only drawback of using this polymer

is moderate transfection efficiency in in vitro and inv vivo

environments because it cannot escape the endosome. To improve

siRNA transfection efficiency using chitosan NPs, an ionic gelation

method has been proposed, which is produced using sodium

triphosphate. Comparing the typical chitosan‐based siRNA nanocar-

riers and ionic gelation nanocarriers showed the improved ability of

the ionic gelation nanocarriers to turn off the target gene in vitro

(Katas & Alpar, 2006). Figure 9 illustrates cationic polymer‐based

siRNA nanocarriers.

4.3 | Inorganic material‐based siRNA nanocarriers

Inorganic nanoparticles (INPs) have been designed as an alternative

to lipid‐based nanovehicles for in vitro and in vivo siRNA delivery

(Shariatinia, 2022). Their extensive surface‐area‐to‐volume ratio

F IGURE 8 Schematic structures of various modified PEIs in LPPs formulations. (a) Unmodified branched polyethylenimine (bPEI);
(b) bromohexane‐modified bPEI; (c) hexyl acrylate‐modified linear polyethylenimine (lPEI); (d) hexyl acrylate‐modified bPEI; (e) poly L‐lysine (PLL)
conjugated bPEI; (f) reversible conjugation of hexadecenal to PEI. Reprinted from ref (Rezaee et al., 2016) (Copyright 2022 Elsevier).
PEI, polyethylenimine
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allows efficient loading of genetic agent (siRNA) through direct

conjugation or noncovalent encapsulation (Khan et al., 2021). Ability

to modify the surface chemistry of these NPs provides promising

platforms to overcome the challenges of in vitro and in vivo siRNA

delivery (Baccaro et al., 2015). The siRNA immobilization strategies

on the surface of INPs are shown in Figure 10. INPs have been widely

used as genetic agent carriers due to their efficient transduction

capacity, surface functionalization, and size diversity. Their extensive

surface has provided siRNA's efficient attachment onto INPs via

chemisorption and electrostatic interaction. However, there are

critical immune responses and long‐term cytotoxicity for INPs‐

based applications. Further investigations seem to be required to

describe physical and chemical characteristics of INPs affect their

biological responses.

F IGURE 9 Scheme of cationic polymer‐based siRNA nanocarriers. siRNA, small interfering RNA

F IGURE 10 (a) The siRNA immobilization
strategies onto the surface of INPs. (b)
Schematic illustration for polyelectrolyte
complexes formed from amine‐functionalized
gold nanoparticles (AF‐AuNPs) with siRNA
and siRNA–PEG conjugate. Reprinted from ref
(Lee et al., 2008) (Copyright 2022 Elsevier).
siRNA, small interfering RNA
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Furthermore, the unique optical and physical characteristics of

inorganic frameworks, such as magnetic NPs and AuNPs, have been

used to monitor the delivery of siRNA inside the body for in vivo

imaging (Shrestha et al., 2019). For example, Ngamcherdtrakul et al.

(2018) developed 50 nm INPs modified with PEI, PEG, and an antibody.

These siRNA delivery nanosystems were stable, showed luciferase

silencing inhibition, and displayed antiproliferative impact in vitro. In

addition, mesoporous silica NPs have been utilized as outstanding

carriers to deliver siRNAs to cancer cells (Wang & Gu, 2015) (Figure 11).

4.4 | Hybrid‐based delivery system

As discussed earlier, lipid and polymer‐based strategies played a

crucial function as a vector in the siRNA delivery to the target cell

or tissue. However, by electrostatic dealings between the siRNA

negative charge and these cationic systems, immunogenicity,

nonspecific targeting, and lack of particle size control are formed.

Combining different siRNA delivery systems to achieve high

efficiency targeted siRNA delivery and to overcome the

F IGURE 11 Overview of the classification, functional abilities, applications, and biological fate of the MSNPs in drug delivery research.
Reprinted from ref (Barkat et al., 2021) (Copyright 2022 Elsevier)
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disadvantages of previous methods has led to the generation of

hybrid‐based systems. To achieve more efficient delivery, siRNA

has been merged with diverse nano‐composites, including lipid‐

polymer nanoparticles (LPNs), peptide‐polymer, and aptamer,

to provide a safe and specific treatment method to manage

autoimmune diseases. Recently, the hybrid system that has been

considered is poly (lactic‐co‐glycolic acid) or PLGA and the

cationic lipid 1,2‐dioleoyl‐3‐trimethylammonium propane

(DOTAP) as LPNPs that are involved in the efficient delivery of siRNA

(Figure 12) (Colombo et al., 2015; te Boekhorst et al., 2012).

Jansen et al. (2019) designed a hybrid nanocomplex by

incorporating PLGA polymer with DOTAP cationic lipid and

TNF‐α siRNA to achieve a promising treatment for severe

inflammations caused by autoimmunity. SiRNA was closely packed

in LPNs, but LPNs did not conjugate with others as compared with

SNALPs. The hydrodynamic diameter (approximately 210 nm) and

polydispersity index (PDI) (approximately 0.11) represent a

relatively narrow size distribution of synthesized NPs. The LPNs

had a better effect in vitro than the SNALPs in the RAW 264.7

macrophage cell line that was activated with lipopolysaccharide

(LPS). Both nanodelivery platforms employed macropinocytosis to

enhance cell uptake. When injected intraarticularily, TNF siRNA‐

encapsulated LPNs markedly prevented inflammation in a murine

arthritis model. However, this study indicated that LPN‐mediated

TNF knockdown is a promising strategy for treating arthritis and

other chronic inflammatory conditions mediated by TNF (Jansen

et al., 2019). However, additional investigations are required to

optimize the dose and progress towards safe treatment. These

conclusions could supply a rationale for the future of therapeutics

employing gene therapy NP‐based mediated delivery technology

to decrease symptoms of autoimmune disorders. Here, we

summarized the Nano‐based delivery system used for siRNA

delivery to create innovative treatment modalities for auto-

immune disorders (Table 1).

5 | SIRNA‐BASED NANOCARRIERS TO
CONTROL IMDS

Several studies have reported that specific genes and pathways play

crucial roles in the induction of autoimmunity disorders, which

includes TNF‐α or IL‐6 as a multifunctional cytokine; it has been

currently recognized to have extra vital capabilities as a pathological

aspect of autoimmune diseases (Ishihara & Hirano, 2002; Jang

et al., 2021).

5.1 | Pulmonary inflammation

In an exciting experiment, Bohr et al. (2020) successfully fabricated

three polyamidoamine (PAMAM) dendrimers to deliver siRNA to

inflamed pulmonary cells. Dendriplex were prepared in the 10mM of

4‐(2‐hydroxyethyl)−1‐piperazineëthanesulfonic acid (HEPES) buffer,

a zwitterionic sulfonic acid buffering agent, at nitrogen to phosphate

(N/P) ratio of various concentrations (5–40). Dendriplexes were

characterized for particle size distribution and PDI by DLS using

the photon correlation spectroscopy technique, cell culture, cellular

uptake, cell viability, and cell transfection. Results concluded that all

dendriplexes demonstrated an average size between 127 nm and a

PDI of 0.27. The dendriplexes showed an excellent aptitude to

condensate siRNA, a high cellular internalization rate, and a specific

and effective gene silencing of TNF‐α. In vivo studies in a murine

acute lung inflammation model also presented silencing of TNF‐α.

The outcomes recommend that TNF‐α targeting siRNA can be used

as local management for the overall suppression of lung inflammation

prophylactically (Bohr et al., 2020). In another investigation, Zhai and

co‐workers (2022) developed a nanosystem endured with reactive

oxygen species (ROS) to downregulate inflammatory responses.

Therefore, in this project, dexamethasone acetate (DEX) was used

to be encapsulated into the polymers‐based thiolated pockets.

F IGURE 12 Model for the structural characteristics of siRNA‐loaded LPNs and their release dynamics. For LPNs the siRNA is loaded in
(1) surface lamellar layers, (2) surface‐grafted DOTAP–siRNA complexes, and (3) matrix‐entrapped siRNA–DOTAP complexes (a). The release
from these structures occurs as the release of siRNA–DOTAP complexes by disassembly of surface structures (b), sustained release of
siRNA–DOTAP complexes by diffusion (c), and matrix erosion (d). Reprinted from ref (Colombo et al., 2015) (Copyright 2022 Elsevier). siRNA,
small interfering RNA
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Thiolated pockets constituted small cleaving units in the form of

urethane. Repeating urethane units can be cleaved only in the

presence of oxidative stress and raised ROS levels, leading to

targeted release. Hence, the synthesized formulations were

characterized via in vitro, ex vivo, and in vivo parameters. Results

concluded that the accumulation at pulmonary inflammation sites for

releasing the encapsulated payloads rapidly followed by a decline in

ROS levels (Zhai et al., 2022).

5.2 | Psoriasis

Technological advancements in pharmaceutical industries claimed

the effectiveness of siRNA in the overexpression of the genes in

specific inflammatory responses during infection. However, an

effective and stabilized carrier system is highly recommended for

transferring siRNA at the site of action (Kiani et al., 2021). Nuphar

Veiga and associates investigated hybrid NPs as a carrier system

showing high flexibility and versatility (Veiga et al., 2020). Hybrid

polymer‐lipid NPs (PLNs) are an emerging nano‐particulate system

for loading drugs, constituting polymers and lipids as components,

for bestowing the advantages of both materials. PLNs can bypass

the restrictions of “naked” siRNA, thus paving the way to develop

new gene silencing strategies. However, another critical issue is

the internalization of the siRNA in the endosomal vesicles.

Therefore, this research investigates a PS by light irradiation for

siRNA photo‐activation within the vesicles. In this context,

coadministration of TNF‐α siRNA and PS (TPPS2a) using a nano‐

carrier based on hybrid polymer‐lipid nanoparticles (PLNs) for

topical administration is utilized. Moreover, PLNs were synthe-

sized through a hot homogenization method followed by sonica-

tion and incubation at room temperature for 30 min. The PS

TPPS2a solution in the phosphate‐buffered saline/dimethyl sulf-

oxide mixture was added in the aqueous phase called PLN‐TPPS2a.

Furthermore, PLN‐TPPS2a was complexed with siRNA resulting in

PLN‐TPPS2a‐siRNA, as shown in Figure 13.

Moreover, PLNs were characterized based on size, NP tracking

analysis, EE, Differential scanning calorimetry, complexation, integrity

assay, in vitro skin permeation, and retention, cellular viability, and

uptake. However, in vivo characterization includes the Imiquimod‐

induced psoriasis model, TNF‐α silencing, and histopathological

analysis. The characterization assays recommended worthy physico-

chemical characteristics for the PLN formulation, in addition to high

EE %. The PLNs retention and penetration in the target cells were

maximum. The in vitro and in vivo results confirmed the high

prospective of this system in treating psoriatic lesions using the

irradiation mechanism. Taken together, these outcomes clearly

defined the prospective of using PLNs for co‐delivery of TNF‐α

siRNA and TPPS2a as a promising topical therapy against psoriasis

(Suzuki et al., 2021).

In another research, Rosa Viegas and coworkers developed

tacrolimus (TAC), a macrolide immunosuppressive inhibitor, and

siRNA‐based lipid nanocarriers formulated to deliver medications.

NPs were characterized for in vitro, ex vivo, and in vivo parameters.

However, results depicted the particle size of 230 nm with a zeta

potential of +10mV, respectively. The dissolution profile established

the controlled release of TAC and siRNA with enhanced permeation

and retention applicable for topical application. Findings showed a

significant reduction in cytokines along with alleviation of psoriasis

symptoms (Viegas, Praca, et al., 2020).

Moreover, another distinctive feature of the psoriasis is the

immune responsive hyper‐proliferation and non‐differentiated

keratinocytes as well as infiltrated inflammatory immune cells.

Recent novel research in understanding the molecular mechanistic

has proved that the signal transducer and activator of transcription

3 (STAT3) is the key factor in promoting human psoriatic skin

lesions. There is evidence of the downregulation of the psoriasis

factor aantolactone (ALT) and sesquiterpene lactone compound

that could selectively suppress STAT3 activation. Hence in this

research, ALT‐loaded polymeric chitosan/hyaluronic acid NPs

(CHALT) were considered and explored the therapeutic applica-

tion for psoriasis. It was identified that CHALT declined the

hyper‐proliferation via inducing ROS‐mediated apoptosis by losing

the mitochondrial matrix. Results designated that ALT‐based

nanoformulation holds great potential for psoriasis therapy

(Ferreira et al., 2017).

F IGURE 13 (a) Molecular structure of TPPS2a. (b) Graphic scheme of the PLN‐TPPS2a‐siRNA NPs. Reprinted from ref (Suzuki et al., 2021).
siRNA, small interfering RNA
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5.3 | Inflammatory bowel disease

Nuphar Veiga and coworkers developed LNPs conjugated siRNA

in an acetate buffer using a microfluidic mixing device. siRNA‐

loaded LNPs were characterized for size, transmission electron

microscopy, self‐assembly, EE, cell knockdown, dot blot, flow

cytometry, ex vivo, and in vivo silencing assays. Results

concluded that the size range of LNPs was 57.63 ± 3.2 nm with

a ζ potential of 0.7 ± 0.35 mV. Generally, a distinguished reduc-

tion of IRF8 mRNA exhibited a targeted immunomodulatory

effect ex vivo and in vivo in the DSS colitis model. Therefore, the

authors claimed that a selective silencing of IRF8 in inflammatory

leukocytes might function as a promising therapy against

inflammatory disorders of the colon (Veiga et al., 2019).

In another research, Christina Kriegel and coworkers deter-

mined to down‐regulate TNF via oral RNAi therapy for treating

IBD. However, in this therapeutic approach, (siRNA) was

encapsulated in gelatin‐based NPs and further entrapped in PCL

microspheres to develop NPs‐in‐microsphere oral system. After-

ward, optimization and characterization tests lead to decreased

levels of TNF‐α and other inflammatory mediators (Kriegel, Amiji

& gastroenterology, 2011). Similarly, Mingzhen Zhang and

researchers opted for green nanotechnology to target IBD.

In this research, NPs can be synthesized from the edible

ginger GDNPs and demonstrate efficient targeting capability.

NPs exhibited a size of 230 nm with negative zeta potential.

These NPs have the specialty of accumulating the high levels of

lipids, few proteins, and ∼125 microRNAs (miRNAs) subunits.

Ginger constitutes a large amount of bioactive constituents like

6‐gingerol and 6‐shogaol. Conclusively, it was depicted that it

enhanced the cellular uptake in epithelial cells of the colon and

macrophages. Conclusively, ginger‐based edible NPs proved to

be a novel, and natural transporting agent in IBD preventive

and therapeutic outcomes with synergistic with an added

benefit of overcoming limitations such as potential toxicity and

limited production scale that are common with synthetic NPs

(Zhang et al., 2016).

5.4 | Ulcerative colitis

Due to increased developments in drug discoveries, scientists tried to

develop novel therapies based on the siRNA, through inexpensive

chemical synthesis for targeting intracellular genes and macrophages.

HisakoIbaraki developed a drug delivery system, MPEG‐PCL‐

CH2R4H2C, consisting of methoxy‐polyethylene glycol combined

polycaprolactone and a cytoplasm‐responsive peptide, CH2R4H2C,

for stabilized encapsulation of siRNA. MPEG‐PCL‐CH2R4H2C and

siRNA were reacted using RNase‐free water, followed by mixing with

nitrogen/phosphorous (N/P) in different molar ratios incubated for

30min at 20 ± 5°C. The MPEG‐PCL‐CH2R4H2C/siRNA micelles

were mixed in equal quantities and characterized by size, green

exclusion assay, immuno‐histochemical analysis, therapeutic effects,

hematoxylin & eosin staining. Results concluded that the intravenous

administration of MPEG‐PCH‐CH2R4H2C/siRNA nanomicelles leads

to accumulation in the inflamed large intestine and decreased

inflammatory reactions in UC model mice, demonstrating a positive

inhibitory effect of the nanoformulation. Hence, intravenous admin-

istration of these nanomicelles may be used as a potential treatment

for UC (Ibaraki et al., 2022).

In another experiment, Muller et al. (2022) fabricated NPs loaded

with NF‐κB p65‐specific siRNAs to treat UC in an in vivo murine

model. For this purpose, dextran sulfate sodium was used to induce

UC in animals. Silica‐coated calcium phosphate NPs (CaP/PEI‐

Dy734/siRNA/SiO2) were fabricated and characterized, and then

animals were administrated with 2.0 mg siRNA/kg body weight. The

histopathological effects of the developed NPs were studied in

different tissues, including the colon, and protein expression of

NF‐κB and other associated proteins were assessed. Findings of their

study revealed that the synthesized NPs downregulated NF‐κB‐

related proteins (p65, p50, p52, and p100) in mice's colon and

decreased the levels of inflammatory cytokines [interleukins, TNF‐α,

interferon‐beta (IFN‐β), monocyte chemoattractant protein‐1 (MCP‐

1)]. Together, CaP/PEI‐Dy734/siRNA/SiO2 were able to silence

NF‐κB protein expression effectively and alleviate the clinical and

histopathological markers of UA (Figure 14) (Müller et al., 2022).

F IGURE 14 Schematic illustration of the process of fabricating Dy734‐labeled and siRNA‐loaded calcium phosphate NPs (CaP/PEI‐Dy734/
siRNA/SiO2) for suppressing the NF‐κB p65 gene in mice. TEOS: tetraethoxysilane; CaP: calcium phosphate; Dy: Dyomics; PEI—
polyethyleneimine; siRNA: short‐interfering RNA (Müller et al., 2022). siRNA, small interfering RNA
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5.5 | Rheumatoid arthritis

Xiao Hua Chen and coworkers (2022) developed a novel multi-

functionalized LMW PEI–cholesterol–PEG (LPCE) delivery micelle

against RA gene therapy. Furthermore, NF‐κB p65 siRNA was

conjugated to the cationic polymeric micelles for regulating

inflammation, immunity, cell proliferation, and cellular apoptosis

for the targeted and safest delivery. Furthermore, the LPCE was

characterized based on siRNA gel‐retarding assay, in vitro

transfection, ribonuclease (RNase)‐degradation assay, quantita-

tive real‐time polymerase chain reaction, validation of M1/M2‐

Type Macrophages, cytotoxicity assay, cellular uptake, mecha-

nism of the siRNA/LPCE complex, detection of IL‐10 expression

level, histopathological examination, cytokine levels analysis in

vivo. Results concluded that the NF‐κB p65 siRNA/LPCE multi-

functionalized micelles successfully regulated the overexpressed

inflammatory cells in the joint cavity. Moreover, NF‐κB p65

significantly contributed to the pathophysiological proinflamma-

tory cascades during RA. So, it is noteworthy to confirm that

silencing the expression of NF‐κB p65 in macrophages through

siRNA‐based nano‐therapeutics can be a potential tactic for gene

therapy against RA (Chen, Zhou et al., 2022).

In another related research, Scheinman and associates developed

RGD functionalized poly(lactide‐co‐glycolytic) acid (PLGA)‐based NPs

to deliver STAT1 siRNA, as RGD peptide is linked with the

propagation of siRNA in cellular tissues. Therefore, RGD peptide

was synthesized in preparing NPs for tracking via siRNA. Various in

vitro, ex vivo, and in vivo characterization techniques were accessed.

Conclusively, RGD functionalized PLGA NPs encapsulating STAT1‐

targeted siRNAs were proved proficient in treating RA, perhaps

through selective inhibition of macrophage and DC activation

(Scheinman, Trivedi et al., 2011).

5.6 | Brain inflammation

As mentioned before, ICH is frequently associated with inflammation

and inflammatory response modulation (Mishra et al., 2022). Inter-

estingly, siRNA are found to be involved in silencing inflammatory

genes responsible for damaging the effects of hemorrhage (Jin

et al., 2020; Poupot et al., 2018). However, siRNA therapy for GBM is

hindered by multiple barriers, i.e., immunogenicity, poor cellular

uptake, instability, and low BBB penetration (Jin, Chakraborty

et al., 2020; Lu et al., 2020; Valentini et al., 2018).

In this connection, Kozielski and co‐workers developed bior-

educible poly(beta‐amino ester) (PBAE) NPs for delivering siRNA to

primary human GBM cells. NPs were synthesized via polymerization

reaction. NPs can be characterized via size, cell killing in vitro, in vitro

cell migration, Protein expression analysis, magnetic resonance

imaging, tumor growth analysis, brain tissue, and tumor size

evaluation. Bio‐reducible PBAE‐NPs showed significant results

against human GBM cells through inhibition and migration of

inflammatory cancer cells. It can be concluded without any doubt

that this novel therapy is promising against GBM and other solid

tumors (Charabati et al., 2020; Kozielski et al., 2019).

In another research, Hamideh Parhiz and coworkers (2022)

worked on the induction of the acute inflammatory responses via

activation of LPS and transferred them intratracheally, 1mg kg−1, or

intravenously, via inflammatory models. Their findings revealed that

the pretreatment with anti‐inflammatory drugs, such as cortico-

steroids, can moderately lessen IE response in mice. This highlights

the significance of LNP‐mediated IE phenomena in gram‐negative

bacterial inflammation. Still, the generalizability of using RNA‐LNPs in

other forms against chronic or acute inflammation remains to be

addressed (Parhiz et al., 2022).

The summary of siRNA‐based nanocarriers in the treatment of

IMDs is given in Table 2.

6 | CHALLENGES AND OPPORTUNITIES

Site‐specific distribution has remained the fundamental obstacle in

siRNAs' targeted therapy, despite some previously resolved issues.

Accessibility to the affected tissues is a major factor in determining

the best delivery method. Local administration of siRNAs using

intraocular, intranasal, or intra‐tumoral routes has been previously

reported (Gomes‐da‐Silva et al., 2014). In terms of using siRNA‐based

therapies, several concerns have been expressed about the potential

for off‐target effects and the stimulation of the immune system. This

can lead to adverse effects, which eventually lower their medicinal

potential, depending on the sequencing of siRNAs. Since siRNAs are

unable to concentrate in diseased locations, particularly those outside

of the liver, they cannot be used in clinical practice. Because of

siRNA's physicochemical properties, they are immediately eliminated

from the circulation when administered systemically. As a result, the

design of safe and effective drug delivery platforms is critical.

It has been established that a variety of factors, including cell line

and concentration of siRNA, have been shown to influence cell

survival, even siRNAs with scrambled sequences that presumably do

not target any mRNA might exert cytotoxic effects through unknown

mechanisms (Mendonça et al., 2010). Difficulties with large‐scale

manufacturing, off‐target effects, stimulation of the innate immune

system, high risk of mutagenesis, and the absence of cell‐specificity

are among the main limitations of siRNA‐based therapies that should

be overcome to reach clinical settings (Gomes‐da‐Silva et al., 2014).

To overcome these obstacles, it has been suggested that poly‐U‐ and

GU‐rich regions should not be avoided to prevent the siRNA

immunostimulatory activity (Hornung, Guenthner‐Biller et al., 2005).

Moreover, chemical modifications (at the base, sugar, or the

backbone levels) that do not compromise siRNA's silencing ability

can circumvent the stimulation of the immune system (Moreira

et al., 2008).

Stimulation of the immune system might be the consequence of

active endocytosis of siRNAs. In one study, siRNAs containing high

levels of a GU motif were successfully delivered to desired tissues

using LNPs, and it increased inflammatory mediators, such as
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interleukin‐6 (IL‐6) and interferon α (IFN‐α), in peripheral blood

mononuclear cells (Judge et al., 2005). Interestingly, it has been

shown that siRNA delivery via electroporation does not stimulate the

immune system, while using cationic nanovehicles can trigger TLR7/8

receptors, therefore, leading to immune activation (Gomes‐da‐Silva

et al., 2014; Heil et al., 2004). Unluckily, cationic RNAi NPs can be

eliminated from the body via kidneys. They may have neutralized

anionic proteins on the wall of glomerular capillaries, which may have

led to siRNA's discharge on the capillary bed of the glomerulus and its

eventual excretion. This obstacle can be circumvented by using

PEGylated cationic RNAi NPs, which inhibit the renal clearance and

lengthen the duration that siRNA is circulated (Zhou et al., 2014b).

Furthermore, increasing the density of hydrophilic graft chains of

cationic nanocarriers via linking them to copolymers can improve

siRNAs' stability against plasma components and nucleases (Kano

et al., 2008). Many osmolytic agents, such as polymers, small

molecules, and peptides, have been integrated into siRNA nanocar-

rier formulations to escape the endosomal trap (Varkouhi et al., 2011).

Despite their potential, however, some of these agents (e.g., PEI)

might exert cytotoxicity depending on their physical size (Sonawane

et al., 2003). Finally, due to their low toxicity and immunogenicity,

aptamers can also be used to functionalize nanocarriers that are

loaded with anti‐inflammatory drugs (Foy et al., 2007).

7 | CONCLUSION

The discovery of RNAi has sparked an increased interest in using it to

treat various conditions. When it comes to IMDs, RNAi may be a useful

tool for modifying posttranscriptional pathways by targeting dysregulated

genes. For knocking down specific genes, siRNAs have shown promise,

but their application as therapeutic agents has limits due to their

hydrophilicity and ease of degradation. As a result, most cell types can be

damaged by artificial means of siRNA delivery; however, the transfection

efficiency rate has remained low. It is possible to effectively transport and

distribute siRNAs to a targeted recipient cell using NP‐based platforms,

as circulating siRNAs are promptly degraded. Lately, siRNA‐based

monotherapies have demonstrated great advantages to stir future

activities in biomedicine. Still, there are some limitations in applying

siRNA‐based therapeutics that need to be tackled. For example,

glomerular filtration in the kidneys rapidly eliminates siRNAs from the

body. Because glomerular filtration barriers have pore sizes of about

8 nm, NPs with particle sizes of about 20 nm cannot be easily filtered

through them. Hence, encapsulating siRNAs in nanocarriers elongates

their blood circulation time and increases their uptake by target cells.

NP‐based systems have been demonstrated to be efficient for

siRNA delivery. To optimize the unique characteristics of NPs, such as

their biocompatibility and cytotoxicity, studies have been focused on

TABLE 2 Summary of key points of siRNA‐based nanocarriers against IMDs

Nanocarrier Outcome References

siRNA‐PAMAM dendrimers Local management for overall suppression of lung

inflammation prophylactically

(Bohr et al., 2020)

TNF‐α–siRNA NPs Co‐delivery of TNF‐α siRNA and TPPS2a, as an encouraging
topical therapy against psoriasis

(Suzuki et al., 2021)

siRNA‐LNPs Distinguished reduction of IRF8 mRNA exhibited a targeted
immunomodulatory effect ex vivo and in vivo in the DSS
colitis model

(Veiga, Goldsmith
et al., 2019)

siRNA‐polymeric micelles Accumulation in the inflamed large intestine, decreased
inflammatory reactions in UC model mice, demonstrating
a positive inhibitory effect

(Ibaraki et al., 2022)

NF‐κB p65‐siRNA multifunctionalized polymeric micelles Potential tactic for gene therapy against RA (Chen et al., 2022)

Bio‐reducible PbAE NPs Significant results against human GBM cells through inhibition
and migration of inflammatory cancer cells

(Kozielski, Ruiz‐Valls
et al., 2019)

Au‐LNHy coated with AuNPs and comodified with PEG
and α8 integrin, then loaded with dexamethasone and
TGFβ1 siRNA

Treating glomerulonephritis via inhibiting local inflammation
and fibrosis by delivering drugs directly to the glomerulus'
Mesangial cells

(Fang et al., 2021)

PEGylated TAT peptide‐cationic liposomes to deliver
anti‐HMGB1 siRNA and DHA

TLR4‐mediated inflammatory diseases, such as LN, may benefit
from the therapy with TAT‐CLs‐DHA/siRNA.

(Diao et al., 2019)

Lipid nanoparticles (LNPs) with some cationic lipid
component and polyethylene glycol (PEG) surfactants
were used

Increased accumulation of siJAK1‐NPs within the subconfluent
regions leads to uptake into immune cells near the
epithelium.

(Hartwig et al., 2022)

Abbreviations: Au‐LNHy, liposome‐nanoparticle hybrids; AuNPs, gold nanoparticles; DDS, drug delivery system; DHA, dihydroartemisinin; GBM,
glioblastoma multiforme; HMGB1, high‐mobility group box 1; IRF8, interferon regulatory factor 8; LN, lupus nephritis; LNPs, lipid NPs; NF‐κB, nuclear
factor kappa‐light‐chain‐enhancer of activated B; PAMAM, polyamidoamine; PbAE, poly(β‐amino ester)s; PEG, polyethylene glycol; RA, rheumatoid
arthritis; siRNA, short‐interfering RNA; TGFβ1, transforming growth factor‐beta 1; TLR4, Toll‐like receptor 4; TNF‐α, tumor necrosis factor; TPPS2a,
meso‐tetraphenyl porphyrin disulphonate; UC, ulcerative colitis.
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designing nontoxic nanosystems. Currently, lipid NPs, polymers, and

hybrid NPs are the most widely employed types of NPs for siRNA

loading. Despite some advancements, siRNA‐nanodelivery strategies are

largely unexplored outside of cancer treatment. For example, exosomes

with modified characteristics are now the subject of numerous studies in

cancer research but are not well studied in terms of IMDs.

Recent advancements have been made in developing siRNA

nanodelivery platforms to treat IMDs. Lipid‐based siRNA nanocarriers,

cationic lipids and liposomes, SNALPs, polymeric‐based siRNA nanocar-

riers, PEG‐ and PEI‐based nanoplatforms, and chitosan‐based nanodeliv-

ery systems, hybrid‐based‐ and inorganic material‐based siRNA nano-

carriers have been studied to alleviate UC, RA, IBD, pulmonary

inflammations, and lupus nephritis. Nano‐delivery systems have also

been embedded in hydrogels that preferentially degrade in the area of

the inflamed colon to avoid the degradative effects of components in the

GI tract. In addition, poor localization of the siRNAs in desired locations,

high risks of immunogenicity, off‐target problems, and unstable gene

expression have also limited their therapeutic application. The nanotox-

icology of such nanodelivery systems in the human GI tract in IBD has

received little attention, and it is likely to differ depending on the size and

type of NPs. Structural stability during GI transit is another issue that

requires further attention to avoid premature siRNA release in undesired

targets. Moreover, enhanced circulation time of siRNAs in diseased tissue

regions would help to optimize such therapies even further. Finally, using

other delivery techniques, such as electroporation or nanocarriers with

less toxicity, might help deliver siRNAs to target cells without causing

toxic effects or immune activation.

To conduct clinical trials on the application of siRNA‐based

nanosystems, it is necessary first to understand the benefits and

drawbacks associated with such therapeutic modalities. Hopefully,

fabricating novel multifunctional nanocarriers can be generalized to

deliver many inflammation‐related siRNAs and drugs for a maximum

therapeutic combination with minimal off‐targeting effects.
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