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netic pulses to the brain in order to activate or deactivate brain activity) 
has been used to study EEG correlates of auditory hallucinations. A fifth 
approach is to study basic neurophysiological mechanisms that may 
underlie the tendency to hallucinate. Each of these paradigms will be 
described in detail together with a summary of the findings.

Symptom capture StudieS
early Symptom capture StudieS
Before the era of antipsychotic medications, depth electrocorticog-
raphy (ECoG) studies were sometimes conducted in conjunction 
with neurosurgery for relief of severe psychotic symptoms. In one 
such ECoG study, Sem-Jacobsen et al. (1955) reported: “A close rela-
tionship between the patient’s acute episodes of psychotic behavior 
and the electric activity was found. The findings in this study draw 
attention to the presence of focal spike discharges in some chroni-
cally psychotic patients during episodes of disturbance or hallucina-
tions or both and to the presence of changes in the activity of the 
temporal lobe and probably the frontal lobe during hallucinations.”

Thirteen years later, Marjerrison et al. (1968) used scalp recorded 
EEG for the first time to capture the electrophysiological signal 
associated with auditory hallucinations. They reported that newly 
admitted or readmitted acute schizophrenia patients who experi-
enced hallucinations during the experiment had lower variation 
in mean integrated amplitude of the EEG than similar patients 
who were not hallucinating during the experiment. In the next two 
decades, EEG studies investigating hallucinations were scarce. In the 
1970s, Whitton et al. (1978) recorded the spectral power preceding 
an auditory hallucination in six unmedicated patients. This was 
compared to EEG power preceding a response in healthy controls 
performing tests of creativity. They reported that EEG power was 
predominant in the delta and theta bands in the 4-s interval prior 
to reports of hallucinations and creative responses, and suggested 
that the intrusiveness of the hallucinatory experience may be similar 
to the sudden internal experience of solving a creative task.

introduction
Electroencephalography (EEG) and magnetoencephalography 
(MEG) are neuroimaging techniques that distinguish themselves 
from other methods by their excellent temporal resolution. Both 
are neurophysiological techniques that allow investigators to track 
brain activity on a millisecond time-scale. EEG measures the electri-
cal signals produced by groups of neurons in the brain, and MEG 
measures the concurrent magnetic signals elicited by these electrical 
signals. For source-localization, however, MEG may be a more suit-
able technique than EEG, as the electrical signals related to neuronal 
activity are smeared out by the skull, hampering accurate EEG 
source-localization. The magnetic signals measured by MEG are 
not substantially affected by the skull and can therefore be located 
more reliably. EEG, on the other hand, has two clear advantages over 
MEG: its accessibility to a large number of investigators, as EEG 
equipment is available at most hospitals, and its relatively low cost.

Many studies have used neurophysiological methods to study 
auditory hallucinations. Already in 1955, Sem-Jacobsen et al 
reported on brain activity related to hallucinations. Over time, 
several approaches have evolved. These approaches can be divided 
into five main paradigms, which we describe below.

The most intuitive strategy is to use symptom capture, in which 
patients indicate the presence of hallucinations, for example by  button 
press. Brain activity during hallucinations is then compared to halluci-
nation-free periods. A second approach is to combine symptom capture 
with event-related potentials (ERPs1) to assess the processing of auditory 
information during the active “state” of an auditory hallucination. A 
third approach associates ERPs with the tendency or the “trait” to hal-
lucinate. In this approach the severity of hallucinations is correlated 
with an index of auditory processing. In a fourth approach, repetitive 
transcranial magnetic stimulation (rTMS, a method that applies mag-
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left dorsolateral prefrontal cortex. According to the authors, these 
 findings suggest that the lack of frontal lobe involvement in non-
verbal hallucinations could be interpreted as a sign of diminished 
cortical involvement compared to the complex mechanisms involved 
in the generation of voices. In sum, heterogeneous results regarding 
involved frequency bands were observed. The theta, alpha, and beta 
bands were all reported to be implicated in the experience of audi-
tory hallucinations. A possible explanation for these heterogeneous 
results could be the small sample sizes of the studies (see Table 1), as 
studies with small sample sizes lead to more variable and less reliable 
results. Results regarding location were more consistent, as all studies 
showed increases in power in the left superior temporal gyrus (STG).

combined erp/erF-Symptom capture StudieS
Another approach to study auditory hallucinations is to combine 
symptom capture with ERPs. ERPs are evoked by a stimulus, and 
the components of interest usually occur within one second after 
stimulus-presentation. With the combined symptom-capture–ERP 
method, ERPs are studied during hallucinatory periods and com-
pared to ERPs during non-hallucinatory periods. A frequently used 
ERP in this approach is the N100 component. The N100 is gener-
ated in the auditory cortex (Hari et al., 1984), and is considered 
to be a standard metric of auditory cortex activation. As such, the 
N100 provides the opportunity to compare auditory cortex activ-
ity during the hallucinatory state with the non- hallucinatory state. 
Tiihonen et al. (1992) measured N100 amplitude and latency to 
tones presented to two patients suffering from intense auditory 
hallucinations. In both patients, the N100 was delayed during 
the experience of auditory hallucinations compared to when the 
patients were not hallucinating. Moreover, in one patient N100 
amplitude was also lower during hallucinations. In a larger study, 
Hubl et al. (2007) investigated N100 amplitude in seven patients 
with a psychotic disorder with acute auditory hallucinations, 
and found smaller amplitudes during hallucinations. Moreover, 
the largest differences in N100 source strength between periods 

 In a telemetry study, Stevens et al. (1979) equipped  schizophrenia 
patients with EEG electrodes, and the EEG signal was sent through 
radio-waves to a base-station. With this system, the patients were 
able to walk freely about the ward or dayroom. Hallucinatory 
behavior (e.g., muttering) was coded by a trained observer, enabling 
the comparison of hallucination episodes with non-hallucination 
episodes (“symptom-capture”). In this study, Stevens and her team 
published EEG recordings of a hallucinating patient, reporting 
power increases during hallucinations in all frequency bands and 
scalp derivations with the exception of alpha in the left temporal 
region. In a follow-up study using the same paradigm, Stevens and 
Livermore (1982) reported that hallucinations correlated with the 
presence of ramp spectra in the EEG, i.e., spectra characterized 
by a smooth decline in power from lowest to highest frequencies. 
According to the authors, such spectra have previously been found 
in conjunction with subcortical spike activity of epilepsy, suggesting 
hallucinations were present subsequent to some abnormal sub-
cortical discharge. However, ramp spectra can also emerge from 
eye and body movement, and the authors acknowledge that this 
may have influenced results. In general, EEG data from patients in 
an uncontrolled environment should be interpreted with caution, 
because of muscle artifacts potentially confounding results.

 A few years later, Serafetinides et al. (1986) investigated the 
influence of verbal versus button-press methods to indicate audi-
tory hallucinations on oscillations in the EEG. The method used 
to determine the presence of hallucinations had a marked effect 
on EEG results. Verbal reporting was associated with a bilateral 
increase of high frequency activity, while non-verbal reporting was 
associated with an asymmetry in power between the left and right 
hemisphere. After this publication, no study made use of verbal 
reporting of hallucinations anymore.

contemporary Symptom capture StudieS
With the advent of better analysis algorithms and greater computer 
power, EEG and MEG data can be decomposed into precise infor-
mation in the time–frequency domain, while also providing better 
spatial resolution than the older clinical EEG methods. However, 
modern EEG and MEG symptom capture studies investigating 
hallucinations are scarce. To date, only one EEG study and three 
MEG studies have been published. In the EEG study, Sritharan 
et al. (2005) reported an increase in alpha band power in the left 
superior temporal cortex during auditory hallucinations in seven 
schizophrenia patients. Moreover, an increase in synchronization 
between the left and right superior temporal cortices was found 
during auditory hallucinations, suggesting an increase in functional 
coupling between these brain regions during hallucinations.

Ishii et al. (2000) were the first to investigate auditory halluci-
nations using MEG in a symptom capture design. In a case-study 
they reported an increase in theta-band activity in the left supe-
rior temporal cortex during hallucinations. In another case-study, 
the same structure was implicated, albeit in the beta band (Ropohl 
et al., 2004). Reulbach et al. (2007) studied five patients with non-
verbal auditory hallucinations (e.g., noise, music) and three patients 
with command hallucinations. Hallucinations in the former group 
were associated with an increase in beta-band activity in the left 
superior temporal cortex, while hallucinations in the latter group 
were associated with the same activation pattern extending into the 

Table 1 | Summary of contemporary symptom capture studies.

Study Technique N Findings

Sritharan et al. (2005) EEG 7 Increase in power in the left 

   STG (alpha-band)

   Increase in bitemporal 

   coherence (alpha-band)

Ishii et al. (2000) MEG 1 Increase in power in the 

   left STG (theta-band)

Ropohl et al. (2004) MEG 1 Increase in power in the 

   left STG (beta band)

Reulbach et al. (2007) MEG 5 Increase in power in the left 

   STG during auditory non-verbal 

   hallucinations (beta band)

  3 Increase in power in the left 

   STG extending into the left 

   DLPFC during auditory verbal 

   hallucinations (beta band)

STG, superior temporal gyrus; DLPFC, dorsolateral prefrontal cortex.
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hallucination-free for at least 2 years. Resting-state EEG in the hal-
lucinating patients showed significantly increased beta-band activ-
ity in the left inferior parietal lobule and the left medial frontal 
gyrus compared to non-hallucinating patients. Moreover, gamma 
and beta frequencies were significantly correlated in hallucinat-
ing patients, but not in non-hallucinating patients. The authors 
suggested that the strong correlation between gamma and beta 
frequency oscillations may indicate that the brains of hallucinating 
patients act as if they were experiencing “real” auditory stimulation, 
as previous studies have shown strong correlations between gamma 
and beta frequency oscillations in normal populations in response 
to auditory stimuli (e.g., Haenschel et al., 2000).

 Several authors have used ERPs to study associations with audi-
tory hallucinations. Still, the relationship between ERPs and clini-
cal symptoms of schizophrenia remains controversial. Havermans 
et al. (1999) studied the P3b evoked potential, which is regarded 
as a standard measure of effortful attention. The authors reported 
reductions in P3b amplitude in chronic hallucinating patients 
compared to non-hallucinating patients. Turetsky et al. (1998) 
found a strong association between a frontal P3b subcomponent 
and severity of auditory hallucinations. However, other studies 
failed to find any association between P3b amplitude and positive 
symptoms (Eikmeier et al., 1992; Liu et al., 2004). As most schizo-
phrenia patients with auditory hallucinations also experience other 
symptomatology like delusions, some degree of disorganization, 
and negative symptoms, the diverse P3b findings may be related to 
this diversity in symptoms. In addition, antipsychotic medication 
may have affected the results.

 To circumvent these problems, van Lutterveld et al. (2010) 
investigated P3b amplitude in non-schizophrenic individuals with 
auditory verbal hallucinations as an isolated symptom. These indi-
viduals functioned at normal professional and social levels and 
were free of medication. If the P3b amplitude reduction typically 
seen in schizophrenia patients (Jeon and Polich, 2003) is due to 
the tendency to hallucinate, then non-schizophrenic subjects who 
hallucinate should also have reduced P3b amplitudes. Contrary to 
expectations, they found an increase in P3b amplitude, which was 
interpreted as refuting a pivotal role of decreased effortful attention 
in the pathophysiology of auditory verbal hallucinations.

Finally, one study investigated the P3a ERP to speech sounds in 
hallucinating and non-hallucinating patients with schizophrenia. 
Unlike the P3b, the P3a is not associated with effortful attention, 
but with involuntary shifts to auditory changes and processing of 
novelty. Fisher et al. (2010) found that hallucinating patients had 
smaller P3a amplitudes than non-hallucinating patients, and that 
for the hallucinating patients P3a amplitude was negatively cor-
related with auditory-hallucination symptomatology. The authors 
suggested that auditory verbal hallucinations are associated with 
impaired processing of external speech sounds, perhaps due to 
competition between external and internal auditory verbal stimuli 
(i.e., hallucinations).

Other studies have investigated mismatch negativity (MMN) 
and hallucinations. MMN is an ERP related to automatic auditory 
change detection. However, like P3b findings, results are inconsist-
ent. Some studies reported an association between MMN ampli-
tude and auditory hallucinations (Youn et al., 2003; Fisher et al., 
2008a,b), while others did not (Schall et al., 1999; Kasai et al., 2002). 

with and without hallucinations were located in the left superior 
 temporal cortex. The authors concluded that these findings indicate 
competition between auditory stimuli and auditory hallucinations 
for physiological resources in the primary auditory cortex, and that 
abnormal activation of this brain region could be a component of 
auditory hallucinations.

Line et al. (1998) took advantage of the rapid time-scale of EEG 
to study the time-frame surrounding auditory hallucinations. They 
presented eight schizophrenia patients with flickering visual stim-
uli, leading to the generation of electrical activity in the brain at 
the same frequency of the flashing stimulus (so-called steady-state 
visual evoked potentials). In the second before the onset of an audi-
tory hallucination, patients showed a large and significant decrease 
in latency of brain responses in the right temporoparietal area, 
suggesting involvement of this area in the genesis of hallucinations.

In a very recent EEG study, transiently stable neuronal states 
were investigated (Kindler et al., 2010). Kindler et al. found that a 
so-called microstate associated with error monitoring was shorter 
during hallucinatory periods compared to non-hallucinatory 
periods. The authors speculated that the early termination of this 
microstate facilitated the misattribution of self-generated inner 
speech to external sources during hallucinations. 

Like the contemporary symptom capture studies, combined 
ERP/ERF-symptom capture studies have small sample sizes 
(Table 2). Symptom capture studies are challenging since patients 
are required to hallucinate intermittently and for a considerable 
time of the experiment, and patients have to be able to reliably 
indicate onset and offset of their hallucinations (Ford et al., 2009).

aSSociationS between hallucinatory trait and eeG/
meG meaSureS
Another strategy to study hallucinations is to investigate the asso-
ciation between EEG and MEG measures and the tendency to hal-
lucinate. Lee et al. (2006) used quantitative EEG and source imaging 
to investigate 25 schizophrenia patients with treatment-refractory 
auditory hallucinations and 23 schizophrenia patients who were 

Table 2 | Summary of combined ERP/ERF-symptom capture studies.

Study Technique N Findings

Tiihonen EEG and MEG 2 Delay in N100 amplitude 

et al. (1992)   during hallucinations 

   (both patients)

   Smaller N100 amplitude 

   during hallucinations 

   (one patient)

Hubl EEG 7 Smaller N100 amplitude 

et al. (2007)   during hallucinations 

Line EEG 8 Decrease in latency in brain  

et al. (1998)   responses to flickering 

   stimuli in the right temporoparietal 

   area in the second before 

   hallucination onset

Kindler EEG 9 Shorter microstate in the EEG 

et al. (2010)   related to error monitoring 

   during hallucinations
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the self. Such feed-forward systems have been well described in 
the visual and  somatosensory systems, but also serve the auditory 
system across species from crickets (Poulet and Hedwig, 2002) to 
song-birds (McCasland and Konishi, 1981) to non-human (Eliades 
and Wang, 2003), and human primates (e.g., Paus et al., 1996; Ford 
et al., 2007b). Because the corollary discharge mechanism oper-
ates on a rapid time-scale, this theory has most extensively been 
investigated using neurophysiological recordings. In humans, EEG 
(Ford et al., 2010) and MEG (Curio et al., 2000; Houde et al., 2002) 
have been used for studies of the auditory system; only EEG-based 
methods have been used in studies of schizophrenia.

While this mechanism explains suppression and tagging of 
sensations resulting from overt motor acts, Feinberg (1978) sug-
gested that thinking may conserve and utilize the computational 
and integrative mechanisms that evolved for physical movement. 
In a well-functioning corollary discharge system a signal is sent 
from frontal areas involved in inner speech generation to temporal 
speech reception areas, tagging the perception as self-generated. 
When this mechanism is malfunctioning, a person may experience 
an auditory hallucination through misperceiving his or her own 
thoughts as being externally generated.

Several lines of research support the hypothesis of corollary 
discharge dysfunction in schizophrenia. The first line explored 
whether this system is deviant in schizophrenia patients versus 
healthy controls. In these studies, control subjects and patients first 
uttered syllables and then listened passively to a recording of that 
speech played back. EEG was recorded during both talking and 
listening conditions, and the amplitude of the N100 component 
of the ERP to speech onset was used as a measure of auditory 
cortical responsiveness. Consistent with the action of the corollary 
discharge system, N100 amplitude was smaller during talking than 
listening in healthy controls. Interestingly, there was significantly 
less N100 suppression in patients, suggesting aberrations in the 
corollary discharge system (Ford et al., 2001a, 2007a,b). In another 
N100 study, the effects of thinking on auditory cortical responsive-
ness were investigated. It was shown that thinking affected N100 
amplitude in healthy controls, but not in schizophrenia patients 
(Ford et al., 2001b).

In a second line of research, functional connectivity, as meas-
ured by EEG coherence between frontal and temporal lobes in the 
gamma band, was found to be higher during talking than during 
listening in healthy controls. This pattern was disrupted when the 
uttered syllables were pitch-shifted while the subjects were talk-
ing, resulting in a non-self experience of the spoken sounds. In 
schizophrenia patients, distortion of the auditory feedback did 
not result in alteration of gamma-band frontotemporal coherence, 
again suggesting a malfunctioning corollary discharge system (Ford 
and Mathalon, 2005). In another coherence study, it was found 
that theta-band frontotemporal coherence was higher for talking 
than for listening for controls, but not for schizophrenia patients. 
This effect was carried by the hallucinating patients, as the non-
hallucinators tended to show the pattern seen in the healthy con-
trols. The authors suggested that a failure in the frontal–temporal 
network during overt speech may also occur during covert speech, 
leading to misattribution of self-generated thoughts to external 
sources (Ford et al., 2002). Given that N100 recorded from  auditory 

These diverse findings may be at least partly explained by the dif-
ferent methodologies used. For instance, Schall et al. presented 
visual and auditory stimuli simultaneously, while others did not.

Recently, interest has been growing in auditory steady-state 
evoked potentials elicited by click trains. With this paradigm, a 
steady stream of clicks is presented (hence steady-state), and 
the brain’s responses are measured over the presentation epoch 
(Uhlhaas and Singer, 2010). Spencer et al. (2009) presented click 
trains pulsing at 40 Hz to patients and healthy controls. They found 
that patients with higher gamma-band activity (∼40 Hz) in the left 
primary auditory cortex had a greater liability for experiencing 
auditory hallucinations. Moreover, this activity was influenced by 
delta-wave activity. The authors raise the possibility that aberrant 
oscillatory synchronization in the temporal cortex could interact 
with dysfunctional corollary discharge mechanisms (i.e., a mal-
functioning in neural signals originating in frontal speech areas 
that indicate to sensory areas that forthcoming thought is self-
generated), leading to the experience of auditory hallucinations. 
The reported correlations in this study were based on lifetime hal-
lucination ratings, and the medicated patients were not actively 
hallucinating at the time of the study. Still, these findings extended 
earlier results of this laboratory, in which a correlation between 
gamma-band activity and hallucination severity of first-episode 
psychosis patients was found (Spencer et al., 2008).

neurophySioloGy and repetitive tranScranial 
maGnetic Stimulation
In the last decade, rTMS has emerged as a new potential treatment 
option for auditory hallucinations. With rTMS, electromagnetic 
induction is used to non-invasively increase or decrease brain 
activity. Two studies have investigated the effect of rTMS on the 
EEG in the context of auditory hallucinations. Jandl et al. (2006) 
reported that a subgroup of patients benefited from rTMS over the 
left superior temporal cortex as revealed by a decrease in auditory-
hallucination severity, while no changes in whole-head EEG were 
reported. Horacek et al. (2007) applied rTMS to the left temporopa-
rietal cortex for 10 days and reported a significant improvement in 
hallucination severity. TMS treatment caused a decrease in activity 
in the beta-1 and -3 bands in the left temporal lobe, whereas an 
increase was found for the beta-2 band in the right temporal cor-
tex and the inferior parietal lobule, indicating transcallosal signal 
transmission involvement. A possible explanation for the divergent 
findings of the two studies is that data-analysis procedures were 
different. In the former study the EEG was assessed on sensor-level 
and in the latter study a source-localization procedure was used.

StudieS oF a baSic neural mechaniSm that miGht 
underlie auditory hallucinationS
Feinberg (1978) suggested that malfunctioning of the corollary 
discharge mechanism might underlie the experience of auditory 
hallucinations. Corollary discharge is a basic feed-forward system 
involved in suppressing the sensory consequences of self- generated 
actions (Sperry, 1950; Von Holst and Mittelstaedt, 1950). It has 
been documented across the animal kingdom (Crapse and Sommer, 
2008), and its action allows all species to suppress sensations that 
result from their own actions and to tag them as coming from 
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of auditory cortex in the generation of the hallucination. This is 
in line with structural and functional magnetic resonance imaging 
(sMRI and fMRI) studies, in which left superior temporal cortex is 
implicated in the experience of auditory hallucinations (Barta et al., 
1990; Dierks et al., 1999; Allen et al., 2008; Diederen et al., 2010).

Event-related potential studies of the trait to hallucinate suggest 
that the tendency to hallucinate is associated with reduced resources 
available for processing the probe. This is consistent with fMRI 
studies comparing hemodynamic activation to external probes in 
hallucinators and non-hallucinators (Ford et al., 2009), in which 
left temporal activation to auditory probes was reduced in patients 
who hallucinate compared to patients who do not. One EEG study 
reported greater beta band activity in the left inferior parietal lobe 
in patients who tended to hallucinate. Given the poor spatial resolu-
tion of EEG, it is possible that the increase in beta power was due 
to activity in the left auditory cortex. Finally, rTMS has provided 
indirect evidence of the involvement of left auditory cortex in hallu-
cinations: In one study, treatment with rTMS over the left superior 
temporal cortex caused a decrease in activity in the beta band in 
the left temporal lobe with clinical improvement in hallucinations.

 Future directionS
While mechanistic studies lack the intuitive face validity of the 
symptom capture work, they converge on the involvement of the 
temporal cortex in the generation and experience of auditory hallu-
cinations, consistent with the report that voices sound loud and real. 
Mechanistic studies also offer translation to bench neuroscience 
and translation to other species, and hence open the door to invasive 
manipulations that are not possible with in vivo human studies. For 
one example, studies like the ones reviewed above can be applied 
in the future to animals who make social calls, such as song-birds 
(Brainard and Doupe, 2000) and non-human primates (Eliades and 
Wang, 2003). In such an experiment, perturbations of the neuro-
transmitters implicated in schizophrenia might produce a pattern 
in the neural signature of the mechanism that resembles the pattern 
seen in schizophrenia patients who hallucinate. Because symptom 
capture studies are infeasible in animal models, and because the 
relationship between the experience of auditory hallucinations and 
related frequency bands is unclear, we suggest that future research 
exploit a mechanistic approach in animal models of schizophrenia.
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cortex is suppressed during talking, the net result of coherent com-
munication between frontal and temporal lobes was to suppress 
auditory sensation.

The corollary discharge theory can also be investigated by exam-
ining the small time-frame before speech starts. In such a study, 
pre-speech neural synchrony was reported to be related to subse-
quent suppression of N100 amplitude in healthy controls, but not 
in patients. Moreover, time–frequency analyses showed greater pre-
speech synchrony in healthy controls than in patients, especially in 
those with severe auditory hallucinations. The authors interpreted 
these findings as suggesting that EEG synchrony preceding speech 
reflects the action of the corollary discharge system, which dampens 
auditory responsiveness to self-generated speech and is deficient 
in patients who hallucinate (Ford et al., 2007b).

Another line of research explored the influence of pitch-shifting 
auditory stimuli on auditory cortex activation. In this paradigm, 
hallucinating schizophrenia patients, non-hallucinating schizo-
phrenia patients, and controls were asked to utter meaningless 
sounds. Simultaneously, they were presented with auditory feed-
back of the uttered sounds, or pitch-shifted feedback of the uttered 
sounds, or feedback of sounds uttered by someone else, or pitch-
shifted feedback uttered by someone else. It was found that N100 
amplitude to the unaltered self-voice was dampened relative to the 
altered self-voice or the alien auditory feedback. This pattern was 
not seen in hallucinating patients, and this imprecision correlated 
with the severity of hallucinations (Heinks-Maldonado et al., 2007).

Finally, in a recent study, subjects were asked to initiate auditory 
stimuli by button-press. It was found that N100 suppression was nor-
malized in patients after adding a delay of 50 ms in the presentation 
of the stimulus, suggesting a temporal delay in corollary discharge 
(Whitford et al., 2011). Moreover, this normalization correlated with 
white-matter integrity of the arcuate fasciculus, a fiber bundle con-
necting speech/motor initiation areas in the frontal lobe with the 
auditory cortex in the temporoparietal lobe. These data suggest that 
structural deficits of the arcuate fasciculus may lead to temporally 
delayed corollary discharges, and that abnormalities in this fiber tract 
may be involved in the pathophysiology of auditory hallucinations.

neurophySioloGy and hallucinationS – what doeS it 
tell uS?
Neurophysiological methods have been used in many different 
ways to understand auditory verbal hallucinations. The symp-
tom capture approach has intuitive appeal and face validity, but 
it is operationally difficult and does not provide insight into the 
mechanisms by which voices might be heard. However, symptom 
capture studies do provide a wealth of information regarding the 
neural activity associated with the experience of hallucinations. 
Unfortunately, there is little consistency regarding the frequency 
of neural activity invoked by the hallucinatory experience, with 
evidence for increases in theta, alpha, and beta band activity associ-
ated with hallucinations. There is more consistency regarding the 
location of the activity invoked, with evidence that structures in 
the left temporal lobe are more active during a hallucination period 
than a non-hallucination period. Similarly, although ERPs elicited 
by probes during a hallucination provide little information about 
mechanisms, they do provide excellent support for the involvement 
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