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Abstract: Freeze–thaw cycle is one of the main distresses of asphalt pavement, and the law of
freeze–thaw damage has always been an important topic. In this paper, X-ray computed tomog-
raphy (CT) of asphalt mixture before and after freezing and thawing was carried out, and its two-
dimensional (2D) digital image was recognized. Firstly, the eigenvalues of internal voids of asphalt
mixture are extracted. Then the distribution of internal voids was analyzed. Finally, the evolution law
of internal voids was summarized. The research results show that the characteristic mean value of the
9th cycle is the irreversible limit of freeze–thaw damage, and the non-resilience after the large void
area increases is the fundamental reason for the accumulation of freeze–thaw damage. The source
of void damage shifts from large voids to small voids, and the middle-stage is a critical stage of
freeze–thaw damage. This work quantitatively evaluates the internal freeze–thaw damage process of
asphalt mixture, and a morphological theory of the evolution of void damage based on an equivalent
ellipse is proposed, which is helpful for better understanding the freezing–thawing damage law of
asphalt pavement.

Keywords: asphalt mixture; freeze–thaw cycle; X-ray computed tomography (CT); image processing;
void; equivalent ellipse

1. Introduction

Freeze–thaw cycle is one of the main distresses of asphalt pavement [1,2]. The icing
on the road surface reduces the friction coefficient of the road and affects the driving safety
of the vehicle. After melting, the water generates dynamic water pressure under the action
of vehicle load, resulting in deepening of cracks and the peeling of aggregates [3]. The ice
expands inside the pavement, resulting in material tension, which promotes the formation
of crack networks and reduces mechanical properties [4]. After melting, water penetrates
into the gap to deepen the damage.

In order to solve the freezing and thawing problem, a variety of methods have been
proved to be effective. Snow-melting agent is widely used to melt ice on road surfaces,
but excessive snow-melting agent will accelerate freeze–thaw damage [5]. Asphalt and
aggregates with a better low temperature performance are a solution [6–9]. Fiber is a typical
freeze–thaw resistant material, which can significantly improve the mechanical properties
of asphalt mixture after freeze–thaw [10–15]. Besides the traditional material replacement
and addition, some new methods are emerging. The properties of microwave heating steel
slag were utilized to provide new possibilities for melting road surface ice and internal
damage healing [16–18]. A good effect can be achieved by weakening the binding force of
the ice layer with coatings [19]. Ice breaking capability was increased by road surface filled
rubber elastomer [20]. While the improvement of freeze–thaw methods tends to diversify,
the research on the mechanism of freeze–thaw cycles is also continuing to advance.
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Traditional evaluation methods for freeze–thaw damage mainly rely on the degra-
dation of macroscopic mechanical properties, such as freeze–thaw split ratio, split tensile
strength, indirect tensile stiffness modulus, fatigue and creep, etc. [10,21–24]. Some scholars
believe that the degree of freeze–thaw damage can be quantified by cracks. For example,
fracture energy was quantified under different moisture freeze–thaw cycles [25]. However,
the recent ASCE meeting shows that the cracking tolerance index was unable to provide
the expected performance trends for asphalt mixtures subjected to a freeze–thaw cycle [24].
Because the mechanical properties of asphalt mixtures can only indirectly evaluate the
effects of freeze–thaw damage, some scholars have tried to establish mechanical models
to evaluate and predict freeze–thaw damage [26]. For example, based on the continuum
damage theory, a freeze–thaw damage evolution model was established, and the predicted
results agree well with the experimental data [27]. Finite element simulation was used
with a variety of mechanical indicators, including fracture energy to evaluate the degree
of freeze–thaw damage in combination [28]. In addition, adhesion was used to evaluate
the degree of freeze–thaw damage by some scholars. The number of edge points were
quantified to predict the adhesion performance of different aggregates to asphalt [29]. A
combination of photoelectric colorimetry, contact angle method, and water immersion
method was used to evaluate freeze–thaw adhesion [30]. Image methods were used to eval-
uate the effect of snowmelt salt on adhesion under freeze–thaw conditions [31]. Compared
with mechanical indicators and modeling, image methods are more intuitive and clearer.

CT images were used to obtain changes in volumetric moisture content, saturation, and
the number of voids, and these indicators were used to quantify the moisture distribution
within the specimen [32]. Shuyin Wu et al. [33] used CT to scan the effect of snow-melting
agents on void changes under freeze–thaw conditions and found that the size and number
of voids increased as the number of freeze–thaw cycles increased. An analysis of 3D
modeling through CT images, volume expansion found an increase in number and fusion
of voids [34,35]. The higher the initial void ratio, the more obvious the void changes, and
the void has a strong correlation with the strength index. CT images were used to find
the large voids and small voids were negatively and positively correlated with tensile
strength, respectively [36]. Based on the features of connected voids in CT 2D images, a
damage model was established and found that connected voids contributed to the increase
in the number of voids [27]. Information entropy was used to describe the freeze–thaw
damage stage in CT images [37]. Huining Xu et al. [38] established the relationship between
information entropy and void characteristics, and proposed a new method for freeze–thaw
damage analysis.

With the diversification of freeze–thaw solutions, new progress has been made in
freeze–thaw mechanisms and evaluation methods. The traditional method to evaluate
freeze–thaw damage by mechanical indexes has certain limitations. Although the use of
modeling methods such as finite element can further explore the freezing and thawing
mechanism, the relationship between the model and the actual specimen is questionable.
Drawing on other subfields such as self-healing or adhesiveness, only specific damage can
be assessed. In comparison, the method of CT image is more intuitive, comprehensive,
and practical. The void feature is typical for evaluating freeze–thaw damage. Although
the law of voids under freeze–thaw conditions has been analyzed by some scholars, it
is often limited to changes in the indicators themselves. The evaluation of freeze–thaw
damage for void evolution lacks the establishment of a theoretical system. Therefore, based
on the image processing of CT 2D images, this paper extracts void features to achieve
the following objectives. The distribution and morphological evolution of voids were
quantitatively evaluated based on void characteristics; the theory of freeze–thaw damage is
established according to the evolution law of void characteristics.
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2. Materials and Methods
2.1. Materials

The properties of asphalt used in this work are shown in Table 1. All properties
meet the requirements of the Technical Specification for Highway Asphalt Pavement
Construction [39].

Table 1. Properties of SBS asphalt.

Properties Test Results Test Methods (JTG E20-2011)

Penetration (25 ◦C, 100 g, 5 s; 0.1 mm) 65 T0604
Ductility (5 ◦C, 5 cm/min; cm) 43 T0605

Softening point (◦C) 64 T0606

Properties of aggregates tested according to Testing Procedures of Aggregate for Highway
Engineering in China (JTG E42-2005) [40] are shown in Table 2.

Table 2. Properties of aggregates.

Sieve (mm)
Apparent Specific

Gravity (g/cm3)
Crushing Value (%) Los Angeles Abrasion (%) Water Absorption (%)

13.2~16 2.806 15.3 21.3 0.62
9.5~13.2 2.805 13.6 19 0.60
4.75~9.5 2.805 13.9 19 0.28

2.36~4.75 2.726 16.7 15.8 0.70
1.18~2.36 2.783 - -

0.65
0.6~1.18 2.785 - -
0.3~0.6 2.765 - -
0.15~0.3 2.759 - -

0.075~0.15 2.716 - -

2.2. Asphalt Mixtures Design

The gradation of asphalt mixtures in this work is shown in Figure 1. The Marshall test
was used to determine the optimal asphalt–aggregate ratio as 6.2% of SMA-13 mixtures.
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2.3. Freeze–Thaw Cycle Test

The freeze–thaw cycle test was carried out on the asphalt mixture. Before scanning,
the specimen was saturated with water under vacuum for 15 min, and then soaked under
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normal pressure for 30 min. The test pieces were first put into plastic bags; each bag was
added to 10 mL of water and then placed in a low temperature box of −18 ◦C for 16 h, then
placed in a constant temperature water tank at 60 ◦C to dissolve for 8 h as a freeze–thaw
cycle. The number of freeze–thaw cycles was 0, 3, 6, 9, 12, and 15, and the samples were
taken out and placed in an indoor environment of 20 ◦C for 7 d.

2.4. Image Processing
2.4.1. CT Scan

The scanned CT images were obtained from the same Marshall specimen under 0, 1, 3,
6, 9, 12, and 15 times of freezing and thawing. As shown in Figure 2, after 3D modeling, a
total of 1715 images were exported in BMP format, which contained incomplete images
that were removed.
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Figure 2. CT scanning and image processing.

2.4.2. Image Processing

The 60 complete images were randomly selected from the middle, with a total of
420 images in 7 groups as samples for analysis and processing. Due to certain differences
in image quality, the number of voids extracted by different groups was quite different. In
order to further control the number of samples and ensure the rationality of the analysis
results, the area of each group of voids was sorted in descending order; the first 30 voids
with the larger area of each image were taken, and the sample size of each group was
controlled within 1544~1800 void points, with a total of 12,243 void points.

3. Results and Discussion
3.1. Void Distribution Law
3.1.1. Void Feature

For better quantitative analysis, the void feature parameters used in this work are as follows:

amean = (
k

∑
i=1

ai)/k (1)
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amax = max{ai} (2)

agross =
k

∑
i=1

ai (3)

dmean = (
k

∑
i=1

d
i

)/k (4)

Amean = (
n

∑
j=1

amean)/n (5)

D = (
n

∑
j=1

dmean)/n, (6)

where n is the number of image samples in each group (n = 60); k is the number of voids for
each image (k ≤ 30); ai is the area of void and di is the maximum diameter of the void.

3.1.2. Changes in Void Characteristics

Figure 3 shows the change of different indicators under different freeze–thaw cycles.
From Figure 3a, it can be seen that the average void area (amean) fluctuates with an increasing
number of freeze–thaw cycles. However, under the action of 1~6 freeze–thaw cycles, the
amean fluctuated and decreased, and a significant overall increase did not appear until
the ninth freeze–thaw cycle. Taking the feature mean of the ninth cycle as the damage
boundary, it can be seen that most values of the area indicator exceed the boundary value
at the 12th and 15th freeze–thaw cycles (Figure 3a–c), the overall durability drops by a
gradient. The boundary discrimination of the average maximum diameter (dmean) is not
very clear (Figure 3d).
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The 12th to 15th times of freezing and thawing after exceeding the damage boundary
will increase the degree of irreversible damage caused by freezing and thawing, the rebound
of large voids will decrease significantly, and the smaller voids will continue to fluctuate.
It shows that the accumulation of irreversible damage may be more reflected in the “self-
healing failure” of large voids (that is, no longer rebounding to a smaller value). The
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small voids continue to grow into large voids, and no longer being self-healing and the
recovery may be the root causes of repeated freeze–thaw iterations [41]. In order to further
understand this law, the probability distribution of the amean was explored.

3.1.3. Void Variation Distribution

As shown in Figure 4, the freeze–thaw damage was divided into three stages: early
stage, middle stage and late stage, corresponding to the changes of the void area |4a| in
0~3, 6~9 and 12~15 groups. We performed normal distribution and lognormal fitting, and
found that the normal distribution function will cover the negative part. Comparing the
probability plots of the two fitting types, it is found that the log-normal fitting is better and
more in line with the actual distribution.
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The statistical results of |4a| are shown in Table 3. From the mean value, it can be
seen that the area of 6~9 cycles increased the most significantly, and the area of 12~15 cycles
changed the least, indicating that the freeze–thaw damage mainly increased rapidly in the
mid-term, and the damage slowed down after exceeding the damage boundary. According
to the range and the coefficient of variation, the volatility of 0~3 cycles is the strongest, and
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the volatility of 6~9 cycles is the smallest. It shows that freeze–thaw damage mainly occurs
in the collective expansion of voids in the mid-term, the early frost resistance of asphalt
mixture is the strongest, and the source of void damage is transferred from large voids to
small voids.

Table 3. Statistical results.

Cycle/Times Mean Value Range Standard Deviation Coefficient of Variation

0~3 0.302 2.304 0.396 1.312
6~9 0.712 0.309 0.075 0.105

12~15 0.177 0.683 0.122 0.690

Figure 5 shows the probability density plot of the amean, and it can be seen that the
center of the probability density distribution fluctuates. However, by the ninth freeze–thaw
cycle, there was an obvious right shift, the overall gap became larger, and then it was
completely flat and the distribution range was wider. It fluctuated on a broad premise, and
there was no apparent concentration again.
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Figure 5. Probability density distribution.

As shown in Figure 6, the median value of the average void area shows a fluctuating
increase, and the distribution range also shows a fluctuating increase and then stabilizes.
The 25% and 75% also show the same pattern, but the maximum value tends to stabilize after
the volatility increases. The minimum value fluctuates greatly near the ninth freeze–thaw,
indicating that the growth of voids may have a certain upper limit, and the maximum
value tends to be stable after increasing to a certain range. The overall failure beyond the
damage limit still originates from the collective growth of the smaller void area.
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3.2. Distribution Quantification
3.2.1. Kurtosis and Skewness

As shown in Figure 7, the kurtosis and skewness of the distribution curve (calculated
according to Equations (7) and (8)) are analyzed. In statistics, kurtosis measures the kurtosis
of the probability distribution of a real random variable. High kurtosis means that the
increased variance is caused by low frequency extremes of a difference greater than or
less than the mean. Skewness is a measure of the direction and degree of skewness in the
distribution of statistical data, and a numerical characteristic of the degree of asymmetry in
the distribution of statistical data. During 0~1 freeze–thaw times, the kurtosis continued
to increase, indicating that the decrease in the amean during the 0~3 freeze–thaw times
in the early stage was mainly caused by the reduction of large voids. At this stage, the
skewness is also increasing, indicating that the right skewness of the curve continues to
increase, and the small voids and large voids show opposite characteristics. The small
voids kept increasing in the early stage, but the area value fluctuated more when the large
voids became smaller, reflecting the decreasing trend of the amean.

K =
n(n + 1)

(n− 1)(n− 2)(n− 3)

n

∑
i=1

(
xi − x

Sa
)

4

− 3(n− 1)2

(n− 2)(n− 3)
(7)

SK =
1
n ∑n

i=1 (xi − x)3

( 1
n ∑n

i=1 (xi − x)2)3/2
, (8)

where K is kurtosis; SK is skewness; n is the number of samples; xi is the amean of ith void;
x is Amean; and Sa is the variance of amean.

Materials 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

less than the mean. Skewness is a measure of the direction and degree of skewness in the 
distribution of statistical data, and a numerical characteristic of the degree of asymmetry 
in the distribution of statistical data. During 0~1 freeze–thaw times, the kurtosis continued 
to increase, indicating that the decrease in the meana  during the 0~3 freeze–thaw times in 
the early stage was mainly caused by the reduction of large voids. At this stage, the skew-
ness is also increasing, indicating that the right skewness of the curve continues to in-
crease, and the small voids and large voids show opposite characteristics. The small voids 
kept increasing in the early stage, but the area value fluctuated more when the large voids 
became smaller, reflecting the decreasing trend of the meana . 

4 2

1

( 1) 3( 1)( )
( 1)( 2)( 3) ( 2)( 3)

n i
i

a

x xn n nK
n n n S n n=

−+ −= −
− − − − −  (7)

3
1

2 3/2
1

1 ( )

1( ( ) )

n
ii

n
ii

x x
nSK

x x
n

=

=

−
=

−




, (8)

where K  is kurtosis; SK  is skewness; n  is the number of samples; ix  is the meana  

of i th void; x  is meanA ; and aS  is the variance of meana . 

 
Figure 7. Kurtosis and skewness. 

After the 1~3 cycles, the kurtosis and skewness continued to increase, reaching their re-
spective peaks. meana  and maxa  both increased (Figure 3), indicating that both large and 
small voids were getting larger. Larger voids account for a higher proportion of the overall 
change, indicating that the growth of smaller voids is not obvious enough, and there is no local 
sudden growth. Smaller voids collectively increase slightly, while large voids shrink. 

After the sixth freeze–thaw, the kurtosis decreased significantly, even lower than the 
0 value, and the skewness also decreased. It shows that the large voids shrink greatly, and 
the small voids also shrink. This shrinkage was non-uniform, resulting in a wider proba-
bility distribution and a larger decrease in mean-to-mean void area. 
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After the 1~3 cycles, the kurtosis and skewness continued to increase, reaching their
respective peaks. amean and amax both increased (Figure 3), indicating that both large and
small voids were getting larger. Larger voids account for a higher proportion of the overall
change, indicating that the growth of smaller voids is not obvious enough, and there is no
local sudden growth. Smaller voids collectively increase slightly, while large voids shrink.

After the sixth freeze–thaw, the kurtosis decreased significantly, even lower than the
0 value, and the skewness also decreased. It shows that the large voids shrink greatly,
and the small voids also shrink. This shrinkage was non-uniform, resulting in a wider
probability distribution and a larger decrease in mean-to-mean void area.

After the ninth freeze–thaw, the kurtosis and skewness increased again. At this time,
the kurtosis was still less than 0, and the skewness increased again. Compared to kurtosis
and skewness without freeze–thaw, the effect of large voids is flat. However, at this time,
the maximum void area has become larger, and the overall curve is skewed to the right.
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It shows that the small voids also increased collectively during the freezing and thawing
process, and the phenomenon of flattening appeared. It shows that under freeze–thaw
damage, the generation of irreversible loss is not completely determined by large voids.
Some of the smaller voids themselves have completed collective development, and at the
same time, gradient transitions have been realized, and fluctuations around larger values
are the main cause of irreversible damage reason.

After the 12th freeze–thaw, the kurtosis increased and the skewness decreased. At this
time, the large voids increased again and, at the same time, the influence accounted for a
larger proportion. The smaller voids also increased, and the overall average area increased.

After the 15th freeze–thaw, the kurtosis decreased, the skewness increased, and the
area of large voids decreased. At the same time, the curve shifted to the right, indicating
that the smaller voids increased again, and the distribution range increased slightly.

In general, the damage of freeze–thaw cycles has an effect on large voids, but is essen-
tially caused by the collective enlargement of smaller voids. The collective development of
small voids leads to an overall decrease in durability after reaching a certain level, resulting
in permanent and irreversible damage.

3.2.2. Freeze–Thaw Void Shape

After clarifying the overall change of voids under the increase of freezing and thawing
times, it is necessary to further explore the form and shape of void growth. Comparing
the amean in Figure 3a with the amax in Figure 3b, under the same freezing and thawing
conditions, the change trend of the maximum void and the average void is basically the
same during the first to sixth freeze–thaw processes. It shows that the freezing and thawing
of the largest void and the smaller void are consistent in the early and middle stages.
However, after the ninth freeze–thaw, the overall lift of the average void area curve was
entirely derived from smaller voids, after which the maximum void area and the amean
fluctuated and increased again, with overall consistency.

Comparing (Figure 3a) amean and (Figure 3d) average void maximum diameter change,
it can be found that the dmean was basically unchanged after the ninth freeze–thaw cycle.
At the same time, dmean is still increasing, indicating that the increase in void area after the
overall failure is the widening of the short-axis direction, rather than the crack extension in
the long-axis direction.

As shown in Figure 8, both the Amean and D decreased after one freeze–thaw. After the
third freeze–thaw, the D still decreased, but the Amean increased. It shows that the short-axis
direction has increased, and the fluctuation of the originally stable area increase and decrease
trend mainly comes from the expansion and contraction of the short-axis direction of the void.
After the sixth freeze–thaw, the D decreased again, and Amean also decreased.
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After the ninth freeze–thaw cycle, the D tended to be consistent. However, the
Amean is still fluctuating and growing, and the D remains unchanged when increasing and
decreasing. It shows that after the overall failure, the expansion and contraction of large
voids all occur in the direction of the short axis, regardless of the direction of the long axis.
The development of macrovoids after overall damage is determined by the shrinkage and
expansion in the short axis direction.

In general, at the initial stage of freezing and thawing, the D continues to decrease,
the short axis direction fluctuates and expands, and the shape of the pores is also closer to
a sphere. After the void generally shrinks to a “sphere-like” threshold, the damage caused
by re-freezing and thawing will quickly exceed the damage limit, resulting in the instability
of the void structure. The maximum diameter and length tend to be stable after recovery,
and continue to shrink and expand in the direction of the short axis.

3.3. Freeze–Thaw Void Morphology Theory

According to the data analysis results, as shown in Figure 9, the theory of the evolution
of freeze–thaw void morphology is proposed. The equivalent ellipse [42] S is obtained by
using the maximum diameter D of the void. As shown in Figure 9c, in the early-stage of
freezing and thawing, D decreases and the void area decreases. The fluctuation of d is the
strongest, and the frost resistance of the asphalt mixture is stronger. In the middle-stage, as
shown in Figure 9d, D grows rapidly, d fluctuates less, the void area increases collectively,
and the durability decreases. In the late-stage of freezing and thawing, as shown in Figure 9e,
D no longer shrinks, the fluctuation of d is small, and the source of freeze–thaw damage
transfers from large voids to small voids. The processes of c→d→e are repeated, and new
voids continually exceed the damage boundary, leading to damage iterations.
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Figure 9. Theoretical diagram of freeze-thaw void morphology. (a) tensions schematic; (b) equivalent
ellipse schematic; (c) early-stage morphological changes; (d) middle-stage morphological changes;
(e) late-stage morphological changes.

4. Conclusions

This work explores the distribution and variation of voids in SMA-13 asphalt mixture
under different freeze–thaw cycles, and the conclusions are as follows.

1. The voids were irreversibly damaged after the ninth freeze–thaw cycle. The average
values of the indicators of the ninth cycle are used as the damage boundary. After
the damage boundary is exceeded, the degree of irreversible damage caused by
freezing and thawing increases, the rebound of large voids decreases significantly,
and the small voids continue to fluctuate. The accumulation of freeze–thaw damage
is reflected in the springback failure of large voids;
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2. From the statistical value of |∆a|, it can be seen that middle-stage (6~9 cycles) is the
critical stage of freeze–thaw damage. The large void area tends to stabilize in the
late-stage (12~15 cycles). The frost resistance of the asphalt mixture is the strongest
in the early stage (0~3 cycles). The source of void damage shifts from large voids to
small voids;

3. The fluctuation of void growth mainly comes from the contraction and expansion in
the short axis direction. The main reason for the irreversible damage is the springback
failure in the long axis direction, which leads to the collective increase of the small void
area in 6~9 cycles. In the late-stage of freeze–thaw damage (12~15 cycles), the dmean
remained stable, the source of damage shifted to small voids, and the fluctuations of
damage and deepened short-axis fluctuations came from smaller voids.

4. According to the change trend of D, the morphological evolution of freeze–thaw voids
is divided into three stages. In the early-stage, D shrinks, the shape of the void tends
to be round, and the freeze–thaw resistance is strong. In the middle-stage, D grows,
the void area grows steadily, and the durability decreases as a whole. In the late-stage,
D remained stable, the void area fluctuated slightly but tended to be stable, and the
freeze–thaw damage was irreversible and further deepened.
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