
International  Journal  of

Environmental Research

and Public Health

Article

Research on Energy Management of Hybrid
Unmanned Aerial Vehicles to Improve Energy-Saving
and Emission Reduction Performance

Mingliang Bai 1, Wenjiang Yang 1,*, Dongbin Song 1, Marek Kosuda 2, Stanislav Szabo 2 ,
Pavol Lipovsky 2 and Afshar Kasaei 1

1 School of Astronautics, Beihang University, Beijing 100191, China; baiml@buaa.edu.cn (M.B.);
buaasdb@163.com (D.S.); Akasaei@alum.sharif.edu (A.K.)

2 Faculty of Aeronautics, Technical University of Kosice, 04121 Kosice, Slovakia;
marek.kosuda@tuke.sk (M.K.); stanislav.szabo@tuke.sk (S.S.); pavol.lipovsky@tuke.sk (P.L.)

* Correspondence: yangwjbuaa@buaa.edu.cn; Tel.: +86-136-9111-5160

Received: 31 January 2020; Accepted: 8 April 2020; Published: 23 April 2020
����������
�������

Abstract: The rapid development of industry results in large energy consumption and a negative
impact on the environment. Pollution of the environment caused by conventional energy sources
such as petrol leads to increased demand for propulsion systems with higher efficiency and capable
of energy-saving and emission reduction. The usage of hybrid technology is expected to improve
energy conversion efficiency, reduce energy consumption and environmental pollution. In this
paper, the simulation platform for the hybrid unmanned aerial vehicle (UAV) has been built by
establishing the subsystem models of the UAV power system. Under the two chosen working
conditions, the conventional cruise flight mission and the terrain tracking mission, the power tracking
control and Q-Learning method have been used to design the energy management controller for
the hybrid UAV. The fuel consumption and pollutant emissions under each working condition were
calculated. The results show that the hybrid system can improve the efficiency of the UAV system,
reduce the fuel consumption of the UAV, and so reduce the emissions of CO2, NOx, and other
pollutants. This contributes to improving of environmental quality, energy-saving, and emission
reduction, thereby contributing to the sustainable development of aviation.

Keywords: energy management; hybrid power system; UAV; energy-saving

1. Introduction

The rapid development of the aviation industry not only brings great social progress and
economic benefits, but also brings increasing contentious environmental pollution problems. It has
become a common goal for the development of the aviation industry to ensure the development
and protection of the environment on which human beings depend [1,2]. The growing demand
for environmental protection has pushed the aviation industry onto a one-way green aviation [3],
and technological innovation to meet this demand will lead to a series of major changes in the
industry [4]. The fuel used in conventional aircrafts is mostly the aviation kerosene, which mainly emits
carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (CxHy), carbon monoxide (CO), and other
pollutants [5,6]. The main environmental impacts of these pollutants are: leading to the greenhouse
effect of the atmosphere, which in turn affects global climate change; reduction of stratospheric ozone,
resulting in increased surface ultraviolet radiation [7–9]. In addition, the NOx emitted by aircraft can
change the composition of chemical molecules in the atmosphere [10]. Subsequently, many studies
report association between exposure to air pollution and the risk of diseases such as chronic and
acute respiratory, lung cancer, cardiovascular diseases, and premature deaths [11–16]. Short-term

Int. J. Environ. Res. Public Health 2020, 17, 2917; doi:10.3390/ijerph17082917 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-6174-5784
https://orcid.org/0000-0002-6827-242X
http://www.mdpi.com/1660-4601/17/8/2917?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17082917
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 2917 2 of 24

exposure to traffic-related air pollution shows association with adverse cardiovascular problems [17,18].
An increased risk of several types of cancers has been link to the working environment of aircraft
crew with increased levels of known or suspected carcinogenic elements such as engine emissions,
poor air quality, and ionizing radiation [19]. Neurodegenerative diseases as well as the potential to
cause type-2 diabetes and leukemia were documented to be potential effects of air pollution [20,21].
Combination of traffic-related air and noise pollution was examined and it was shown that exposure
to both may result in cardiac autonomic dysfunction where the effect of air pollutants is amplified
at a high noise level [22]. Moreover, air pollution was associated with an increase in the number
of hospitalizations due to chronic obstructive pulmonary disease in European cities with versatile
climates [23,24]. The need for reduction in consumption of the conventional aviation fuel is therefore
one of the key issues being addressed at the national level as it leads to lessening overall impact on the
environment and on public health.

More attention has been paid to environmental problems of air traffic, the United States and
the European Union [25] have put forward new requirements for the next generation of commercial
aircrafts, focusing on fuel consumption, noise control, pollution emissions and other aspects, and have
formulated specific development objectives [26]. National Aeronautics and Space Administration
(NASA) proposed a performance target [27] of reducing fuel consumption, emissions reduction,
and low noise for subsonic airliners in 2008, which is divided into three phases: phase 1 to 2015 (n + 1),
phase 2 to 2020 (n + 2), and phase 3 to 2030 (n + 3). The European Union has also set a performance
target of subsonic aircraft in the future. It plans to achieve a 75% reduction in carbon dioxide emissions,
90% reduction in nitrogen oxide emissions, and 65% reduction in noise emissions by 2050 based on the
technical level in 2000 [28].

The technical progress of the aircraft power system is a necessary guarantee for further improving
fuel efficiency and reducing emissions. Hybrid propulsion technology is an important development
direction of aviation propulsion technology in the future [29]. By integrating the advantages of
multi-energy systems, hybrid propulsion technology is expected to further improve energy conversion
efficiency and reduce aircraft fuel consumption, achieve the goal of energy-saving, reduce emission,
and environmental protection [30,31]. The purely electric propulsion system is composed of the power
supply system and electric propulsion system and does not need an engine. Pure electric aircraft has
the advantage of zero emission during flight, and the noise level during the aircraft operation is often
very low [32]. However, due to limited accumulators technology, the load, flight speed, flight range,
and flight duration of this type of aircraft are limited; it is difficult for large airliners to use them at
present [33].

A research team at the University of Cambridge in the UK developed the world’s first hybrid
aircraft in 2012, which uses a parallel hybrid system equipped with a piston engine and an electric
motor. During the take-off phase, the engine and the motor work at the same time to meet the power
requirements for takeoff; when the cruising altitude is reached, the motor switches to the power
generation mode, charges the accumulator, or switches to engine assist mode to save fuel. The aircraft
can save about 30% more fuel compared to a similar aircraft [34]. The Boeing ‘SUGAR Volt’ hybrid
aircraft is equipped with the ‘hfan’ hybrid power plant developed by GE. The motor is installed
directly in the engine and the parallel petrol–electric hybrid propulsion system is used as its power
scheme—the fuel consumption is reduced by 28% compared with the CFM56 turbofan engine [35,36].

Regarding unmanned aerial vehicles (UAVs), it is wise to consider an overall scheme of the hybrid
power system based on the existing electromotors and aviation internal combustion engines technology.
This combination maintains the efficient characteristics of electromotors, but also uses traditional
internal combustion engines to reduce the in-flight fuel consumption and increase the flight range,
which has become an urgent problem to be solved in hybrid power technology. According to the
specific flight path of the UAV itself, the energy management controller [37] can dynamically distribute
the output power of motor and internal combustion engine in real time to meet the power demands of
the UAV [38]. This is based on the assumption of considering the accumulator charge and discharge
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power, loss and the output torque, speed and other constraints of internal combustion engine [39].
Energy management algorithms for hybrid power systems are mainly divided into rule-based control
algorithms and optimization-based control algorithms [40,41]. The novel control strategies using
reinforced and predictive learning to outweigh the negative characteristics of the model predictive
control or the equivalent consumption minimization strategy (ECMS), which require elaborate vehicle
models, showed positive results in improved fuel economy [42,43]. In the case of hybrid electric
vehicles, thermostat control strategy (TCS) and power tracking control strategy (PTCS) represent
the most conventional ruled-based controllers, but they do not consider fuel economy optimization.
The exclusive operation strategy, which combines the most effective design principles of TCS and
PTCS while implementing ECMS improved fuel economy, but still falls behind in comparison to
optimization-based benchmarks [44]. Kong et al. further improved fuel economy of hybrid tracked
vehicles, a real-time reinforced learning control strategy using the recursive algorithm to compute the
transitional probability matrix showed a decrease of fuel consumption in comparison to the stationary
strategy [45]. In a nutshell, rule-based algorithms rely on actual engineering experience and are now
widely used in automotive energy management systems [46] and optimization-based algorithms use
analytic or numerical methods to reduce the objective function taking in consideration of optimization
objectives [47].

The following paper presents a study of energy management of the petrol–electric hybrid
propulsion system for the hybrid fixed-wing UAV. The goal is for the hybrid propulsion system to save
energy and reduce emissions and improve the aviation impact on the environment. The subsystem
model of the UAV hybrid power system has been established, and the UAV simulation platform was
built. The energy management controller of the hybrid UAV was designed by using power tracking
control and Q-Learning control methods, it was simulated and analyzed under two operating conditions:
conventional cruise mission and terrain tracking mission, which can provide a theoretical reference for
improvement of the energy conversion efficiency of UAV systems and reduce fuel consumption.

2. Establishment of UAV Subsystem Model and Simulation Platform

Subsystem modeling is an important foundation for UAV energy management simulation and
optimization research. The mathematical model of the sub-system of the UAV and the construction
of the simulation platform was performed in Matlab/Simulink software. Hybrid propulsion system
modeling is mainly divided into five modules: generator, lithium accumulator, internal combustion
engine, propeller, and energy management controller. Other implemented models such as mass,
flight control system, and standard follow conventional models and standards, therefore they are not
separately introduced. The various subsystem models required for the UAV energy management
simulation and optimization institute are shown in Figure 1.
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2.1. Flight Dynamics Model

2.1.1. Aerodynamic Force and Aerodynamic Moment

The main forces on the UAV are propeller thrust, lift, drag, gravity, etc. The aerodynamic force of
the UAV in the direction of three orthogonal axes in the body coordinate system is:

Faero =


FaeroD

FaeroY
FaeroL

 = 1
2
ρV2S


CD

CY
CL

, (1)

where CD, CY, and CL are aerodynamic coefficients in drag, sideslip, lift force directions.
The aerodynamic torque is:

Mp =


LaeroX

LaeroY
LaeroZ

 = −1
2
ρV2S


Cl
Cm

Cn

, (2)

where Cl, Cm, and Cn are aerodynamic coefficients in rolling, pitching, yaw moment directions.
Lift coefficient CL, drag coefficient CD, sideslip force coefficient CY, pitching moment coefficient

Cm, rolling moment coefficient Cl, and yaw moment coefficient Cn are defined respectively as illustrated
in [48].

2.1.2. Kinetic and Kinematic Equations

Defining the speed of the UAV in this system is expressed as [u, v, w], then the acceleration is:
.
u = X/m + gx + rv− qw
.
v = Y/m + gy − ru− pw
.

w = Z
m + gz + qu− pv

, (3)

where m is the total mass of the UAV, [p, q, r] is the pitch, roll, and yaw rate of the UAV in this system.
The position of the UAV in the inertial system can be expressed as

[
xI yI zI

]
, and the speed

in the inertial system is:
.
xI = (cosθcosψ)u + (sinφsinθcosψ− cosφsinψ)v + (sinφsinψ+ cosφsinθcosψ)w
.
yI = (cosθsinψ)u + (sinφsinθsinψ+ cosφcosψ)v + (−sinφcosψ+ cosφsinθsinψ)w
.
zI = (−sinθ)u + (sinφcosθ)v + (cosφcosθ)w

, (4)

where
[
φ θ ψ

]
is the vector of Euler attitude angles of pitch, roll, and yaw. Then the angular

acceleration is:
.
p = (IzzL + IxzN −

{
Ixz

(
Iyy − Ixx − Izz

)
p +

[
I2
xz + Izz

(
Izz − Iyy

)]
r
}
q)/

(
IxxIzz − I2

xz

)
.
q =

[
M− (Ixx − Izz)pr− Ixz

(
p2
− r2

)]
/Iyy

.
r = (IxzL + IxxN +

{
Ixz

(
Iyy − Ixx − Izz

)
r +

[
I2
xz + Ixx

(
Ixx − Iyy

)]
p
}
q)/

(
IxxIzz − I2

xz

) , (5)

where
[

Ixx Iyy Izz
]

is the main inertia, and
[

Ixy Ixz Iyz
]

is the product of inertia.
The angular velocity in the inertial system is:

.
φ = p + (qsinφ+ rcosφ)tanθ
.
θ = qcosθ− rsinφ
.
ψ = (qsinφ+ rcosφ)secθ

. (6)
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The above differential Equations (1)–(6) can solve the state variables such as flight position, speed,
attitude angle, and angular velocity of the UAV.

2.2. Hybrid Propulsion System Model

2.2.1. The Model of Internal Combustion Engine and Generator

The internal combustion engine in the hybrid system drives the generator to generate electricity,
powers the electromotor, or charges the lithium accumulator. In order to operate the motor at the right
speed, a transmission is required between the two devices. The output voltage of the generator is:

Ug = Kenengieg −KxnengiegIg, (7)

where Ug and Ig are the output voltage and current of the generator, neng is the rotational speed of
the internal combustion engine, ieg is the transmission ratio between the internal combustion engine
and the motor, and Ke is the electromotive force coefficient. Kx is the equivalent impedance coefficient
Kx=3PLg

π , P is the number of poles and Lg is the armature synchronous inductor of the generator.
The relationship between the torque Tg of the generator and the current Ig is:

KeIg −KxI2
g = Tg. (8)

Due to the gearbox connection, the speed relationship between the internal combustion engine
and the generator is:

ng = nen·ieg. (9)

The dynamics model of internal combustion engines and generators is:

(
Je

ieg2 + Jg

)dng

dt
=

(
Teng
ieg
− Tg

)
0.1047

(10)

where Je and Jg are the moments of inertia of the internal combustion engine and the generator
respectively. Teng represents the torque of the engine. The fuel consumption of internal combustion
engine is defined as:

Fuel =
∫ t f

t0

.
m f (nen, Ten)dt, (11)

where
.

m f (nen, Ten) is the fuel consumption rate of the internal combustion engine, a function of the
speed and torque, which can usually be obtained by using the look-up table method.

The operating characteristics curve of the internal combustion engine is shown in Figures 2
and 3, wherein both the engine power and the fuel consumption rate can be interpolated from the
rotational speed and the torque. Figure 2 is the fuel consumption rate data of the internal combustion
engine, and Figure 3 corresponds to the data of the engine power. The maximum power of an internal
combustion engine is approximately 70 kW. From the fuel consumption rate curve, the fuel consumption
rate of the internal combustion engine is the lowest in the area adjacent to the rotation speed of 3000 rpm
and the torque of 110 N·m, where the power of the internal combustion engine is about 30 kW. The upper
bound of the contour line is called the external characteristic of the internal combustion engine, which is
the curve connected by the maximum point of output torque and output power achieved by the
internal combustion engine. In the process of simulation, the operating points of the engine should all
be located inside the external characteristic curve.
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2.2.2. The Model of Li-Accumulator

Ignoring the effect of temperature on the operating state of the accumulator, Li-accumulator
can be modeled using an internal resistance model [49]. The differential of the state of charge of the
accumulator is defined as: .

SOC = −Iaccu(t)/Caccu, (12)

where Ibat(t) is the current of the accumulator at t time and Caccu is the capacity of the accumulator.
Generally, the SOC of Li-accumulator is an important state variable in energy management. The internal
resistance of the accumulator varies with the charging and discharging, so the output voltage of the
accumulator is also divided into two cases: charging and discharging:

Uaccu =

 V(SOC) − Iaccu·(Rich(SOC) + Rt)(Iaccu > 0)

V(SOC) − Iaccu·(Ridis(SOC) + Rt)(Iaccu ≤ 0)
, (13)

where Rt is the terminating resistor, Rich and Ridis are the internal resistances in the case of accumulator
charging and discharging, and can all be represented by Rint(SOC), and V(SOC) is the open circuit
voltage of Li-accumulator. The output power of the accumulator pack is:
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Paccu = Uaccu·Iaccu, (14)

where
.

SOC can be derived from Equations (19)–(21):

.
SOC =

(V(SOC) −
√

V2(SOC) − 4(Rint(SOC) + Rt)Paccu(t))
2Caccu(Rint(SOC) + Rt)

. (15)

2.2.3. The Model of Motor and Propeller

The permanent magnet synchronous motor (PMSM) is used as the driving motor in this study.
According to the principle of power conservation, the power of the input motor is equal to the output
mechanical power of the motor and the heat loss power of the motor:

Um·Im·ηem = Tm·ωm, (16)

where Um, Im, ηem, Tm, and ωm represent the input voltage, current, efficiency of the motor, output
torque, and rotational speed of the rotor respectively. ηem is a function of the motor speed and torque,
and generally it can be measured experimentally. The efficiency can be obtained by interpolation of
data in Figure 4.
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The real-time power needed for UAV flight is provided by both the accumulator and the internal
combustion engine to meet the power balance:

Preq =
(
Ug·Ig·ηg + Uaccu·Iaccu

)
·ηem, (17)

where ηg represents the rectifier efficiency of generator.
The UAV adopts fixed pitch propeller, and its advance coefficient is:

J =
πVa

ΩR
, (18)

where R is the radius of the propeller and Va is the airspeed. The thrust and moment of the propeller are: Fp =
4ρR4Ω2CT

π2

Mp =
4ρR5Ω2CP

π3

(19)
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where CT is the thrust coefficient, CP is the power coefficient, Ω is the propeller speed, and ρ is the
current air density of the UAV provided by the standard atmospheric model.

3. Flight Simulation Calculation Flow of UAV

Table 1 shows the basic parameters of the flight simulation UAV used in this study. Flight simulation
calculation includes the process of the loading UAV mission curve, flight control, calculation of required
power, calculation of fuel consumption rate of hybrid power system, mass of the whole aircraft, and so
on. In the flight simulation mission, the upper flight control system is used to control the UAV to fly
according to a given mission curve, and the power demand of the whole machine is calculated and
transmitted to the lower energy management controller. This forms a closed loop control to meet the
UAV power requirements in real time. The real-time demand power of the UAV is determined by the
output power of the propeller. Due to the energy loss caused by the conversion of the multi-stage
power in the system, it is necessary to consider the working efficiency of the motor, and finally
convert the required power of the propeller into the required power of the hybrid system. The power
controller controls the generator and the lithium accumulator to provide sufficient power. Due to
the continuous consumption of fuel during the flight, the weight of the whole machine will change.
The fuel consumption data is collected in real time by the hybrid system and fed back to the quality
model calculation module of the whole machine, so that the fuel consumption of the entire task can
be calculated more accurately. The Simulink model of the UAV subsystem simulation is shown in
Figure 5.

Table 1. Overall parameters of the UAV.

Parameter Name Parameter Value

Wing Area (m2) 15.24
Aspect Ratio 16.8
Wingspan (m) 16
Length (m) 7.1
Height (m) 1.7
Maximum Take-Off Mass (kg) 770
Bare Weight (kg) 500
Fuel (kg) 80
Propeller Diameter (cm) 160
Thrust-Weight Ratio 0.5
Cruising Speed (m/s) 50
Peng (kW) 50
Pm (kW) 70

A typical flight profile curve needs to be selected to calculate the required power for different tasks.
Two typical operating conditions were selected: conventional cruise flight and terrain tracking flight.
Conventional cruise flight includes three stages: take-off climb, constant altitude flight, and descent to
landing. The task is simple and the change of power demand is smooth. In the terrain tracking mission,
the UAV needs to track the terrain according to the planned mission route while maintaining a certain
altitude flight with the ground. Terrain tracking is often used for remote sensing imaging, mapping,
or evading ground radar detection by UAVs carrying optoelectronic pods. As shown in Figure 6,
the UAV performs a “Z”-shaped flight in the X direction and advances stepwise in the Y direction
to form a mission profile curve. In contrast, in the terrain tracking mission, the flight altitude of the
UAV changes frequently, and the corresponding demand power also changes as the UAV climbs or
falls. Therefore, the two mission profile curves can calculate two typical operating conditions: demand
power is stable and demanded power is frequently changed.
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Figure 6. Hybrid UAV terrain tracking mission curve. (a) Three-dimensional diagram; (b) Planar graph.

It is necessary to use a flight trajectory tracker to track the position in the mission profile in real
time during a real flight mission. In order to simplify the task, only the height is used as the tracking
target and the actual flight curve is shown in Figure 7. In most of the flight time, the actual flight curves
of the UAVs under two different operating conditions are close to the task profile curve, which verifies
the effect of the trajectory tracker. The Z-direction speed curve and demanded power of the UAVs
are shown in Figures 8 and 9, respectively. It can be seen that in the conventional cruise mission,
the required power fluctuates only during the transitional state of the trajectory tracker. In the terrain
tracking mission, the demand power changes more severely because of the need to track the changing
altitude constantly.
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According to the above calculation process, given the flight profile curve of the UAV,
the corresponding power demand curve can be calculated, which can provide a basis for analyzing
the dynamic characteristics of the power demand and solving the probability transfer matrix.
The demanded power of the UAV is related to the task profile curve. In many tasks, the task
profile curve can be determined before the flight starts, so the results obtained based on the optimized
energy management strategy are similar to the results in the actual flight process.

4. Energy Management of UAV Hybrid System

4.1. Energy Management Model of Hybrid Power System

The controlled object is the hybrid power system and the control strategy presents the energy
management control algorithm in the energy management of the UAV. The core task of applying
reinforcement learning to UAV energy management is to get the optimal controller through the iterative
optimization of the reinforcement learning algorithm to minimize the fuel consumption during flight.
Therefore, the optimization objective function is defined as:

J =
∫ T

0

[
frate(t) + α∆2

SOC

]
dt (20)

where frate(t) is the fuel consumption rate at time t. ∆SOC is the accumulator SOC terminal constraint,
its expression is:

∆SOC =

 SOC(t) − SOCre f , SOC(t) > SOCre f

0, SOC(t) < SOCre f
(21)

where SOCre f is the set SOC reference value. The purpose of terminal constraints is to limit state of
charge (SOC) to the reference value as much as possible, so as to achieve the purpose of charge discharge
balance. α is the weight coefficient between fuel consumption and accumulator loss. The physical
meaning of the objective function is to minimize the fuel consumption rate and accumulator loss.

In order to ensure the safety of the power and energy systems, the following optimization
constraints shall be met for the simulation:

0.4 ≤ SOC(t) ≤ 0.9

0 ≤ Teng(t) ≤ 150(N·m)

−10 ≤ Pbat(t) ≤ 30(kW)

0 ≤ neng ≤ 5000(r/min)

(22)

The physical meanings of the above inequality constraints are as follows:

• Ensure that the state of charge and discharge of the Li-accumulator is in a reasonable range,
the maximum value of SOC is 0.9; the minimum value of SOC is 0.4, ensuring that the accumulator
will not be damaged by excessive discharge.

• Ensure that the engine torque is in a reasonable range;
• Ensure that the accumulator charging and discharging power is in a reasonable range, if the

accumulator power is negative, it represents the accumulator charging;
• Ensure that the engine speed is in a reasonable range, where the working point with zero speed

represents the engine shutdown, and the torque at this working point is also zero.

4.2. Design of Energy Management Controller

In the hybrid propulsion system of the UAV, the energy management controller is its core module.
Different forms of energy sources need to be scheduled by the energy management controller to
effectively provide thrust. The energy management controller of the hybrid system has the following
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three functions. First of all, according to the real-time power demand of the UAV, the controller
schedules the power distribution ratio between the internal combustion engine and the lithium
accumulator, so as to make the internal combustion engine work in the high efficiency range as much
as possible to save fuel. In addition, the energy management controller can also achieve the purpose of
protecting system components by monitoring the real-time operation parameters of each subsystem
and adjusting the operation status of the system. Finally, through the additional energy storage system
(such as Li-accumulator), in a certain period of time, the hybrid propulsion system can output more
power than the traditional internal combustion engine propulsion system, to meet the demand of
short-term peak power. The Q-Learning method in reinforcement learning and power tracking control
is used to design the energy management controller respectively.

4.2.1. Power Tracking Control

The characteristic behavior of the power tracking control is that the internal combustion engine
tracks the power demand of the UAV in real time, and only idle or shut down when the accumulator
pack reaches the maximum charging state and can meet the power meter requirements of the UAV.
The power tracking control covers the limited combination of the internal combustion engine and
lithium accumulator, and the required power and its control flow chart is shown in Figure 10.
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The presented design always tries to keep the internal combustion engine working in the high
efficiency range. When the power of the internal combustion engine is not sufficient to meet the required
power, the accumulator is used as the auxiliary power supply to avoid the internal combustion engine
working in the high-power rate and high fuel consumption area. When the demanded power is very
low and the internal combustion engine needs to work in the low power and high fuel consumption
area, the accumulator is used to supply power independently and the internal combustion engine
is shut down to save fuel. On the contrary, if the accumulator fails to supply power, the internal
combustion engine will start up and work in the high efficiency range and charge the accumulator at
the same time, so as to work in this way of cyclic charging and discharging.

4.2.2. Q-Learning Method

In the energy management of the UAV, it is necessary to study the demand power of the UAV and
the dynamic characteristics in the process of demand power change. Furthermore, the state transition
probability matrix can be extracted from the demanded power curve. The transfer probability matrix
of demand power is used to describe the dynamic characteristics of power demands during flight,
which is the basis of using reinforcement learning to solve the optimal control strategy. The required
power Preq and velocity v of the UAV are divided into the following finite sets:

Preq ∈

{
P1

req, P2
req, . . . , P

Np
req

}
. (23)

v ∈
{
v1, v2, . . . vNv

}
. (24)

The state transition probability is defined as:

pik, j =
Mik, j

Mik
(mik , 0), (25)

where Mik, j represents the total number of times that the required power is converted from Pi
req to Pi

req

at the speed of vk
ave. Mik is the total number of times that the required power Pi

req occurs at a speed of
vk

ave. The state transition probability shall meet the following conditions:
Mik, j ≥ 0∑Np

j=1 Mik, j = Mik
. (26)

The first condition guarantees that the probability is greater than or equal to zero, and the
second condition is the normalization condition of probability. The transition probability of most
states will be zero due to the limited points that the demanded power curve can cover in the state
space. The probability transition matrix of the demanded power is obtained by using the fuzzy vector
quantization (FVQ) processing method [50], as shown in Figure 11.
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The optimal state value function is defined as the expectation value of minimizing the sum of the
finite discounted returns based on the premise of policy π:

V∗(s) = min
π

E(
∑t=t f

t=t0
γtrt), (27)

where π is the energy management control strategy, γ ∈ [0, 1] is the discount coefficient, and rt is the
real-time return at the time of t; since the purpose of optimization is to minimize the fuel consumption,
the return is defined as the optimization objective function J. From the uniqueness theorem, the optimal
state value function can be rewritten in the form of recursion:

V∗(s) = min
π

(
r(s, a) + γ

∑
s′∈S

psa,s′V∗(s′)
)
∀s ∈ S. (28)

Thus, the optimal control strategy corresponding to the transition from state s to s′ is as follows:

π∗(s) = arg min
π

(
r(s, a) + γ

∑
s′∈S

psa,s′V∗(s′)
)
. (29)

The optimal control strategy is obtained by using the Q-Learning algorithm, and the action utility
function Q(s, a) is defined as:

Q(s, a) = r(s, a) + γ
∑

s′∈S
psa,s′Q(s′, a′). (30)

The action utility function Q(s, a) represents the corresponding value function of the (s, a).
Therefore, the optimal action utility function refers to finding the optimal control strategy and that
is the optimal action a∗ minimizes the action utility function. The optimal action utility function is
defined as:

Q∗(s, a) = r(s, a)γ
∑

s′∈S
psa,s′ + min

a′
Q(s′, a′). (31)

According to the definition of action utility function Q and value function V, it can be found that
the main difference is whether the control quantity a of its initial state is known. The update rules of
Q-Learning algorithm are as follows:

Q(s, a)← Q(s, a) + η
(
(r + γmin

a′
Q(s′, a′) −Q(s, a)

)
, (32)
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where η is the step parameter in the update process, which controls the speed of the convergence
process. The state variables of the system are selected as the charge and discharge state SOC of the
accumulator pack and the required power Preq of the UAV, that is S = SOC, Preq. The action of the
system is defined as the engine speed (neng) and torque (Teng), that is a =

[
neng, Teng

]
. The physical

meaning of the optimization process is that the controller continuously controls and samples the
hybrid power system to get a series of state and action sequences (s1, a1), (s2, a2), . . . , (sn, an) and the
corresponding return sequence r1, r2, . . . , rn. The control strategy is optimized according to the return,
so that the final optimal control sequence can minimize fuel consumption. The flow chart of solving the
optimal control strategy and the update process of the Q-Learning algorithm are shown in Figure 12.
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4.3. Results Analysis and Discussion

4.3.1. Conventional Cruise Flight Mission

In conventional cruise flight missions, the Li-accumulator SOC change curve after using power
tracking control and Q-Learning method is shown in Figure 13. It can be found that for the relatively
simple task of cruise flight, the SOC curve corresponding to the two control methods has only a slight
difference at the end because the required power change frequency is not high. This is due to the
cumulative effect caused by different control strategies of the control algorithm. Figure 14 shows
the working point distribution of the internal combustion engine of the two control algorithms,
the horizontal axis is the speed, the longitudinal axis is the torque, and the contour is the fuel



Int. J. Environ. Res. Public Health 2020, 17, 2917 16 of 24

consumption rate. It can be concluded that there is an obvious difference in the working point
distribution of the two control modes. Compared with the Q-Learning method, the working point of
the power tracking control is more scattered, and the working point of the internal combustion engine
obtained by the power tracking control method is distributed in the area with higher fuel consumption
rate. Because the working point of Q-Learning only exists in some specific areas, the distribution
is more concentrated and more importantly, its working point covers the area with the lowest fuel
consumption rate, that is the part less than 250 g/kW·h.
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Figure 15 shows the statistics of the operating points of the engine. It can be concluded that for
the power tracking control, the working points are mostly concentrated in the interval of (260, 270),
while the working points in Q-Learning are mainly concentrated in the range of (250, 260) with lower
fuel consumption rate. Figures 16 and 17 show the power distribution of the lithium accumulator and
the internal combustion engine. It can be found that the power of the lithium accumulator and the
internal combustion engine does not change much in the conventional cruise mission, but there are
some ups and downs in the initial stage because they do not reach steady state.
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The CO2 emission of the aircraft mainly comes from the oxidation of the aviation fuel, and the
composition of chemical elements in the aviation fuel determines the fuel CO2 emission index. In this
paper, the fuel CO2 emission index (3150g/kg) proposed by the Intergovernmental Panel on Climate
Change (IPCC) [51,52] is used to estimate aircraft CO2 emissions. Regardless of engine model, mode of
operation, and atmospheric environmental impact, CO2 emissions for complete routes can be calculated
using the following formula:

ECO2 = Q f uel·I (33)

where ECO2 is the total CO2 emission of the UAV, Q f uel is the fuel consumption, and I is the fuel
emission index (3150 g/kg).

As for the calculation of NOx emissions, this article adopts a classic method of calculating pollution
emissions—the Boeing flow method. This method uses the relationship between fuel flow and various
pollutant emission indexes in standard ground environmental conditions in the International Civil
Aviation Organization (ICAO) emission data to estimate the engine’s pollution emission index [53,54].
Calculated as follows:

ENOx = 10.148 ∗
W f uel
δ •θ

3.8e0.2Ma2
− 3.8871

θ = T
288.5 , δ = P

14.696

(34)

where ENOx is the total NOx emission of the UAV, W f uel is the actual fuel flow of the engine, θ is the
ratio of the engine operating environment temperature to the standard atmospheric temperature, and δ
is the ratio of the engine operating environment pressure to the standard ambient pressure and Ma is
the Mach number when the engine is operating.

As shown in Table 2, we calculated the fuel consumption and CO2, NOx emissions of different
types of power systems in the conventional cruise flight mission of the UAV according to Equations (33)
and (34). At the same time, the parameter indexes of different energy management control algorithms
for the same hybrid power system are calculated and compared. The results show that the hybrid
power system reduces fuel consumption and CO2, NOx pollutant emissions compared to conventional
petrol-powered systems. The energy management controller of the hybrid power system designed
by the Q-Learning method is better than the one designed by the power tracking control method
with a relative reduced rate of at least 2.18%. In a situation where power demand does not change
much, such as the conventional cruise flight, since the frequency of the system power supplied by
the Li-accumulator is not high, it does not play a significant compensatory effect. The results of both
control methods are better than traditional UAV power systems.
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Table 2. Comparison of parameters and indexes of the UAV during conventional cruise flight mission.

Type Control Strategy Fuel/kg % CO2/kg % NOx/kg %

Petrol Powered UAV - 11.75 - 37.013 - 0.518 -
Hybrid UAV Power Tracking 9.965 −15.2 31.391 −15.2 0.3806 −26.52
Hybrid UAV Q-Learning 9.708 −17.38 30.58 −17.38 0.352 −32.05

4.3.2. Terrain Tracking Flight Mission

In the terrain tracking mission, UAVs need to track the terrain according to the planned mission
route to maintain a certain altitude with the ground. Figure 18 shows that there is a significant difference
in the SOC change curve of the Li-accumulator corresponding to the two control methods in the time
range (500, 2000). Further analysis of the working point distribution of the internal combustion engine
in Figure 19 shows that the working point of the internal combustion engine is more concentrated in
the area with lower fuel consumption rate in the result of the Q-Learning control. It is distributed in
the nearest area on both sides with the lowest fuel consumption rate as the center, which indicates
that the internal combustion engine works more in the efficient area. From the statistical results of the
work point distribution in Figure 20, it can be found that there are more work points in the Q-Learning
control mode in the low fuel consumption range of (240, 250). In addition, there are many working
points in the power tracking control in the areas of (280, 290) and (290, 300) with high fuel consumption,
demonstrating that Q-Learning can effectively adjust the power distribution of the internal combustion
engine and lithium accumulator and reduce the occurrence of extreme operating points with high fuel
consumption. In addition, compared with the conventional cruise flight, it can be found that as a result
of a drastic change of power demand in the process of terrain tracking flight, will reduce power demand
or even zero power in the flight process of reducing the altitude of the UAV. Therefore, in the terrain
tracking mission, the shutdown condition of the internal combustion occurs on more occasions than
in the case of the conventional cruise mission. The power distribution of the Li-accumulator and the
internal combustion engine in Figures 21 and 22 show that the power distribution mode is obviously
different from that of conventional cruise flight because of the frequent change of power demand in
the terrain tracking mission. In this case, the Li-accumulator charges and discharges more frequently,
the power peaks and filling the power trough of the internal combustion engine, which would have to
operate in the area of high consumption, are reduced via engagement of the lithium accumulator to
suffice energy demand. This prevents the working condition of leaving the high efficiency area of the
internal combustion engine as far as possible.
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In the case of different types of power systems and different energy management control algorithms,
the fuel consumption and CO2, NOx emissions of the UAV in the terrain tracking flight mission are
calculated. Comparing to the petrol–electric hybrid system with the traditional UAV power system,
it is not difficult to find that a hybrid power system significantly saves the 17.69% aviation fuel of the
UAV at least and reduces the emissions of CO2, NOx in Table 3. The energy management controller
designed by the Q-Learning method is superior to that designed by power tracking control method
with a relative decline rate of at least 4.41%. Compared to a controller designed by the power tracking
control method, the energy management controller designed by the Q-Learning method reduces the
proportion of fuel consumption and pollutant emissions in the terrain tracking mission, which is larger
than that of the UAV in the cruise mission. It shows that the control method of Q-Learning is more
suitable for the operating conditions where the demand power and flight altitude change frequently.

Table 3. Comparison of parameters and indexes of the UAV terrain tracking flight mission.

Type Control Strategy Fuel/kg % CO2/kg % NOx/kg %

Petrol Powered UAV - 13.436 - 42.323 - 0.607 -
Hybrid UAV Power Tracking 11.059 −17.69 34.836 −17.69 0.428 −29.5
Hybrid UAV Q-Learning 10.467 −22.1 32.97 −22.1 0.395 −34.93

5. Conclusions

In order to focus on the series petrol–electric hybrid propulsion system of the UAV, the subsystem
model of the UAV hybrid propulsion system and simulation platform were established based on
Matlab/Simulink software and its performance was simulated and analyzed. The energy management
controller based on reinforcement learning was designed by using the Q-Learning method and compared
with the power tracking control method under the two selected common operating conditions of the
conventional cruise and terrain tracking missions. Under these conditions, the hybrid power system
UAV significantly reduces fuel consumption in comparison to the traditional petrol-powered UAV.
Decrease in fuel consumption leads to the reduction of air pollutants such as CO2 and NOx, which are
linked to be causing the greenhouse effect as well as reducing the stratospheric ozone layer. With less
potentially harmful air particles being emitted by the propulsion system, the overall positive impact on
public health is represented by mitigating presence of the elements in the air, which were documented
to cause severe health issues such as cancer, diabetes, or alteration in the cardiac autonomic function.

Considering energy management algorithms of the hybrid power systems, the Q-Learning method
based on reinforcement learning has better control effect on the energy management controller of the
hybrid power system, which can obviously improve the working efficiency of the hybrid power system,
reduce the fuel consumption of the UAV and emissions of polluting aviation environmental gases
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compared with the rule-based power tracking control method. The power tracking control method is
more suitable for designing the energy management controller of the UAV under the condition that the
demanded power changes smoothly. For terrain tracking missions with frequent changes, the fuel
consumption saving ratio of the Q-Learning control method is higher, indicating that the reinforcement
learning method based on optimization is more suitable for the working conditions with frequent
power changes.
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