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ABSTRACT

Antisense oligonucleotides (ODNs) technology is
one of the important approaches for the sequence-
specific knockdown of gene expression. ODNs have
been used as research tools in the post-genome era,
aswell as new typesof therapeutic agents. Since find-
ing effective target sites within RNA is a hard work for
antisense ODNs design, various experimental meth-
ods and computational approaches have been pro-
posed. For better sharing of the experimented and
published ODNs, valid and invalid ODNs reported in
literatures are screened, collected and stored in
AOBase. Till now, �700 ODNs against 46 target
mRNAs are contained in AOBase. Entries can be
explored via TargetSearch and AOSearch web
retrieval interfaces. AOBase can not only be useful
in ODNs selection for gene function exploration, but
also contribute to mining rules and developing
algorithms for rationalODNsdesign.AOBase is freely
accessible via http://www.bioit.org.cn/ao/aobase.

INTRODUCTION

With the ability to selectively down-regulate the expression of
genes, antisense oligonucleotides (ODNs) have been widely
used in gene function determination, drug targets validation
and pathways discovery (1–3). Recently, ODNs also serve as
specific and efficient inhibitors for systematic loss-of-function
analysis of miRNA (4,5). On the other hand, ODNs can be
effective therapeutic agents. Several antisense compounds for
disease treatment have been evaluated in clinical trials with
promising results (6,7). However, the successful use of ODNs
is somewhat limited since only a small number among all the
possible antisense ODNs against a given target RNA show
effective suppression of the target gene in living cells (8,9). It
is commonly accepted that the selection of sensitive sites in

target RNA is of great importance for ODNs efficiencies.
Various experimental approaches to identify promising
local target sites have been presented in recent years
(9–11). There has also been much interest in computational
approaches to select target sites of ODNs, which get prominent
advantages over experimental protocols in throughput, cost
and efficiency (12–15).

In fact, for the researchers who use ODNs as gene expres-
sion modulation tools to explore gene functions or molecular
networks, it is not necessary to screen ODNs targeting specific
mRNA if they could find some with enough activity in liter-
atures or database, considering that experimental ODNs
screening methods are time consuming and expensive. How-
ever, for the researchers whose efforts focus on the develop-
ment of in silico antisense ODNs design methods, information
about both valid and invalid ODNs are of same value. Rules
for rational target site selection can be mined from these pos-
itive and negative cases. Therefore, if the related data for
ODNs are collected together, there would be obvious benefit
for ODNs users and designers.

Three ODNs resources have been reported till now. The
first public ODNs database named ODNBase was developed
five years ago by Giddings et al. (16). Unfortunately, it cannot
be accessed at present. Another database is a non-public
database maintained by Isis Pharmaceuticals (17), which
stores the data from the experiments performed at the
corporation and is not publicly available. There is also a
data list named AOdb, which is freely available for ODNs
prediction algorithm research (13), containing basic descrip-
tions of 315 ODNs. The AOBase we describe here is a
database developed for both ODNs selection and ODNs
design. It can be freely accessed at http://www.bioit.org.cn/
ao/aobase. A more comprehensive dataset has been elabor-
ately screened and constructed, and two retrieval tools have
been developed. AOBase can be used to select effective
ODNs for gene expression modulation, and can also contrib-
ute to mining rules and developing algorithms for rational
ODNs design.
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DATABASE CONTENT AND IMPLEMENTATION

Criteria for data collection

Antisense ODNs stored in AOBase are all collected from
published literatures. There have been a lot of techniques
used in antisense studies, such as various chemical modifica-
tion methods and different types of efficacy assay. Since the
database is not specifically constructed for some ODNs effect-
iveness prediction system, the data selection criteria is not as
strict as that used in efficacy prediction research (12,15). The
reference selection criteria are (i) at least one scrambled or
mismatched sequence was used as control; (ii) efficacy of
ODNs was carried out against controls via in vitro assay at
RNA or protein level; and (iii) efficacy was presented as a
percentage of the control level of the target expression. The
species of target RNAs are not restricted (Figure 1A). Pres-
ently, the database maintains �700 ODNs against 46 different
RNA molecules.

To keep in line with most of the researches on drug design,
the ODNs efficacy in AOBase is transformed into
(1 � [control expression]). The distribution of ODNs efficacy
in the database is relatively uniform (Figure 1B). Considering
that the selected ODNs were tested under different experi-
mental conditions, some supplementary descriptions were
also included in the database, such as chemical modifications
employed for ODN synthesis, assay type used to measure the
activity, concentration applied in test, etc.

Target region of ODNs

Target region selection is usually considered in ODNs design.
Regions surrounding translation initiation codon are often
chosen as target sites, since they are essential for gene expres-
sion and generally free from secondary structure (9). In the
opinion that cleavage in 30-untranslated regions (30-UTRs) will

lead to rapid degradation of mRNA, the 30-UTR of mRNA is
also targeted frequently (9).

Target region of each ODN is annotated in AOBase. Bases
of target RNA at different regions are marked with different
colors shown in a detailed description page of each ODN
(Figure 2G). The distribution of target regions in AOBase
is shown in Figure 1C.

Local structures of target sites

Among the factors that influence the activity of ODNs, the
local secondary structures of target RNA are well known to
play a very significant role in determining ODNs efficacy
in vitro (1,9,18). Although it is commonly accepted that
computation-based structure models of long RNA molecules
are not yet reliable enough to represent the RNA structure in
living cells (19), the computational predicted structure of tar-
get RNA, especially the minimum free energy (MFE) struc-
ture, is still of particular importance in ODNs design strategies
(20–22). Considering that single-stranded regions of RNA
molecules play many important roles in RNA–RNA, RNA–
DNA and RNA–protein interactions, the single-stranded prob-
ability profile, which is a kind of probabilistic representation
of RNA structure, is also used in computer-aided ODN
selection (23,24).

Both these two structural representations of ODN target
region addressed above can be found in AOBase to help
the structure–efficacy relationship exploration. For each target
RNA, all the secondary structures within 5% of the computed
MFE were predicted by MFold (25). The upper limit on the
number of computed structures is 50. The corresponding
single-stranded probability profile was estimated from the
MFold ss-count file. In the detailed description page of
ODN, the target site is highlighted in MFE structure illustra-
tion, while the single-stranded probability profile of target is
plotted as waveform (Figure 2G).

Figure 1. Overview of target and ODNs in AOBase. (A) Species distribution of target RNA molecular. (B) Efficacy of ODNs. (C) Target regions
of ODNs.
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WEB RETRIEVAL INTERFACES

To afford convenience for ODNs users and designers, two web
retrieval interfaces named ‘Target Search’ (Figure 2B) and
‘AO Search’ (Figure 2E) have been developed. The search
engine is written in PHP script with SQL code embedded.

Through ‘Target Search’ interface, users can query target
RNA by name, accession number or only imprecise
descriptions. The matched target RNA molecules will be dis-
played if search result is not empty (Figure 2C). With hyper-
links, users can explore all the ODNs targeting against these
RNA molecules (Figure 2D). This interface would be helpful
to the users who want to select effective ODNs to inhibit the
expression of some genes.

‘AO Search’ interface allows users to search ODNs with
several combined parameters, including activity measured,
concentration applied, target region and motifs in oligo
sequence. A number of sequence elements reported by Smet-
sers et al. (26), Tu et al. (27) and Matveeva et al. (28), which
may be positively (i.e. CCAC, TCCC, ACTC, GCCA, CTCT)
or negatively (i.e. ACTG, GGGG, TAA, CCGG, AAA) related
with ODNs effectively, were added to an item list for choice.
Users can also search for ODNs with custom-defined sequence
motifs. The target region parameter can be set to 50- and 30-
UTR, CDS, initiation codon, intron, regions between exon and
intron, or ncRNA. A list of ODNs matching the searching
criteria will be provided to users (Figure 2F). AOSearch
retrieval interface provides users the possibility of additional
data mining and automatic datasets generation for construction
of efficacy prediction system.

Each entry in AOBase has a detailed descriptions page
(Figure 2G) in which the sequence, references, assay type,
structure of target site and other related information is presen-
ted. To facilitate data collection and analysis, raw information
about ODNs listed in search result pages (Figure 2D and F) can
be selectively downloaded into a text file in CSV format,
which can be easily processed by MS Excel and other
programs.

To maintain an up-to-date resource, a data submission page
(Figure 2H) has been developed. Researchers are encouraged
to submit their ODN data to AOBase as soon as their paper is
published. We would manually check the submission based on
our data collection criteria mentioned above to determine its
acceptability.

FUTURE WORKS

The factors which influence the potential of ODNs are com-
plex and poorly understood till now. There are still many
challenges in the studies of computational ODNs design. Com-
pared with most of the other bioinformatics research problems,
these studies are far from ‘data rich’, and besides, the data
collected from published literatures are variable due to the
diversity of experiment methods. To provide the basis for
the development and test of ODNs design algorithms, our
further works will focus on dataset enlargement and retrieval
tools improvement. More ODN data with quality control and
more powerful data filter tools which help to generate homo-
geneous dataset will be integrated into the database.

Figure 2. (A) Homepage of AOBase. (B) ‘Target Search’ web retrieval interface. (C) Result page of target search. (D) List of all antisense ODNs against certain
RNA. (E) ‘AO Search’ web retrieval interface. (F) Result page of AO search. (G) Detailed description page of an ODN. (H) ‘Data Submission’ interface.
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