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Damage-Net: A program for DNA repair meta-analysis identifies a network 
of novel repair genes that facilitate cancer evolution 

Aldo S. Bader a,*, Martin Bushell a,b,* 
a Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK 
b Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK   

A R T I C L E  I N F O   

Keywords: 
Mass spectrometry 
Proteomics 
Genomics 
TCGA 
Adrenocortical carcinoma 
Mutational burden 
Damage-Net 

A B S T R A C T   

The advent of genome-wide methods for identifying novel components in biological processes including CRISPR 
screens and proteomic studies, has transformed the research landscape within the biological sciences. However, 
each study normally investigates a single aspect of a process without integration of other published datasets. 
Here, we present Damage-Net, a program with a curated database of published results from a broad range of 
studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own 
datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to 
examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. 
Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocor-
tical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical car-
cinoma’s poor prognosis. Download at www.damage-net.co.uk.   

1. Introduction 

A variety of DNA damaging agents assault our genomes every day, 
leading to the formation and subsequent repair of a range of DNA le-
sions. These different lesions are repaired by various repair pathways, 
each optimised for the resolution of a different form of DNA damage and 
each required for the successful maintenance of genomic integrity. 

The major DNA repair pathways include base excision repair (BER), 
nucleotide excision repair (NER), single-strand break repair (SSBR) and 
double-strand break repair (DSBR) [1,2]. BER repairs non-bulky DNA 
adducts, such as oxidised nucleotides [3], NER repairs bulky, helix 
distorting DNA adducts [4], SSBR repairs single-strand cuts in the 
double-helix [5] and DSBR functions via multiple downstream repair 
pathways, predominantly non-homologous end-joining (NHEJ) and 
homologous recombination (HR) [6]. Despite these highly complex and 
efficient repair pathways, DNA repair is imperfect and can therefore lead 
to the formation of mutations throughout our genomes [7,8]. The 
accumulation of mutations can disrupt cellular functions ultimately 
leading to disease and is most notably the central driver of carcino-
genesis [9,10]. These mutations can alter protein function, disrupting 
normal cellular function and, in some cases, acquiring characteristics 

which drive tumorigenesis. Mutagenesis can be accelerated via mutation 
of the genes encoding DNA repair factors, leading to impaired protein 
function and therefore reduced repair fidelity [11,12]. This mechanism 
constitutes the basis for cancer pre-disposing conditions, such as he-
reditary breast and ovarian cancer syndrome [11]. A broad under-
standing of the processes governing DNA repair is therefore critical for 
the development of new therapeutic strategies for cancer. 

High-throughput investigations are often used to identify novel fac-
tors involved in DNA repair. These studies include proteomics of chro-
matin associated proteins [13,14], interactomes of known components 
of the DNA repair machinery [15,16] and the study of protein modifi-
cations following exposure to DNA damaging agents [17,18]. These 
methods have proven effective at identifying new participants in a va-
riety of DNA repair pathways and there is therefore a wealth of pub-
lished data available utilising these techniques. However, only a small 
fraction of the proteins identified have been investigated in depth 
meaning there is a substantial amount of information left unused in 
these datasets. In addition, the integration of multiple datasets investi-
gating the same processes magnifies their power as successful hits can be 
identified with greater confidence, outlier removal is more accurate and 
a far greater understanding of the results can be obtained [19]. Despite 
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these benefits, and the abundance of available data, integration of 
multiple published datasets or even comparisons between new data and 
published data are rare. We believe this is likely due to the barriers of 
searching for data in the literature and the bioinformatic analysis of the 
results. 

To address this, we wrote a graphical program named Damage-Net 
(All downloads and information available at www.damage-net.co.uk), 
that simplifies the integration of large datasets, mainly proteomics and 

genetic screens, allowing for comparisons to be made between datasets 
and for commonalities to be found. Users can easily investigate the 
curated database of 39 published results that investigate DNA damage 
and upload their own results to interrogate. In addition, data from The 
Cancer Genome Atlas (TCGA) database has been analysed and incor-
porated into Damage-Net to allow users to easily determine if genes of 
interest correlate with mutational burden or alter survival in 33 cancer 
subtypes compiled by the TCGA. 

Fig. 1. An overview of Damage-Net functionality and features. (A) Main screen of the Damage-Net interface. (B) Result window of the gene search function using 
Ligase 3 (LIG3) as an example, results are displayed in the lower box. (C) Result window of the family search function using Ligase (LIG) as an example, results are 
displayed in the lower box. (D) Result window of the Pan-Cancer Mutation and Survival Analysis function using Ligase 3 (LIG3) as an example, mutation association 
heatmap is on the left and survival analysis table and survival curve is on the right, highlighted table results are those with significant changes. (E) Example of how to 
select datasets for analysis with the Top Hits and Compare functions. (F) Result window for the Top Hits of the datasets selected in (E). (G) Result window for the 
Compare function of the datasets selected in (E). 
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In this study, we showcase the powerful capabilities of Damage-Net 
by using it to conduct large scale analysis on all 39 of its datasets, 
identifying a group of genes that are potentially novel DNA repair fac-
tors. We then conduct further analysis on these genes, finding a network 
of genes cooperating in adrenocortical carcinoma (ACC) that associates 
with mutational burden and substantially reduce patient survival. 

2. Results 

2.1. An overview of Damage-Net functionality and features 

Damage-Net was written in the Python coding language with the 
database backend written in SQL and was compiled to function as an 
independent program on Windows, Linux and Mac OS. It currently 
contains the results of 39 publications that investigated various aspects 
of DNA repair on a large-scale (Supplementary Table 1) [13–37], as well 
as the gene expression and mutation data for 33 cancer sub-types from 
the TCGA database. The proteomic datasets were all selected from 
peer-reviewed publications that investigated aspects of the DNA 
damage-response. These datasets had to be generated in a way that 
identified DNA-damage specific results, e.g. via comparing a DNA 
damage treated sample to an untreated sample or immunoprecipitation 
of a known repair factor. In addition, we chose to not impose selection 
criteria to prevent bias within the database, instead it is designed to 
grant easier access to currently available data. We will continue to 
search for and add datasets to the database, those currently available are 
all the datasets we have identified so far. We designed Damage-Net with 
simplicity and ease of use as our primary focus, to make data availability 
and analysis as accessible as possible. To achieve this, there are four 
main functions; “Gene search”, “Pan-Cancer Mutation and Survival 
Analysis”, “Top Hits” and “Compare” (Fig. 1A). 

The “Gene search” function takes a single gene symbol, e.g. LIG3, and 
returns a list of all studies in the database that identified this gene, or its 
encoded protein, as a significant hit. In the case of ligase 3, encoded by 
LIG3, we find interactomes for MDC1, REV7, KU70 and the NHEJ 
complex, a study on chromatin binding in response to UV and a number 
of modification studies (Fig. 1B). This function can instead be used to 
search for protein families by searching the common identifier of the 
gene family you wish to search, e.g. BRCA, LIG, SF3B etc. The result is a 
list of all studies that identified members of this family followed by 
which members were identified (Fig. 1C). For the investigation of a 
specific gene, the user can also conduct pan-cancer mutation and sur-
vival analysis. This function opens a results window containing a heat-
map of the association of the gene’s expression with point mutations, 
insertions and deletions across the genomes of all cancer sub-types 
(Fig. 1D). It also creates a table of survival statistics for all cancer sub- 
types, highlighting the significant results, and generates Kaplan-Meier 
curves, the sub-type of which can be switched using a dropdown se-
lection (Fig. 1D). 

Both the “Top Hits” and “Compare” functions require a list of at least 
2 datasets to compare which can either be selected from the dropdown 
lists or be copied over from the “Gene search” results (Fig. 1E). Ana-
lysing a group of datasets with “Top Hits” opens a results window con-
taining a table of 3 columns: Rank, Rate and Gene, which correspond to 
the rank of the gene in the results, the number of the studies the gene 
was identified in and the gene symbol respectively (Fig. 1F). The 
“Compare” function determines the overlap in the results of all possible 
combinations of the datasets searched and opens a results window 
containing a table and a Venn diagram (Fig. 1G). The table has 3 col-
umns: comparison, overlap and genes, corresponding to the datasets 
being compared, the number of genes in the overlap between the 
compared datasets and the genes in this overlap respectively. The Venn 
diagram is only computed for up to 6 studies as greater than this be-
comes very difficult to plot. The results of “Cancer mutation and survival 
analysis”, “Top Hits” and “Compare” can all be saved in multiple table 
formats and all plots can be saved in a variety of image formats. 

Although simple in their design, these functions provide a very 
effective basis of analysis for the investigation of both specific targets 
and large datasets. No other available tools provide genomic mutation 
association based on gene expression, instead other tools such as cBio-
Portal only provide analysis of mutations within a gene of interest, not 
across the genome. Other tools do provide survival curve creation, such 
as kmplot, however at the point of this publication these tools have a 
more limited set of cancer sub-types. Importantly, as well as these 
additional features, no tool currently provides a database similar to 
Damage-Net allowing users to quickly and easily query published re-
sults. The integration of different datasets can be used to uncover 
additional aspects of the role a particular protein may play in DNA 
repair, for example by finding its interacting partners and by deter-
mining the modifications that are made to it. The mutation analysis 
made possible by the integration of TCGA data can also significantly 
expand on this by providing the types of mutation associated with this 
gene and the cancer sub-types/tissues in which this occurs. Correlating 
expression of a gene with the frequency of mutations across the genome 
is a rarely used approach for helping to define a proteins involvement in 
DNA repair but one of significant benefit, both inside and outside the 
context of cancer. 

2.2. Damage-Net identifies a group of potentially novel DNA repair 
factors 

Initially we tested the capability of Damage-Net to selectively iden-
tify DNA repair factors. To do this we took 3 groups of genes; a group of 
classical DNA repair factors, a group of randomly selected genes and a 
group of DNA repair genes identified since 2013 to represent newly 
discovered DNA repair genes that would be the target of these in-
vestigations. Each group consisted of 40 genes which were searched 
using “Gene Search” for the number of datasets that identified them and 
the average number of datasets were then compared (Fig. 2A). This 
showed that both classical DNA repair and newly discovered DNA repair 
genes are similarly likely to be identified in ~7 studies, whereas random 
genes on average were identified in <1 study. This suggests that the gene 
search function is selective for DNA repair factors while unrelated genes 
are not enriched. 

Comparing the results of multiple published studies also has signif-
icant advantages for data analysis. By combining studies, we can reduce 
off-target hits that are often specific to a particular methodology, while 
true hits can be enriched [17,20]. Multiple DNA-repair studies have 
previously conducted and combined several proteomic approaches in 
order to elucidate results shared between the approaches [17,20,25]. 
Target genes by these approaches tend to be more accurate as they have 
been consistently identified across multiple approaches [38–42]. In 
addition, the combination of different methodologies can provide 
additional information as to the processes these genes may be involved 
in with different experimental phenotypic outputs, resulting in more 
in-depth conclusions. For example, 53BP1 and BRCA1 have an antago-
nistic relationship to promote either non-homologous end-joining 
(NHEJ) or homologous recombination (HR) repair of DSBs respectively. 
However, interactomes of both 53BP1 and BRCA1 identify each other as 
well as the 53BP1 co-operator RIF1 and the BRCA1 co-operator BARD1. 
From this, it is not possible to determine the relationship between these 
proteins or their interactors, however by comparing these results with 
that of a genetic screen investigating positive regulators of HR, only 
BRCA1 and BARD1 are identified as common between all three studies 
(Supplementary Fig. 1A). This indicates that BRCA1 and BARD1 interact 
to promote HR and although BRCA1 interacts with 53BP1 and RIF1 they 
are dispensable for the process of HR. Therefore, by combining datasets 
of differing methodologies, a more in depth understanding of the results 
can be obtained. Interestingly, the other genes identified in all three of 
the studies in this example included the HR factors BRCA2 and RPA2 
alongside HMBOX1 and ZNF207, both of which have recently been 
showed to have roles associated with the DNA damage response 
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[43–46]. 
To demonstrate the capabilities of Damage-Net, we chose to inte-

grate all 39 datasets together to identify a high-confidence group of 
novel DNA repair factors. Initially, we ranked all genes by the number of 
studies they were identified in to find the most enriched genes across all 
datasets. This found that the genes with the strongest enrichment in 
these studies were a variety of well known DNA repair factors, such as 
BRCA1, MSH6 and the full MRN complex (MRE11, RAD50, NBN) 
(Fig. 2B). We believe that in conjunction with our previous investigation 
of the gene search function, this suggests that Damage-Net is effective at 
selectively identifying DNA repair genes and that DNA repair genes are 
enriched within the database. However, we also noticed that whereas 
over 9000 genes were identified in total, over 60 % of these were 
identified in only one of the 39 studies investigating DNA repair 
(Fig. 2B). There are likely a number of contributors to this, though since 

Damage-Net contains such a wide variety of datasets, a wide range of 
results is to be expected. To further analyse this phenomenon, we paired 
datasets that used comparable approaches to see if this variation was 
due to the inherent differences between the designs of our 39 studies. 
Comparing two studies that used Stable Isotope Labeling by/with Amino 
acids in Cell culture (SILAC) to identify proteins binding to chromatin in 
response to UV irradiation found only a 5–8 % overlap and comparing 
two BRCA1 interactome studies found only a 13–21 % overlap (Sup-
plementary Fig. 1B). Pairing studies that investigated proteins that are 
either phosphorylated, ubiquitylated or acetylated in response to DNA 
damage fared slightly better, though still only had overlaps of 15–38 % 
(Supplementary Fig. 1C). A pair of genetic screens showed the lowest 
overlap of only 1–2 % (Supplementary Fig. 1D), however this is likely 
due to the different targets screened by these two studies since both 
derived their targets through separate processes. These results suggest 

Fig. 2. Damage-Net identifies a group of potentially novel DNA repair factors. (A) The average number of studies in which genes are identified by Damage-Net for 3 
groups: randomly selected, newly identified DNA repair genes and classical DNA repair genes. Error bars represent standard error of the mean, statistical testing was 
done using an unpaired t-test, *** indicates p-value < 0.001. (B) Histogram of the number of datasets all genes are identified in, in the Damage-Net database, y-axis 
shows the percentage of total genes each group represents, number above the bars indicates the raw number of genes in each group and key results have been 
labelled. (C) Representation of the categorisation of Damage-Net datasets into 3 groups: DDR related, Modified and Genetic Screens. (D) Venn diagram of the genes 
occurring more than once in each of the three groups from (C). (E) Correlation matrix between the three groups from (C) of the number of studies in each group each 
gene is identified in, correlation testing was done with the Spearman Rank model. (F) Venn diagram of the genes in the DNA-repair gene ontology group, the DDR- 
Related gene group and the Modified gene group. 
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that differing experimental approaches partly contribute to the results of 
Fig. 2B, though there may also be an element of random variation from 
false-positive results since the paired studies also showed significant 
variability (Supplemental Fig. 1B-D). However, it should be noted that 
even these paired studies, although examining similar processes, can 
have a number of experimental differences such as cell lines, treatment 
types and doses, incubation periods and sample preparation. This 
further supports our hypothesis for integrating multiple datasets, as by 
comparing analogous studies we can isolate the high-confidence, 
commonly identified results and exclude those that are cell-type or 
method specific. 

Therefore to extract a high confidence group of hits from these 
datasets, we categorised each study into three groups; DNA-damage 

response (DDR)-related, which comprises chromatin association and 
repair factor interactome studies, modified, which comprises all damage 
induced modification studies, and genetic screens, which includes 
genome-wide CRISPR sensitivity screens and RNAi based reporter assay 
screens (Fig. 2C). To remove the large number of low confidence hits, 
each group of genes was characterised as the genes identified in at least 2 
studies of the groups from Fig. 2C. 

Comparing these gene groups found that there is a significant overlap 
between the DDR-related and modified groups, but minimal overlap 
with the genetic screens group (Fig. 2D). In addition, correlation anal-
ysis of the frequency each gene is identified in these groups found a 
significant correlation between the DDR-related and modified groups, 
but not between either of these groups and the genetic screens group 

Fig. 3. DNA repair factors and DNet-genes are associated with pan-cancer high mutational burden and poor-prognosis. (A) Gene ontology slim biological process 
enrichment of the 579 DNet-genes. (B) Deletion association of RAD50 and KU80 with deletions in breast invasive carcinoma. (C) Point mutation association of P53 
and RAD18 with point mutations in skin cutaneous melanoma. (D) Average mutational association of three gene groups: randomly selected genes, canonical DNA 
repair genes and Damage-Net identified genes across all cancer sub-types. (E) Boxplot of pan-cancer tumour mutational burden association of all genes in 3 groups; 
random selected, canonical DNA repair genes and DNet-genes. (F) Average survival association of the genes in our three gene groups across all cancer sub-types. (G) 
boxplot of pan cancer survival association of all genes in our three gene groups. (H) Comparison of cancer sub-types in which DNA-repair genes are associated with 
low survival to those in which they are associated with increased mutational burden. (I) Table of the 12 cancer sub-types: ACC, BRCA, KICH, KIRC, KIRP, LGG, LUAD, 
MESO, PAAD, SARC, SKCM and UCEC, in the cross-section of (G). Statistical testing was done using an unpaired, directional Wilcox test with Bonferroni correction, 
ns indicates p-value > 0.05, *** indicates p-value < 0.001. 
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(Fig. 2E). Due to these low correlations and the lack of consistent results 
with this group and the others we decided not to include genetic screens 
in the analysis, as they limit our ability to combine datasets. However, it 
should be noted that this reduced overlap with the other groups is likely 
due to the significant experimental differences between them and that 
these genetic screens do produce accurate results. For example, 
comparing the group of genetic screen results with the DNA repair gene 
ontology gene group found that ~26 % of the genetic screen results were 
known DNA repair genes (Supplementary Fig. 1E). 

We then took the comparison of the DDR-related and the modified 
groups and to only focus on the genes that are novel repair genes, we 
compared these with the DNA-repair gene ontology group (Fig. 2F). We 
found a reassuring overlap of 101 genes between the 680 Damage-Net 
identified genes and the 483 known DNA repair genes. We therefore 
carried forward these 579 genes in the overlap between the DDR-related 
and modified groups for further analysis. For simplicity, we termed this 
group of Damage-Net identified genes “DNet-genes”. 

2.3. DNA repair factors and DNet-genes are associated with high 
mutational burden and poor-prognosis in cancer 

We first conducted gene ontology enrichment to understand the 
composition of the 579 DNet-Genes. This found a significant enrichment 
for genes related to various chromatin organisation and RNA-related 
processes (Fig. 3A). This suggests that the genes may be more periph-
eral to the repair process, facilitating chromatin remodelling around 
damage sites rather than specifically contributing to DNA processing. 

To investigate possible DNA repair roles for these DNet-genes in 
cancer we conducted a mutation association study. To do this for a gene 
we first split patients into two groups; low and high expression for the 
gene of interest, then calculate the log2 fold change of the average 
mutation frequency in the high/low expression group. This allows us to 
determine how expression of a gene correlates with the mutational 
burden in a given cancer sub-type and can be very mechanistically 
informative. For example, breast cancer is commonly deficient in ho-
mologous recombination (HR) resulting in increased mutations due to 
repair of double-strand breaks via the more error-prone non-homolo-
gous end joining (NHEJ) [47,48]. When we look at the association of the 
HR factor RAD50 with deletions in breast cancer, we find a strong 
negative association indicating that loss of RAD50 promotes mutations 
whereas the NHEJ factor KU80 shows a strong positive association 
indicating higher KU80 expression promotes mutation (Fig. 3B). This 
analysis is a powerful tool in investigating DNA repair in cancer as we 
can also characterise tissue and mutation specific mechanisms of repair 
factors, e.g. in contrast to our previous example, the UV-response gene 
RAD18 associates positively with point mutations in skin cutaneous 
melanoma whereas P53 is negatively associated (Fig. 3C). 

We calculated the average association of all DNet-genes with tumour 
mutational burden in all cancer sub-types and compared this to the 
averages for canonical DNA-repair genes and a randomly selected group 
of genes (Fig. 3D). This found that both the canonical DNA repair and 
DNet-gene groups were associated with increased tumour mutational 
burden in most cancer sub-types, whereas random genes showed few 
significant changes. To get an overall view on the effect these genes are 
having on tumour mutational burden, we compared the effect of each 
gene on mutational burden in each of our 3 gene groups (Fig. 3E). 
Compared to random genes, both DNA repair and DNet-genes show a 
significant increase in tumour mutational burden association. Interest-
ingly, comparing DNet-genes to DNA repair genes shows no statistical 
difference, suggesting the DNet-genes cause a comparable increase in 
tumour mutational burden to canonical DNA repair genes. An associa-
tion between DNA-repair gene activity and altered tumour mutational 
burden is well documented [49,50], though interestingly this is 
commonly identified as reduced activity increasing mutations, unlike 
our observation here. 

Next, we used a similar analysis to investigate the effect of DNet- 

genes on patient survival. Comparing the average survival change for 
each group across the different cancer sub-types found that there is 
significant variation between the sub-types, but that DNA-repair genes 
and DNet-genes are more commonly associated with an average 
decrease in survival (Fig. 3F). An overall analysis, similar to that done 
previously, found that both DNA repair genes and DNet-genes generally 
show a significant decrease in survival whereas the random control 
group shows a subtle skew to increased survival (Fig. 3G). Again, we 
found no statistical difference between the repair and DNet-genes, 
suggesting that these groups have very similar effects on both muta-
tional burden and patient survival. All mutation and survival associa-
tions for all gene groups are available Supplementary Table 2. 

Interestingly, comparing the sub-types where DNA-repair genes 
cause increased mutational burden with those in which they cause 
decreased survival found a large overlap between the two groups 
(Fig. 3H-I). This indicates that these two features may be linked, such 
that the increased mutational burden drives the decreased survival. 

2.4. A sub-group of DNet-genes lower cancer prognosis by increasing 
mutational burden 

To investigate this link, we used an integrated analysis of all DNet- 
genes in all cancer sub-types for their effect on mutational burden and 
survival simultaneously. This allowed us to characterise 4 groups of 
coupled change: group 1 where genes associate with reduced mutations 
and increased survival, group 2 where genes associate with increased 
mutations and increased survival, group 3 where genes associate with 
decreased mutations and decreased survival and group 4 where genes 
associate with increased mutations and decreased survival (Fig. 4A). The 
DNet-genes show a distinct shift into group 4, demonstrating that the 
increase in tumour mutational burden and the decrease in patient sur-
vival shown previously are directly linked. The survival curves for a 
group 4 example, KIF23 in adrenocortical carcinoma, is shown in Sup-
plementary Fig. 2C and for a group 2 example, USP34 in rectal adeno-
carcinoma, is shown in Supplementary Fig. 2D. When conducting this 
analysis on randomly selected genes, it showed very few hits in all 4 
groups (Supplementary Fig. 2A), whereas the DNA repair genes showed 
a very significant shift into group 4 (Supplementary Fig. 2B). This fol-
lows our previous results that found DNet-genes and DNA repair genes to 
have comparable effects of significantly increased mutation association 
and significantly decreased survival association (Fig. 3E, G). This result 
therefore suggests that both DNA repair and DNet-gene expression are 
commonly associated with increased tumour mutational burden that 
drives a decrease in patient survival in cancer. Additionally, the strong 
similarity between the effects of DNA repair genes and DNet-genes 
support the hypothesis that DNet-genes are previously uncharacterised 
DNA repair genes, either directly involved in DNA processing or are 
factors associated with the repair process. 

Calculating the size of each of the 4 groups from Fig. 4A showed that 
compared to random genes, DNA repair and DNet-genes have a sub-
stantial enrichment for group 4 (Fig. 4B). A notable feature of the DNet- 
gene hits in group 4 is that they appear to be dominated by hits in 
adrenocortical carcinoma (ACC) (Fig. 4C) which was also found to be 
one of the most significantly changing sub-types with DNet-genes for 
both mutational burden and survival (Fig. 3D, F). This means that there 
are large groups of DNet-genes whose expression collectively correlates 
with both mutational burden and decreased survival in specific cancer 
sub-types. We therefore conducted functional analysis on the group 4 
ACC genes using gene-ontology enrichment and network analysis to 
determine their biological roles. The group 4 ACC genes primarily 
consist of genes relating to cytoskeleton/chromatin organisation and 
gene expression/ribosomes (Fig. 4D) which we found particularly 
interesting in light of the burgeoning fields of RNA binding proteins and 
chromatin remodellers in DNA repair [51–57]. 

The group 4 enrichment of canonical DNA repair genes (Supple-
mentary Fig. 2B) suggests that it is common for these genes to associate 
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with high mutational burden that drives decreases in survival. Given 
that the group 4 DNet-genes seem to almost entirely consist of an indi-
vidual cancer sub-type and a specific set of genes, we chose to investi-
gate this gene network further. 

2.5. Network analysis in ACC discovers DNet-genes are part of a larger 
co-expression network 

Since the group 4 ACC genes all show similar results in our analysis, 
we used hierarchical clustering on their expression in ACC to determine 
their co-expression (Fig. 5A). This found that over half of these genes 
strongly co-express in ACC, which we were able to validate via principal 
component analysis (Fig. 5B). The tight co-expression of these genes 
suggests they form a network in ACC that could encompass genes 
beyond the original set identified by Damage-Net. Since we originally 
identified these genes through proteomic investigations, we may have 
only identified a small fraction of this ACC network due to the identi-
fication biases of these proteomic approaches [38–42,58]. It is therefore 
possible that this network is much larger and consists of a significant 
number of genes that are elusive to proteomic investigations. 

To address this, we used the same hierarchical clustering approach as 
before to assess the co-expression of our genes with the entire protein 
coding transcriptome (Fig. 5C). This indeed identified a surprising 
number of genes that strongly co-express with our correlating group 4 
ACC genes. We filtered this matrix for the strongest correlations to gain a 

group of 204 genes which, combined with the 34 genes with strong 
correlations from the group 4 ACC genes, gave us 238 genes in this 
network, termed ACC-Net. It is possible that this network collectively 
coordinates the high mutational burden and low survival that we 
observed in ACC. To determine if this co-expression network is only a 
feature of ACC or is a more general biological feature, we calculated the 
average co-expression between ACC-Net genes in all cancer sub-types 
(Fig. 5D). This showed that these genes co-express to varying levels in 
all sub-types, but that their co-expression is strongest in ACC, suggesting 
they are part of a consistent biological pathway that is of particular 
importance in ACC. 

To gain a general understanding of the representation of DNA repair 
genes in the ACC-Net group, we calculated the percentage of ACC-Net 
genes that are in the DNA repair gene ontology group (Fig. 5E). Over 
25 % of the ACC-Net genes were found to be known DNA repair genes 
compared to <2% of the total transcriptome. Gene ontology of the 238 
genes found that most genes were associated with cell cycle regulation 
with some associated with DNA conformation/biosynthesis and a sub-
stantial enrichment for DNA double-strand break repair (Fig. 5F). The 
large enrichment and variety of cell-cycle related processes was partic-
ularly striking and so a more in-depth gene ontology investigation was 
conducted to further understand this. This found that the cell-cycle 
related genes were primarily associated with the processes of DNA 
replication, chromatin organisation and cytoskeletal/mitotic spindle 
regulation, rather than regulation of cell-cycle progression or 

Fig. 4. A sub-group of DNet-genes lower cancer prognosis by increasing mutational burden. (A) Association with tumour mutational burden (TMB) vs association 
with survival of all DNet-genes in all cancer sub-types with the 4 groups of cooperative change labelled groups 1-4. (B) Size comparison of the groups from (A) for 
DNet-genes against those for canonical DNA repair genes and randomly selected genes. (C) Comparison of group sizes from (A) split by ACC and all other cancer sub- 
types. (D) Protein interaction network (left) and gene ontology slim biological process enrichment (right) for all group 4 genes from (A) that are in adrenocortical 
carcinoma (ACC). 
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checkpoint regulation (Supplementary Fig. 3A-B). This gives us valuable 
insight into the possible functions this network may be facilitating, 
suggesting they may be a part of DNA repair processes specifically 
regarding DNA replication and via regulating chromosome segregation. 

2.6. The ACC-Net gene network strongly associates with mutational 
burden and decreased survival in ACC 

To assess the effect of the ACC-Net gene expression on ACC we 
employed a similar analysis to that used for the DNet-genes to investi-
gate mutational burden and survival. Comparing the mutational burden 
association of these genes with that of all DNA repair genes and our 
randomly selected control group we found that in ACC, DNA repair 

genes cause a significant increase in mutational burden, but that the 
ACC-Net genes cause an even greater increase (Fig. 6A). In fact, the 
expression of every gene in this group correlated with an increase in 
mutational burden. Conducting a similar comparison to assess changes 
in ACC patient survival showed that every ACC-Net gene is associated 
with significantly decreased survival and overall, they show an even 
greater decrease in survival than DNA repair genes (Fig. 6B). This un-
surprisingly results in all ACC-Net genes being simultaneously associ-
ated with increased mutational burden and reduced survival; however, 
their association appears to be more continuous than we have seen 
previously as there is a significant negative correlation between muta-
tional burden and survival (Fig. 6C). In comparison, the results from 
canonical DNA repair genes showed more variable results and our 
randomly selected control genes only had a few very variable hits 
(Supplementary Fig. 4A-B). Expanding our analysis to all cancer sub- 
types found that ACC-Net genes still showed a strong simultaneous as-
sociation with increased mutational burden and decreased survival 
(Supplementary Fig. 4C), and was far greater than that found for DNet- 
genes (Fig. 4A) or DNA-repair genes (Supplementary Fig. 3B). Combined 
with our previous finding that these genes co-express in all sub-types 
(Fig. 5D), this suggests that although high expression of this gene 
network is most significant in ACC, that it still has an important role in 
general and also supports the accuracy of our findings in ACC. ACC-Net 
mutation and survival associations are available in Supplementary 
Table 2. 

These results are indicative of the individual effect of ACC-Net genes; 
however, since we believe these genes to be operating in conjunction 
with each other, we needed to assess the impact of their collective 
expression. To determine the cumulative effect of ACC-Net genes, we 
grouped ACC patients into high and low expression groups based on the 
cumulative expression of all these genes (Fig. 6D). These groups allow us 
to assess the overall effect expression of the whole network has on ACC. 
High expression of the network results in a highly significant drop in 
survival, reducing the 5-year survival rate from ~80 % in low expression 
patients to ~30 % in high expression patients (Fig. 6E). This is a greater 
decrease than compared to the cumulative effect of DNA repair gene 
expression (Supplementary Fig. 4D) and overall expression of our 
random control genes showed no change in survival rate (Supplemen-
tary Fig. 4E). In addition, overall ACC-Net expression strongly associates 
with increased rates of point mutations, insertions and deletions 
(Fig. 6F), an increase that was slightly greater than the overall effect of 
all DNA repair genes. As a final piece of analysis, we asked the question 
of what effect ACC-Net gene expression has on tumour stage. High 
expression of ACC-Net genes strongly skews towards late stage, meta-
static ACC, whereas low expression skews towards early-stage ACC 
(Fig. 6G). This indicates that ACC-Net gene expression not only reduces 
survival, but also advances cancer progression to metastasis. 

We then tested these findings by replicating this analysis using an 
alternative dataset that is independent of the TCGA [59]. This dataset 
includes gene expression quantification via microarray, mutation 
quantification via exome sequencing and patient outcome data. We 
found strikingly similar results with this dataset as with the TCGA data 
(Supplemental Fig. 4F–H); increased expression of individual ACC-Net 
genes commonly associates with increased mutational burden and 
reduced patient survival (Supplemental Fig. 4F). In additional, patients 
with a combined high expression of all ACC-Net genes showed signifi-
cantly reduced survival (Supplemental Fig. 4G), comparable to that 
found in the TCGA dataset, and showed increased association with point 
mutations, insertions and deletions (Supplemental Fig. 4H). 

As an experimental validation of ACC-Net genes playing a role in the 
DNA damage response, we conducted apoptosis assays in response to 
DNA damage along with siRNA mediated depletion of two ACC-Net 
target genes, KIF4A and MKI67. BJ-5ta fibroblasts were treated with 
25μM etoposide, a common ACC chemotherapeutic, after knockdown of 
our targets alongside a negative control scramble siRNA and to a posi-
tive control KU70 siRNA (Fig. 6H). Both KIF4A and MKI67 knockdown 

Fig. 5. Network analysis in ACC discovers DNet-genes are part of a larger co- 
expression network. (A) Heatmap of expression correlation between all group 
4 ACC DNet-genes with 2 groups marked with coloured bars: strong correlation 
(red) and weak correlation (blue). (B) Principal component analysis of the 
correlation matrix from (A) with the correlation groups coloured. (C) Heatmap 
of expression correlation between the strong correlating genes from (A-B) (y- 
axis) and the entire protein-coding transcriptome (x-axis) with a strong corre-
lating group marked with a red bar. (D) Average expression correlation between 
all the strong correlating genes extracted from (C) in all cancer sub-types with a 
red colour scale applied. (E) Bar plot of percentage of strong correlating genes 
extracted from (C) that are DNA repair genes compared to the percentage of the 
total transcriptome. (F) Gene ontology slim biological process enrichment of the 
strong correlating genes extracted from (C). 
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resulted in significantly increased apoptosis in response to etoposide 
treatment over the control siRNA (Fig. 6I). Interestingly, KIF4A deple-
tion showed an increase in apoptosis similar to that of KU70 depletion, 
whereas MKI67 depletion resulted in an even greater increase than this, 

however these differences may be due to depletion efficiency (Fig. 6H). 
In addition, we repeated these experiments using 2μM cisplatin instead 
of etoposide as this is also a common ACC chemotherapeutic. This 
experiment gave very similar results to the etoposide treatment, with all 

Fig. 6. The ACC-Net gene network strongly associates with mutational burden and decreased survival in ACC. (A) Boxplot of tumour mutational burden association 
in ACC of all genes in 3 groups; random selected, canonical DNA repair genes and ACC-Net genes. (B) Boxplot of ACC survival association of all genes in our three 
gene groups. Statistical testing was done using an unpaired, directional Wilcox test with Bonferroni correction, *** indicates p-value < 0.001. (C) Association with 
tumour mutational burden (TMB) vs association with survival of all ACC-Net genes in ACC, Pearson correlation coefficient is marked. (D) Heatmap of ACC-Net gene 
expression in all ACC patient samples clustered into groups of cumulative high (red) and low (blue) expression. (E) ACC survival curve of high vs low cumulative 
expression of all ACC-Net genes. (F) Average mutation association of our three gene groups for point mutations, insertions and deletions separately. (G) Comparison 
of ACC cancer stage distribution for patients with high or low cumulative expression of all ACC-Net genes. (H) Western blot of ACC-Net target knockdowns and KU70 
positive control knockdown treated with either mock or 25μM etoposide treatment. (H) Annexin V apoptosis assay of BJ-5ta cells treated with 25μM etoposide in 
different siRNA mediated knockdowns. Y-axis is the percentage of cells that were apoptotic in the treated minus the apoptotic percentage of the untreated sample. (J) 
Same as (I), but for 2μM cisplatin treatment. 
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siRNA showing significantly increased apoptosis compared to control 
siRNA and MKI67 siRNA showing an even greater increase than KIF4A 
or KU70 siRNA (Fig. 6I). 

These results demonstrate that in ACC, this network of genes co-
ordinates processes that lead to an increase in genomic mutations being 
maintained in the cancer genomes, which leads to progression of the 
cancer and, ultimately, an extraordinary decrease in patient survival. In 
addition, the corroboration of results for canonical DNA repair gene 
with those for the ACC-Net genes further supports that the ACC-Net 
genes operate via a DNA repair based mechanism. 

3. Discussion 

Here we showed the various features of Damage-Net, a program we 
built for meta-analysis and DNA repair investigation, along with further 
analysis that highlighted its effectiveness at identifying novel DNA 
repair genes. In addition, we found that there is an inherent aspect of 
irreproducibility in many datasets. The reason for this could simply be 
the large variation between experiments in different labs, as even results 
using very similar methodologies commonly give significantly different 
results. However, some publications have shown that even between 
biological replicates there is significant variability. For example, a 
recent publication conducted 3 replicates of affinity-purification mass- 
spec (AP-MS) and BioID of the Ku70 interactome and found a surprising 
lack of overlap between the AP-MS replicates [20]. Their BioID results 
were significantly more reproducible and identified a far greater number 
of significant hits suggesting that the variation in the AP-MS results may 
be method specific. This highlights the necessity of data integration for 
the selection of significant hits, as comparing your own datasets to 
comparable publishes datasets can filter out a majority of the irrepro-
ducible noise. Damage-Net provides a simple way to conduct such a 
comparison as well as other analytical techniques to aid the user’s 
projects. 

To delve deeper into our database and to further assess the capa-
bilities of Damage-Net, we integrated every Damage-Net dataset to 
identify a high confidence group of potential DNA repair genes which we 
termed DNet-genes. We found these genes were mainly associated with 
chromatin organisation and RNA-related processes, indicating that they 
may be required for chromatin remodelling in response to DNA repair, 
facilitating access to damage sites for repair factors. Expression of these 
genes was associated with increased tumour mutational burden and 
reduced cancer survival. These features were found to also be associated 
with canonical DNA repair gene expression and that in these features 
DNet-genes were very comparable to canonical repair genes. Given the 
expanding research implicating RNA processes and chromatin organi-
sation genes in DNA repair, we hypothesise that these genes represent a 
large group of novel DNA repair genes that are either integral to ca-
nonical repair processes, or form distinct sub-processes that function 
alongside canonical repair processes. In addition, association with high 
mutational burden and poor cancer prognosis, indicates expression of 
these facilitates mutational burden via the repair of high levels of DNA 
damage. These mutations then confer an evolutionary advantage to the 
cancer cells, advancing their progression and providing the genetic 
heterogeneity necessary to adapt to environmental challenges, such as 
therapeutics, thus reducing patient survival. 

Further investigation concluded that a majority of DNet-genes 
responsible for these changes do so primarily in adrenocortical carci-
noma (ACC). We used hierarchical clustering to identify a co-expressing 
group of these ACC related genes and subsequently identified a network 
of genes that co-express with this entire group in ACC, termed ACC-Net 
genes. These genes all strongly co-express and contain cell-cycle and 
chromatin regulators as well as over 25 % being DNA repair factors. 
Every ACC-Net gene was associated with increased mutational burden 
and reduced survival in ACC and overall the expression of these genes 
had a greater effect on these features than canonical repair genes. Sur-
vival analysis found that overall expression of all these genes has a 

strong effect in ACC as high expression reduced 5-year survival from 
~80 % to ~30 %, while increasing the average mutational burden by 
almost 2-fold and caused patients to be far more likely to have late-stage, 
metastatic ACC. Interestingly, multiple reports have implicated DNA 
repair and ACC-Net gene groups in ACC metastasis and prognosis 
[60–63]. Metastatic ACC was previously shown to have substantially 
higher mutation rates than primary ACC and a hypermutation pheno-
type was identified to be associate with mutations in the DNA repair 
genes ATM, MSH3 and MSH6 [61]. Another study also identified 
mismatch repair genes, particularly MSH6, to be associated with high 
mutation frequency in ACC [60]. In addition, a smaller investigation 
found alterations in DNA repair genes, including ATM and BRCA2, to be 
associated with increased mutations and poor prognosis [63]. All these 
studies highlighted DNA repair, chromatin remodelling and cell cycle 
genes to be important markers for ACC prognosis and key to ACC 
metastasis, with some also suggesting the use of DNA repair inhibitors as 
a novel therapeutic strategy [60,62,63]. These studies further support 
our identification of the ACC-Net gene network as key prognostic 
markers and potential therapeutic targets. 

We therefore hypothesise a mechanism by which these genes are 
required for DNA repair, and their elevated expression leads to increased 
mutation frequency at repair sites, overcoming the normally toxic levels 
of DNA damage to prevent apoptosis, but increasing mutational load. 
These mutations provide a large source of genetic variation, increasing 
the rate of evolution of the cancer, advancing its progression, and 
providing a greater ability for the cancer cells to adapt to and overcome 
therapeutics. All this contributes to the remarkable decrease in survival 
observed with high expression of these genes. 

ACC is a relatively rare cancer but has quite poor prognosis for 
reasons that are not yet fully understood. Treatment options are limited 
and inadequate, leading to all treatments of unresectable and metastatic 
ACC to be solely palliative [64]. Prognosis has also been shown to be 
tightly linked to tumour grade, with 5-year survival of stage I patients 
being ~82 % while for stage 4 patients it is as low as 6–13 % [60,65–67]. 
Some studies have found individual genes to be significant drivers of 
ACC, such as β-catenin and insulin-like growth factor 2 [68,69], how-
ever these individual genes often only apply to very few cases and offer 
limited mechanistic understanding and therapeutic possibilities. More 
recently, genomic investigations identified a number of genes associated 
with cell-cycle regulation and DNA replication repair as ACC prognostic 
markers [60,70] which were the first indications of dysregulation of 
these processes in ACC. Our findings here are therefore a significant step 
forward in our understanding of ACC pathogenesis. The original iden-
tification of these genes through Damage-Net and their correlations with 
mutational burden links their role directly to DNA repair, giving us the 
foundation for the likely mechanism by which they act, and the tumour 
stage and survival analysis presents a remarkable clinical result of the 
expression of these genes. Expression of these genes is therefore not only 
an effective prognostic marker but could also represent a large source of 
potential therapeutic targets, since their inhibition would theoretically 
reduce the cancers ability to progress and would improve patient sur-
vival. The large network of genes identified here gives multiple avenues 
for targeted therapeutics increasing the chance of success and allowing 
for combination therapy to reduce side-effects [71–73]. In addition, 
therapeutic targeting of these genes would likely be very effective as a 
combination therapy with traditional genotoxic therapeutics, such as 
cisplatin or radiotherapy, potentially increasing their efficacy at lower 
doses and thus reduced side-effects. 

4. Conclusion 

Damage-Net is a powerful tool in the investigation of DNA damage 
that greatly enhances users’ analysis of their large-scale results and also 
increases their ability to distinguish novel DNA repair factors from 
previously published datasets. With Damage-Net, we identified a 
network of novel DNA repair genes that are collectively responsible for a 
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substantial decrease in adrenocortical carcinoma survival via facilitating 
increased mutational burden and therefore advanced cancer progression 
and treatment resistance. These represent a promising group of potential 
targets for therapeutics that could greatly enhance the efficacy of DNA 
damaging therapies, improving the currently dismal prognosis of ACC. 

5. Materials and methods 

5.1. Damage-Net access and installation 

Damage-Net is available to download for all operating systems at 
www.damage-net.co.uk under downloads. This site also has information 
regarding installation and use and has a page for contacting us regarding 
problems, suggestions and questions. 

The installers and source code are also available at https://source 
forge.net/projects/damage-net and the source is additionally available 
at https://github.com/aldob/Damage-Net 

5.2. Damage-Net design 

Damage-Net was written using Python 3.6.5. Multiple packages were 
used to create the variety of features such as SQL for writing the data-
base and tkinter for writing the graphical interface. The following is the 
full list of all the packages used:  

- lifelines v0.24.3  
- matplotlib v3.1.3  
- numpy v1.18.1  
- pandas v0.25.3  
- pillow v6.2.0  
- seaborn v0.9.0  
- sqlite v3.31.1  
- tk v8.6.8  
- tktreectrl v2.4.1  
- venn v0.1.3 

The scripts were compiled into an executable file using pyinstaller 
v3.5. The Windows installer was created using Inno Setup v6.0.3 and the 
Linux and MacOS installers were created using makeself v2.4.2. 

5.3. Gene ontology enrichment analysis 

Gene ontology enrichment was completed using PANTHER [74,75]. 
Term extraction was done by taking the lowest branch of each enrich-
ment that had greater than 10 proteins identified and a p-value below 
0.01. This was done to provide an informative and accurate balance 
between term specificity and statistical confidence. 

The DNA repair gene ontology group was obtained from the MGI 
database [76]. 

5.4. Cancer mutation analysis 

TCGA mutation and gene expression data were queried and down-
loaded using the TCGAbiolinks R package v2.10.5 [77]. The files ob-
tained were of harmonised mutation data analysed using the MuTect2 
pipeline in MAF file format. Gene expression data were downloaded in 
FPKM-UQ file format and combined per-patient with the mutation rates 
to create a database containing transcriptome wide gene expression and 
mutation frequencies per patient. 

Tumour mutational burden was calculated as the total number of 
identified genomic mutations for a sample, i.e. point mutations + in-
sertions + deletions. Mutation associations were calculated by dividing 
patients into two groups of high and low expression for a gene of in-
terest, calculating the mean mutation frequency for each group and then 
calculating the log2 fold change of the high/low expression groups’ 
mutational frequencies. 

5.5. Cancer survival analysis 

TCGA survival data and cancer stage metadata were queried and 
downloaded using the TCGAbiolinks R package v2.10.5 [77]. Cox pro-
portional hazards statistical analysis was used to calculate survival co-
efficients and p-values via the survival R package v3.1.8. Survival 
hazard ratios were generated by comparing groups of patients with 
either high or low expression of a gene of interest. This was then log2 
transformed to make the data easier to understand by creating a value 
where positive values denote increased survival and negative values 
denote decreased survival. 

Survival curves were generated using the survminer R package 
v0.4.6. 

5.6. Network analysis 

Protein interaction networks were modelled in Cytoscape v3.7.1 
[78] using interaction strengths calculated using the STRING database 
[79]. Groups were designated based on the gene ontology biological 
process enrichment of the genes. 

5.7. Co-expression analysis 

Expression correlation was calculated between the expression of 
every gene being queried using the Pearson correlation model and the 
subsequent matrix was clustered via hierarchical clustering using the 
complete linkage model. The same matrix was also used for principal 
component analysis. The following base R functions were used for this 
analysis: cor.test, dist, hclust and prcomp. In addition, heatmap.2 from 
gplots v3.0.1.2 was used for heatmap plotting. 

Strong correlation partners were extracted from transcriptome-wide 
correlation analysis by filtering the matrix for all genes that have a 
correlation value of > = 0.5 with over half of the target genes. 

5.8. Cell-culture and transfection 

BJ-5ta fibroblast cells were obtained from the ATCC and cultured in 
Dulbecco Modified Eagle′s Medium (DMEM, GibCo) fortified with 10 % 
Fetal bovine serum and 2 mM L-glutamine. 

All siRNA transfections were completed using 20 nM siRNA with 
Dharmafect according to manufacturer instructions. The non-targeting 
control siRNA was obtained from Dharmacon (D-001810–03) and 
custom designed siRNA were obtained for KIF4A (UUAGAUGAUUAA-
GUUCAGC) [80], MKI67 (CGUCGUGUCUCAAGAUCUA) [81] and KU70 
(GGAAGAGATAGTTTGATTT) [82] and ordered from Sigma. 

5.9. Western blot 

Protein samples were harvested by scraping cells in 1.2X sample 
preparation buffer (60 mM Tris pH 6.8, 12 % glycerol, 2.4 % SDS, 0.012 
% bromophenol blue, 6% β-mercaptoethanol), sonicated in a Diagenode 
Bioruptor for 5 min on medium to shear the DNA and heated at 95C for 5 
min. Samples were separated on polyacrylamide gels and transferred 
onto 0.45μM nitrocellulose membranes. The membranes were blocked 
in 5% BSA in TBST (0.1 % Tween-20) for 1 h at room temperature before 
probing overnight at 4C while rolling with the following antibodies and 
adilutions in 5% BSA TBST: MKI67 (Proteintech, 27309-1-AP, 1:1000), 
KIF4A (Santa Cruz, sc-365144, 1:500), KU70 (Santa Cruz, sc-5309, 
1:1000), GAPDH (Santa Cruz, sc-32233, 1:10,000), gamma-H2AX 
(Sigma-Aldrich, 05-636, 1:1000). Membranes were then washed 3 
times at room temperature in TBST for 10 min with rotation before 
probing with IR-Dye-labelled secondary antibodies (Li-COR Biosciences) 
at 1:10,000 in 5% BSA TBST for 1 h at room temperature with rotation. 
Membranes were again washed three times in TBST as before then 
scanned with a Li-COR Odyssey. Images were analyses using the Image 
Studio software. 
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5.10. Annexin-V apoptosis assay 

BJ-5ta cells were seeded on six well plates at a density of 25,000 cells 
per well and incubated for 24 h. Cells were then transfected and incu-
bated for 48 h in transfection media before this was replaced with 
treatment media containing either 25μM etoposide (Merck, E2600000) 
or an equivalent amount of DMSO, or in the case of cisplatin treatment 
media containing 2μM cisplatin or an equivalent amount of water. Cells 
were then incubated for a further 24 h and then cells were harvested 
with trypsin along with their media and PBS wash, pelleted at 300 g for 5 
min, washed once in PBS and re-pelleted. Cells were then resuspended in 
500 μL Annexin V binding buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 
2.5 mM CaCl) supplemented with 1 u L Annexin V-FITC (ab14082) and 5 
u L 7-AAD (BioLegend, 420403) and incubated for 10 min in the dark 
before scanning on an Attune NxT flow cytometer. 

5.11. R code 

R version 3.5.0 was used for all analysis. All code used in data 
analysis and plot generation is available at https://github.com/a 
ldob/Damage-Net/tree/master/publication. 
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