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Osteosarcoma (OS), a malignant primary bone tumor often seen in young adults, is highly aggressive. The improvements in high-
throughput technologies have accelerated the identification of various prognostic biomarkers for cancer survival prediction.
However, only few studies focus on the prediction of prognosis in OS patients using gene expression data due to small sample
size and the lack of public datasets. In the present study, the RNA-seq data of 82 OS samples, along with their clinical
information, were collected from the TARGET database. To identify the prognostic genes for the OS survival prediction, we
selected the top 50 genes of contribution as the initial candidate genes of the prognostic risk model, which were ranked by
random forest model, and found that the prognostic model with five predictors including CD180, MYC, PROSER2, DNAI1, and
FATE1 was the optimal multivariable Cox regression model. Moreover, based on a multivariable Cox regression model, we also
developed a scoring method and stratified the OS patients into groups of different risks. The stratification for OS patients in the
validation set further demonstrated that our model has a robust performance. In addition, we also investigated the biological
function of differentially expressed genes between two risk groups and found that those genes were mainly involved with
biological pathways and processes regarding immunity. In summary, the identification of novel prognostic biomarkers in OS
would greatly assist the prediction of OS survival and development of molecularly targeted therapies, which in turn benefit
patients’ survival.

1. Introduction

Osteosarcoma (OS), a malignant primary bone tumor often
seen in young adults, is highly aggressive [1]. According to
previous studies, OS patients without metastatic diseases
present a survival of 70%, yet evidence suggests that metasta-
ses that take place at early stages result in worse prognosis
[2]. OS can be further categorized into different groups as
intramedullary and surface subtypes according to their histo-
logic characteristics and is considered to be associated with
multifactorial causes, and both genetic and environmental
influences seem to have an impact on this disease [3]. How-
ever, for the majority of OS patients, its etiology still remains
veiled. Patients’ physique [4–6] and their genetic background
[7], along with hormone secretion that could affect skeletal
development [8], are all risk factors for OS. Currently,

patients with OS mostly receive surgery and chemotherapy,
which brings dramatic improvement in their long-term sur-
vival, yet accurate prognosis prediction is still required in
making therapeutic decisions [9]. However, the only about
15-17% OS patients treated with only surgery could survive
[10, 11]. In the early 1970s, the adjuvant chemotherapy was
introduced and applied in the treatment of OS patients with-
out metastatic disease [12]. Combined with surgery resec-
tion, current combinational chemotherapy could cure ~70%
of OS patients. However, the five-year overall survival for
patients with metastasis or relapse was still only about 20%
[11, 13], voicing an urgent call for new therapies aimed at
these patients.

With the advances in sequencing technologies, such as
microarray, next-generation sequencing, and proteomics
mass spectrum, the prognostic biomarkers for cancer
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survival prediction have been proposed by several studies
[14–16]. Mutations in TP53, RB1, CDKN2A, PTEN, and
YAP1 [17] have been identified and widely observed using
whole-genome sequencing (WGS) or whole-exome sequenc-
ing (WES) in OS patients, which greatly improved our
understanding of the genomic landscape of OS. With next-
generation sequencing, the identification of novel bio-
markers becomes possible, which can not only broaden our
insights into the pathogenic mechanism of OS but also
provide the resource to build machine learning models to
predict the prognosis of OS patients. For instance, KRT5,
HIPK2, MAP3K5, and CD5 were identified to serve as prog-
nostic factors of osteosarcoma patients [18]. Moreover, risk
predictive models based on one eight-gene [19] and one
two-gene [20] (PML-EPB41) signatures have been built to
predict overall survival of patients with osteosarcoma. How-
ever, only few studies focus on the prediction of prognosis in
OS patients due to a small sample size using gene expression
data and the lack of public datasets. In this study, we col-
lected 82 OS samples with RNA-seq data and corresponding
clinical data from the Therapeutically Applicable Research
to Generate Effective Treatments (TARGET) database,
selected prognostic genes, and built a prognostic risk model
to assess and predict the overall survival of OS. The identifi-
cation of novel prognostic biomarkers in OS would greatly
assist the prediction of OS survival and the development of
molecularly targeted therapies, which in turn benefit
patients’ survival.

2. Material and Methods

2.1. Data Sources. We obtained osteosarcoma RNA-seq data
(TPM) and matched clinical data of OS patients from the
TARGET database (https://ocg.cancer.gov/programs/target).
A total of 82 patients from this dataset were constructed as a
training set of our prognostic risk model. The dataset of
GSE21257 [21] for further validation consisted of 34 osteosar-
coma patients.

2.2. Screening of Genes for the Prognostic Risk Model of
Osteosarcoma. First, a list of genes yielding TPM > 0:1 in
more than half of the total samples was chosen for feature
selection. Based on the clinical information and expression
profiles of each patient, genes significantly associated with
patients’ survival were obtained by performing Cox regres-
sion analysis with the R Survival package. We further nar-
rowed down this gene list based on the differential levels
of prognostic outcomes, and genes whose P value is less
than 0.01 were selected. Subsequently, these genes were
ranked by the random forest algorithm in the R package
randomForestSRC based on their relative contribution.
Consequently, the top 50 genes were identified as the can-
didate genes to construct the risk model of osteosarcoma
prognosis.

2.3. Model Construction and Evaluation.Utilizing the expres-
sion profiles of candidate prognostic genes and the survival
data of patients, we built a prognosis risk model for OS using
the multivariate Cox regression as previous studies described

[22], and a list of genes that contributed significantly to this
model was obtained, which consisted of our final candidates.
We established a scoring formula for these finalized candi-
date genes to evaluate the risks for OS patients and used
the median score to divide them into two subgroups,
namely, high-risk and low-risk groups. Kaplan-Meier sur-
vival curves were plotted, respectively, for each group, and
the differences in their survival were further assessed by
the log-rank test.

2.4. Validation of the Prognostic Risk Model by an
Independent Dataset. Validation dataset consisted of 34 oste-
osarcoma patients obtained from the GSE21257 dataset [21].
The prognostic risk scoring formula obtained from the train-
ing set was applied to evaluate the risk for each patient accord-
ing to the expression of finalized candidate genes in each
sample, accordingly. These patients were then labeled as those
of high risk and of low risk based on the scores assigned to
them, and their prognostic difference was further analyzed.

2.5. Gene Set Enrichment Analysis. Our prognostic risk
model divided osteosarcoma patients into two categories,
termed as high- and low-risk groups, and then differentially
expressed genes (DEGs) between two groups were selected
with two thresholds at ∣log2 ðfoldÞ ∣ >1 and P value < 0.05.
Gene Ontology- (GO-) based enrichment analyses of these
significantly differentially expressed genes were carried out
in R with package clusterProfiler, as described in previous
studies [23–25].

3. Results

3.1. Screening of Prognostic Genes for OS Survival Prediction.
The gene expression data and corresponding clinical data of
82 patients were retrieved from the TARGET database. A
total of 16,034 genes were introduced as variables in our
prognostic risk model under the condition that these genes
exhibited TPM > 0:1 in more than half of the total samples.
Univariable Cox regression was performed, and Kaplan-
Meier curves were plotted accordingly on all these genes,
out of which 50 genes significantly related to the patient’s
survival were obtained (P values < 0.01). Subsequently,
the contribution of these genes was ranked by the random
forest algorithm, and the top 50 genes were selected as
the initial candidate genes for the construction of the prog-
nostic risk model.

Using those 50 genes, the prognostic risk model of osteo-
sarcoma was developed, based on a multivariable cox regres-
sion. Among them, five genes, including CD180, MYC,
PROSER2, DNAI1, and FATE1, with significant contribution
to the model were selected as the candidate genes in the opti-
mal prognostic risk model of osteosarcoma. Notably, the low
expression of CD180 and high expressions of MYC,
PROSER2, DNAI1, and FATE1 were identified to result in
worse prognostic outcomes in OS (Figures 1(a)–1(e)). These
results indicated that the five prognostic genes were highly
associated with the OS prognosis.

3.2. Construction of Multivariable Cox Model Using Five
Prognostic Genes. Given the 5 genes, a multivariable Cox
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model was built to evaluate the risk of the OS patients.
Specifically, the five genes showed significant association
with the OS overall survival in both univariable and mul-
tivariable Cox models (Table 1). All 82 patients in the
TARGET-osteosarcoma dataset were used as a training
set, and we then estimated their risk scores according to

the model. They were divided into high- and low-risk
groups by the median risk score. Consistently, the overall
survival of the high-risk group was significantly shorter
than that of the low-risk group (Figure 2(a)). From this
stratification, we noticed that the deceased patients of the
high-risk group were found to be more than those in the
low-risk group (Figure 2(b), P value < 0.05). In accordance
with the Cox regression analyses, CD180 was downregu-
lated and another four genes were upregulated in the
high-risk group (Figure 2(b)). These results indicated that
the five genes acquired good fitting effect on the overall
survival in OS.

3.3. Validation for the Prognostic Risk Model of OS. To vali-
date the prognostic value of the five-gene-based Cox model,
we collected an independent gene expression dataset with
34 OS samples from Gene Expression Omnibus (GEO)
with accession GSE21257. The risk scores for 34 OS sam-
ples were estimated using the expression levels of the five
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Figure 1: The Kaplan-Meier curves for samples stratified based on the expression levels of CD180, MYC, PROSER2, DNAI1, and FATE1,
respectively. (a–e) Survival of OS patients stratified by expression of CD180, MYC, PROSER2, DNAI1, and FATE1, respectively, depicted
by Kaplan-Meier plots.

Table 1: The summary of prognostic values for the five genes in
univariable and multivariable Cox regression models.

Features
Univariable cox

regression
Multivariable cox

regression
Hazard ratio P value Hazard ratio P value

CD180 0.43 2.19E-03 0.44 4.98E-03

MYC 1.01 9.60E-05 1.01 1.18E-05

PROSER2 1.10 6.52E-06 1.09 4.60E-03

DNAI1 1.53 8.54E-06 1.42 2.19E-03

FATE1 6.08 2.62E-05 7.05 4.05E-06
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genes in each individual. Similarly, these samples were also
assigned into high-risk and low-risk groups by the median
score. Consistently, in the high-risk group, we observed a

greater number of deceased patients and shorter overall
survival than the low-risk group (P value < 0.05,
Figure 3(a)). The KM curves illustrated that patients of high
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Figure 2: The risk stratification of the OS patients by the risk score in the training set (TARGET cohort): (a) Kaplan-Meier curves for patients
in high-risk and low-risk groups in the training set stratified by risk scores; (b) the association of the risk scores with the survival time and
status and expression levels of five genes. The samples were ranked by the risk scores.
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Figure 3: Prognostic risk model performance on the validation set (GSE21257 cohort). (a) The association of the risk scores with the survival
time and status and expression levels of five genes in the validation set (GSE21257). The samples were ranked by the risk scores. (b) Kaplan-
Meier curves for patients in the high-risk and low-risk groups in the validation set stratified by risk scores.
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risk exhibited significantly worse prognosis than those of
the low-risk group (P value < 0.05, Figure 3(b)). Such sig-
nificant difference in the overall survival time between
two risk groups in the validation set suggested that the
five-gene-signature Cox model could efficiently predict the
prognostic risk in OS.

3.4. The Risk Score Based on the Five-Gene-Based Cox Model
Serves as an Independent Prognostic Factor in OS. In order to
evaluate the independence of this risk score, we conducted
both univariable and multivariable Cox regression, using
the risk score and three other clinical variables. In both
univariable and multivariable Cox analyses, risk score
was the only variable that correlated with the survival time
(Table 2). Moreover, we found that white OS patients
might have a lower risk than other ethnic groups in the
multivariable Cox model with a lower statistical signifi-
cance (P value < 0.1). These results suggested that risk
score could function as an independent prognostic indica-
tor in OS.

3.5. Biological Differences between the Two Risk Groups. The
differential expression analysis was performed for patients
from the TARGET OS dataset, where patients were labeled
as of high- and low-risk ones. A total of 351 significant
differentially expressed genes were identified (thresholds:
∣log2 ðfold changeÞ ∣ >1 and P value < 0.05), of which, com-
pared with the low-risk group, 138 and 213 genes exhibited
increased and decreased expression in the high-risk group
(Figure 4(a)), respectively.

Gene Ontology- (GO-) based gene enrichment analysis
revealed that immune-related GO terms, including leukocyte
cell-cell adhesion and its T cell activation and its regulation,
positive regulation of leukocyte cell-cell adhesion, and posi-
tive regulation of T cell activation, were highly enriched by
these DEGs (Figure 4(b)), suggesting that the differed
immune microenvironment of patients in high-risk and
low-risk groups may be responsible for the difference in their
prognostic outcomes. Further analysis revealed that major
histocompatibility complex (MHC) class II genes were
downregulated in the high-risk group (Figure 4(c)), suggest-
ing that the lack of antigen processing and presentation
might be associated with reduced immunity against tumor
cells, thereby resulting in worse prognosis in OS. Collectively,
the results suggested that the immune microenvironment of
patients with osteosarcoma plays an essential role in OS
patients’ prognosis.

4. Discussion

The molecular basis behind OS tumorigenesis, progression,
and metastasis has attracted growing attention. Though
extensive researches have demonstrated the biological func-
tion of certain genes in OS, there is still a lack of effective
biomarkers for OS survival prediction. Meanwhile, the pre-
diction and comparison of the OS patients with different
clinical outcomes could help clinicians make improvements
in diagnostic or therapeutic strategies.

In the present study, 82 OS samples with RNA-seq data
and matched clinical data were collected from the TARGET
database. To identify the prognostic genes for the OS survival
prediction, we selected the top 50 genes of contribution as the
initial candidate genes of the prognostic risk model, which
were ranked by the random forest model. Multivariable
Cox regression analysis suggested that the prognostic model
with five predictors including CD180, MYC, PROSER2,
DNAI1, and FATE1 was the optimal multivariable Cox
regression model. Among the five prognostic genes, only
CD180, which could lead to NF-kappa-B activation [26],
was negatively correlated with the OS survival. As we know,
CD180 is a cell surface molecule of lymphocytes, and its
high expression may indicate the high anticancer activity
of lymphocytes, thereby suppressing the growth of OS
tumors. CD180, as well as CCR2, has been identified as
robust pharmacodynamic tumor and blood biomarkers for
clinical use with BRD4/BET inhibitors [27]. In addition to
DNAI1, another three genes, MYC [28], PROSER2 [29],
and FATE1 [30], have been reported to be associated with
several cancers.

Moreover, we also stratified the OS patients into high-
risk and low-risk groups according to the risk score estimated
by the multivariable Cox regression model. The stratification
for OS patients in the validation set based on risk scores pre-
dicted by the multivariable Cox regression model further
demonstrated that our model was significant and robust
(log-rank test, P < 0:05). It should be noted that only 34 pri-
mary tissues were used in the validation set, which might be a
major limitation for the five-gene-based predictive model. In
addition, we also investigated the biological differences
between the high-risk and low-risk groups and found that
biological processes regarding immunity were highly
enriched by the differentially expressed genes between the
two risk groups. The expression of MHC II class genes was
reduced in high-risk OS samples (Figure 4(c)), suggesting
that these samples might lose the abilities of presenting and
processing extracellular pathogens. Consistently, MHC class

Table 2: The statistical significance of the risk score in univariable and in multivariable Cox regression models with other clinical parameters.

Features
Univariable cox regression Multivariable cox regression

P value HR Lower 95% CI Upper 95% CI P value HR Lower 95% CI Upper 95% CI

Risk score 4.42E-12 19.7 4.64 15.6 4.34E-11 12.3 5.85 26.1

Gender (female/male) 0.30 0.68 0.33 1.41 0.17 0.54 0.23 1.29

Race (white/other) 0.23 0.64 0.30 1.34 0.07 0.47 0.21 1.08

Age 0.82 1 1 1 0.82 1 1 1
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II genes were downregulated and associated with unfavorable
outcome in OS [31, 32].

In summary, we established a prognostic risk model of
five genes in osteosarcoma, stratified the osteosarcoma sam-
ples into high-risk and low-risk groups, and uncovered the
underlying molecular mechanism associated with the prog-
nosis, which not only provided some evidence for related
researchers but also improved our understanding of OS
prognosis.

Data Availability

Osteosarcoma RNA-seq data (TPM) and matched clinical
data of OS patients from the TARGET database (https://ocg
.cancer.gov/programs/target) and the dataset of GSE21257
were used for further validation.
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