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Abstract: In response to one of the most important challenges of the century, i.e., the estimation of the
food demands of a growing population, advanced technologies have been employed in agriculture.
The potato has the main contribution to people’s diet worldwide. Therefore, its different aspects
are worth studying. The large number of potato varieties, lack of awareness about its new cultivars
among farmers to cultivate, time-consuming and inaccurate process of identifying different potato
cultivars, and the significance of identifying potato cultivars and other agricultural products (in
every food industry process) all necessitate new, fast, and accurate methods. The aim of this study
was to use an electronic nose, along with chemometrics methods, including PCA, LDA, and ANN
as fast, inexpensive, and non-destructive methods for detecting different potato cultivars. In the
present study, nine sensors with the best response to VOCs were adopted. VOCs sensors were used
at various VOCs concentrations (1 to 10,000 ppm) to detect different gases. The results showed that a
PCA with two main components, PC1 and PC2, described 92% of the total samples’ dataset variance.
In addition, the accuracy of the LDA and ANN methods were 100 and 96%, respectively.

Keywords: potato; VOCs; olfactory machine; ANN; LDA; PCA

1. Introduction

The potato is an important food crop that grows throughout the world. It is considered
an essential crop in developing and developed countries, contributing to the human diet as
a source of carbohydrates, proteins, and vitamins. This crop is native to South America
and originates from Peru. The potato is the fourth most important food supply of human
societies after wheat, rice, and maize [1]. According to the UN Food and Agriculture
Organization statistics, the area under cultivation of the potato in Iran was 161 thousand
hectares in 2017, while the harvested crop was about 5.1 million tons [2].

Potatoes can be consumed in various food forms, fresh or processed, including fried
potatoes, mashed potatoes, potato chips, and dried granules. There are over 50 potato
cultivars in the world, the most important of which are: “Agria”, with a relatively high
dry matter and resistance to various pests and diseases, is used in the French Fries’ food
industry. “Arinda”, with a very high-yield and resistance to internal bruising; “Almera”,
with a relatively high dry matter, is suitable for fresh eating. “Burren”, with a very high-
yield, is very cost-effective for cultivation and has good resistance to diseases. “Picasso”,
such as the Bourne cultivar, has a high-yield and resistance to disease. “Jelly”, with a very
high-yield and resistance to diseases, has a very customer-friendly yellow color and flesh.
“Rumba” has high-resistance against diseases and a very high-yield. “Satina” has a very
high-yield and can be cultivated in different climates. “Satne” has a high resistance to pests.
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“Fontane”, with a very high-yield, is suitable for processing and the French Fries’ food
industry. “Sprit”, with high-yield and quality, is a customer-friendly cultivar. “Marfona”
has a high-yield and is suitable for fresh eating.

The nutritional and chemical composition of potato tubers varies with cultivars, stor-
age, growing season, soil type, pre-harvest feeding, and the analysis methods adopted [3].
In general, potatoes contain 80–70% water, 16–24% starch, and very small amounts (4%)
of protein, fat, anthocyanins, minerals, and so on. Although potatoes are rich in carbohy-
drates, they provide significant amounts of other nutrients, such as proteins, minerals, and
vitamins. Potato production is generally declining, despite an increase in market demand
for fresh crops [4,5]. The production and quality of the sweetest potatoes have decreased in
recent years, due to a combination of various factors, including mutations in viruses and
other pathogens in potatoes [6]. Therefore, potatoes are faced with a variety of diseases. In
addition, farmers have difficulty in classifying different types of plants, due to the lack of
access to agricultural specialists to help to promote and educate agriculture. They cause a
decrease in yield per hectare [7]. To cope with these problems, special methods have been
introduced to farmers to identify and classify potato cultivars [8,9].

Traditional methods used for the determination of potato varieties were mostly based
on morphological characteristics. However, the need for faster and better recognition
methods was felt with the emergence of new crops [10–12]. Yet, the identification of
different cultivars is currently accomplished by traditional and visual methods, including
the observation of some characteristics of potato tubers, such as peel color, number of points
in the sprouts, and, in some cases, looking at the flower color of the potato stems in the field.
These methods are difficult and time-consuming tasks and are not error-free. One of the
novels introduced methods in image processing techniques to identify plants based on their
shape, texture, and color [13,14]. This is complemented by machine learning, which allows
the machine to learn without careful planning. Since, and over the past decades, computer
vision and machine learning for the identification of various diseases have been frequently
used and studied. In addition, machine learning techniques can be applied to classify
images. In addition, neural networks can be useful, along with image processing. The
neural network is a computational framework influenced by biological neural processing.
Neural networks perform useful calculations through the learning process.

Protein electrophoresis can be useful when a simple procedure, independent of high-
level laboratory facilities, is required. In some cases, this method can also be applied
in quality control systems. However, the requirement of special laboratory conditions
(to preserve the protein, as well as the high diversity of the potato protein itself) are
limitations for this method. DNA profiling: in methods that identify potato varieties
through DNA, radioactivity labeling and the need for good DNA quality are among the
limitations of these methods. Among these, the olfactory machine has high efficiency in
classifying cultivars. It is a system with a different structure and approach, relative to
other methods (image processing, neural network, etc.); it allows for the classification and
identification of cultivars, is flexible, and can be applied in most agricultural products
because of their odor [15,16].

Przybył et al. [17] studied two potato cultivars, Vineta and Denar, using image process-
ing and artificial neural network techniques and concluded that they are able to identify
the cultivars. This research was conducted using 4 geometric features, 7 side factors, and
29 color-determining parameters, among which, 10 factors had the highest impact on the
cultivars’ identification. The optimal state of the artificial neural network used to identify
these two cultivars was 18-51-2.

Azizi et al. [18] conducted an investigation on 120 potatoes of 10 different cultivars
using machine vision and image processing (via the MATLAB R2012 toolbox) to identify
texture and shape parameters and cultivars. At first, potato cultivars were classified using
the LDA method, with an obtained accuracy of 67%. This method also failed to identify
the two cultivars Agria and Savalan and misclassified the two cultivars Fontaneh and
Satina, as well. They also used ANN to classify potato cultivars, in which ANN had an
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accuracy of 82 and 100% with one and two hidden layer(s), respectively. It was found, in
this study, that different types of potatoes can be identified and classified with a very high
level of accuracy using the triple properties, namely, color, textural, and morphological
characteristics extracted by the machine vision using a classifying nonlinear artificial neural
network. The results show the effect of artificial intelligence, including machine vision,
in identifying cultivars and horticultural products that can be widely used in the food
industry to achieve automation goals.

In another study, using neural networks and image processing on 5 sweet potato
cultivars, researchers showed that this method is successful and could classify sweet potato
cultivars with an accuracy of 100% [19].

Another study was conducted in order to grade potatoes of 5 different cultivars by
their quality using a color vision machine. The researchers reported the accuracy of the
LDA and MLF-NN models equal to 87 and 99%, respectively [20].

In another study, simple sequence repeats (SSR) markers were used on 34 potato
cultivars grown in Canada to identify the cultivars. The results showed that the genotypes
for each tested item were completely consistent, except for 4 pairs of cultivars. The accuracy
of this method was obtained at 88%. The researchers also noted that, using two methods
(SSR and AFLP (Amplified Fragment Length Polymorphism)), some cases show consistent
results in determining potato cultivars [21].

On the other hand, for several decades, studies on the application of different types
of techniques for the detection of odor have been conducted. An electronic nose is a
very useful device, used to determine the difference between the smell of even similar
materials [22–24]. For this reason, the e-nose can be regarded as a quick and simple
analytical tool; it is also useful for identifying potato cultivars and will be very useful for
researchers to select and produce pure cultivars and for farmers to produce uniform and
certified crops. Therefore, the aim of this study is to identify potato cultivars using the
olfactory machine system.

2. Materials and Methods
2.1. Sample Preparation

At first, samples of five different cultivars (Agria, Sprite, Sante, Marfona, and Jelly),
were obtained from Ardabil Agricultural Research Center and kept at 4–10 ◦C. One day
after cultivar preparation, data collection was performed. Data collection included chemical
properties and cultivars’ identification using an electronic nose.

2.2. Extraction of Carbohydrates

The carbohydrate content of the samples was extracted using the equipment available
in the central laboratory of Mohaghegh Ardabili University. It was performed using the
Schlegel method. Carbohydrate was extracted using 95% ethanol, based on the sulfuric
acid method from each sample. In this method, 0.200 g of the sample with 10 cc of 95%
ethanol was heated in a water bath at 80 ◦C for 1 h. 1 cc of 0.500% phenol and 5 cc of
98% sulfuric acid were added to 1 cc of this sample. The value of absorption light by each
sample from the Nanodrop spectrophotometer (Thermo Scientific™ NanoDrop™ One C,
Waltham, MA, USA) with a volume of 1000 microliters was read using a cuvette. The
amount of extracted carbohydrates was obtained from the standard curve by micrograms
per milliliter [25].

The 100 mg/mL of glucose was prepared for the standard curve. Consecutive dilution
of glucose was performed and dye development at 490 nm was controlled for different
glucose concentrations. A total of 1 mL of distilled water was used as a blank. A standard
curve was drawn and used to calculate the total concentration of carbohydrates.

The standard curve had a determination coefficient of 0.995 and its relationship was
obtained as y = 0.003x − 0.021. Data were collected in three replications for each sample,
and the amount of absorption wavelength was obtained. Then, the carbohydrates content
was calculated by placement of the wavelength, in relation to the standard curve.
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To obtain the carbohydrates’ content, the absorption wavelength number was placed
in the relationship, y = 0.003x − 0.021 and the carbohydrates’ content was obtained by
micrograms per milliliter; the values are shown in Table 1.

Table 1. Carbohydrate values obtained for different potato cultivars.

Variety
Absorption Wavelength (nm) Carbohydrate Content (µg/mL)

1 2 3 1 2 3

Sprit 0.780 0.793 0.840 258 262 278
Agria 0.492 0.543 0.573 165 181 191
Jelly 0.675 0.714 0.761 223 236 252
Sante 0.804 0.808 0.901 265 268 297

Marfona 0.401 0.461 0.561 136 155 187

2.3. Sugar Extraction

The sugar content of each specimen was measured with three replications using a
liquids’ refractometer, Model BPTR100 (Middle East System Control Co., Prisma Tech
brand, Ardabil, Iran), available at Mohaghegh Ardabili University. For this, some water
was extracted from each specimen, then it was poured into a micro-tube and placed in a
refrigerated centrifuge (high-speed) (Model LISA France) at 1800 rpm for 2 min, following
deposition of the impurities, and was separated the pure liquid (pure potato juice). It was
kept, to reach ambient temperature, and then was placed on a refractometer device and its
sugar content was read by Brix.

2.4. Electronic Nose Instrument

In this research, an electronic nose made in the Department of Bio-system Engineering
of Mohaghegh Ardabili University was used (Figure 1a). Additionally, 9 Metal Oxide
Semiconductor (MOS) sensors with low power consumption are used in this apparatus.
The sensor specifications are listed in Table 2 [22,26,27].
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Table 2. The sensor types, gas detection ranges, and known chemical sensitivity of tin oxide MOS
sensors within the electronic nose sensor array.

Row Sensor Name Detection Ranges (ppm) Main Applications
(Gas Detector)

1 MQ9 10–1000 and 100–10,000 CO and combustible gas
2 MQ4 300–100 Urban gases and methane
3 MQ135 10–10,000 Steam ammonia, benzene, sulfide
4 MQ8 100–1000 Hydrogen
5 TGS2620 50–5000 Alcohol, steam organic solvents
6 MQ136 1–200 Sulfur dioxide (SO2)
7 TGS813 500–10,000 CH4, C3H8, C4H10
8 TGS822 50–5000 Steam organic solvents
9 MQ3 10–300 Alcohol

The first 2–4 potatoes from each cultivar were placed in the sample container (Figure 1b)
for 1 day to saturate the container with the odor. Then, the sample chamber was connected
to the electronic nose instrument and data collection was performed. The data were
collected by the olfactory machine in such a way that first clean air was passed through the
sensor chamber for 100 s to remove other odors of the sensors. The odor (gases emitted
from the specimen) was then sucked out of the specimen chamber by a pump for 100 s and
then directed to the sensors. Finally, to prepare the sample for further data collection, clean
air was injected into the sensor chamber for 100 s [15,16,28].

According to the above steps, the output voltage of the sensors was changed, due
to exposure to various gases (potato odor), and their olfactory response was collected by
data collection cards. The sensor signals were recorded and stored in the computer USB
gate at 1 s intervals. A fractional method was used to correct the baseline, in which noise
or possible deviations were eliminated and the sensor responses were normalized and
dimensionless using the following equation [16,29]:

Ys(t) =
Xs(t)− Xs(0)

Xs(0)
(1)

where, Ys(t) is the normalized response, Xs(0) is the baseline and Xs(t) is the sensor response.

2.5. Statistical Analysis
2.5.1. Analysis of Variance

The contents of sugar and carbohydrates in five different potato cultivars were ob-
tained using a refractometer and Schlegel method, respectively.

The obtained values for sugar and carbohydrate content of five potato cultivars were
analyzed using MSTATC software (Michigan State University, East Lansing, MI, USA).
The statistical analyses were conducted using a completely randomized factorial test. The
means were compared with Duncan’s multiple range test at 0.01 p-value level.

2.5.2. Chemometrics and Machine Learning Modelling

Chemometrics uses multivariate statistics to extract useful information from complex
analytical data. The chemometric used in this study began with principal component
analysis (PCA) to discover the output response of the sensors and reduce the data di-
mension. In the next step, linear diagnostic analysis (LDA) and artificial neural network
(ANN) were used to classify five potato cultivars. PCA is one of the most widely used
methods to reduce statistical data. This method is an unsupervised technique used to
explore and reduce the dimensions of a dataset. The analysis involves determining the
variable components, which is a linear combination of many features studied [30]. A set of
correlated variables becomes a new set of orthogonal variables called principal components
(PCs). Each principal component is a linear combination of all primary variables. LDA is a
supervised method used to find the most distinctive Eigenvectors and maximizes the ratio
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of the variance between and within the class and is able to classify two or more groups
of samples [31]. Artificial neural network (ANN) is a computational model, based on the
function and structure of biological neural networks. The information that flows through
the network affects the structure of the ANN because the neural network changes or, in
other words, learns, based on input and output. The common type of artificial neural
network consists of three groups or layers: the first layer is connected to the hidden layer
and they themselves are connected to the output layer. The activity of the input units
represents the raw information that is transmitted to the network. The activity of each
hidden unit is determined according to the activities of the input units and the weight on
the connections between the input and the hidden units. Additionally, the behavior of
the output units depends on the activity of the hidden units and the weights between the
hidden units and the output. In this type of network, the hidden units are free to construct
their own representations of the input. The weights between the hidden and input units
are determined when each hidden unit is active; so by modifying these weights, a hidden
unit can choose what it represents. One of the important applications of neural networks is
pattern recognition. Pattern recognition can be implemented using a feed-forward neural
network, trained in the same way. During training, the network is trained to relate the
outputs to the input patterns. When a network is used, it detects the input pattern and
tries to output the associated output pattern. The power of neural networks comes to
life when a pattern that has no output associated with it, is given as an input. In this
case, the network gives the output that corresponds to a taught input pattern that is least
different from the given pattern. According to the number of sensors, nine neurons were
considered for the input layer. The hidden layer will be considered with the optimal
number of neurons and five output neurons will be considered according to the number of
target output classes. Data were randomly selected for learning (60%), testing (20%), and
validation (20%). The performance was calculated using the cross-entropy and a neuron
trimming test was conducted to select the models with no under- or over-fitting, being
three the most optimal number for the model (Figure 2) [32]. In addition, Unscrambler vers.
10.4 software (CAMO AS, Trondheim, Norway) was used for PCA and LDA analysis and
Matlab® (vers. R2014a) (Mathworks, Inc., Natick, MA, USA) was used for ANN analysis.
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2.6. Model Evaluation Metrics

The individual performance of models 1 and 2 was assessed by the confusion matrix
and the receiver performance characteristic curve (ROC). Once validated, each model was
exported as an executable command in Matlab® and challenged by a new testing dataset.
Sensitivity, specificity, accuracy, and precision parameters were used to analyze the system
performance [33,34]:

Specificity =
TN

TN + FP
(2)
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

AUC =
Sensitivity + Precision

2
(6)

F =
2 × PR
P + R

(7)

in which TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Nega-
tive) indicate, and all values are dimensionless.

Accuracy represents the proportion of samples that are correctly classified. Recall (R)
is defined as the ratio of the TP samples to the sum of the TP and FN samples. Precision (P)
is defined as the ratio of the TP samples to the sum of the TP and FP samples.

3. Results
3.1. Results of ANOVA for Sugar and Carbohydrate Content of Potato Cultivars

The results of analysis of variance (ANOVA) for sugar and carbohydrate contents
of five different potato cultivars were significant at the level of 1%, the mean of squares
values of sugar and carbohydrate were 2.198 and 8184.567, respectively, with coefficients of
variation of 0.270 CV and 7.671 CV, respectively.

The average sugar content in potato cultivars by Brix index (grams of sugar per 100 g
of solution) is shown in Figure 3a. With respect to the shape parameter, the Sprite cultivar
has the highest content of sugar (8.151). However, Agria and Jelly cultivars have the lowest
amount of sugar content (6.180 and 6.122 Brix, respectively).

In addition, the average potato carbohydrates’ content in potato cultivars can be seen
in Figure 3b. According to the results, the highest carbohydrate content was observed in
Sprite, Sante, and Jelly cultivars equal to 277, 266, and 237 µg/mL, respectively. However,
the least carbohydrate content was recorded for Marfona and Agria cultivars.

3.2. E-Nose Result

The experiments were performed to identify five different potato cultivars. Radar
diagrams were used to observe the differences in patterns (fingerprints) between different
potato cultivars. The average output data of electronic nose sensors, during 100 s of mea-
surements, are plotted as a radar diagram following the normalization using Equation (1)
(Figure 4). Using this diagram, it is possible to visualize the difference between the re-
sponse patterns of the sensors to the odor of each potato cultivar. As can be seen from
Figure 3, there is considerable similarity in the fingerprints of different potato cultivars.
Except for the Jelly cultivar, whose pattern is somewhat different from other cultivars, all
other cultivars have almost the same pattern but are varied in values. Accordingly, the
highest odor is related to Jelly, Sprite, and Sante cultivars. These three cultivars also have
the highest carbohydrate content. It can probably be said that the reason for the greater
odor of these three cultivars is due to their higher carbohydrate content.

The scores diagram (Figure 5) shows the total variance of the data equal to PC-1 (76%)
and PC-2 (16%), respectively, with the first two principal components, constitute 92% of
the total variance of the normalized data. When the total variance is above 60%, it means
that the first two PCs are sufficient to explain the total variance of the dataset. According to
the figure, the three cultivars Gelly, Sprite, and Sante, with higher carbohydrate contents,
can be seen on the right side of the score diagram, and the two cultivars, Marfona and
Agria, can be seen on the left side of this diagram. It can be assumed that the e-Nose has a
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good response to the odor of carbohydrates, and it may be possible to distinguish different
potato cultivars only based on their carbohydrate contents. It indicates the high accuracy
of the electronic nose in detecting the odor of different products.
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In the correlation loadings plot, the relations between all variables can be shown. The
loading diagram (Figure 6) shows the relative contribution of the sensors for each principal
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(3) MQ135, (4) MQ8, (5) TGS2620, (6) MQ136, (7) TGS813, (8) TGS822, and (9) MQ3.

3.3. LDA and ANN Results

LDA and ANN methods were used to recognize the potato cultivars, based on sensor
output response. Unlike the PCA method, the LDA method is able to extract multiple
sensor information to optimize the resolution between classes. Therefore, this method was
used to detect five potato cultivars, based on the output response of the sensors. The result
of the identification of cultivars was obtained 100% (Figure 7).
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The lowest value of cross-entropy obtained during the training period was 2.1%. A
cross-entropy error of less than 1% was proposed to serve as a stopping condition in
training the e-nose. In this study, it was stated that if the %CE training was more than
1%, the system would be re-trained and more samples would be added, until the required
cross-entropy error is reached. Table 3 shows the confusion matrix for the classification of
five potato cultivars.

Table 3. Confusion matrix to identify five different potato cultivars using LDA and ANN methods.

Model Variety Agria Sprit Jelly Sante Marafona

LDA

Agria 15
20%

0
0%

0
0%

0
0%

0
0%

100%
0%

Sprit 0
0%

15
20%

0
0%

0
00%

0
0%

100%
0%

Jelly 0
0%

0
0%

15
20%

0
0%

0
0%

100%
0%

Sante 0
0%

0
0%

0
0%

15
20%

0
0%

100%
0%

Marafona 0
0%

0
0%

0
0%

0
0%

15
20%

100%
0%

100%
0%

100%
0%

100%
0%

100%
0%

100%
0%

100%
0%

ANN

Agria 12
16%

0
0%

0
0%

0
0%

0
0%

100%
0%

Sprit 0
0%

15
20%

0
0%

0
0%

0
0%

100%
0%

Jelly 0
0%

0
0%

15
20%

0
0%

0
0%

100%
0%

Sante 3
4%

0
0%

0
0%

15
20%

0
0%

83.333%
16.667%

Marafona 0
0%

0
0%

0
0%

0
0%

15
20%

100%
0%

80%
20%

100%
0%

100%
0%

100%
0%

100%
0%

96%
4%

In the confusion matrix, the rows correspond to the actual classes and the columns to
the identified classes. Oblique cells correspond to correct classified observations, and non-
oblique cells correspond to incorrect classified observations. Table 3 shows the confusion
matrix results from the recognition of potato cultivars using LDA and ANN methods.
Statistical results of the artificial neural network classification models, developed using
the e-nose outputs as inputs for the classification of five varieties of potatoes are shown
in Table 4.

Table 4. Statistical results of the artificial neural network classification models, developed using the
e-nose outputs as inputs for the classification of five varieties of potatoes. Abbreviations: CE: means
Cross entropy.

Stage Samples Accuracy Error CE

Training 45 97.801 2.202 0.455
validation 15 93.324 6.711 0.902

Testing 15 93.314 6.736 0.917
Overall 75 96.001 4.000 0.065

The oblique cells of the confusion matrix were composed of the correct number and
percentage of classification. For example, the first cell corresponding to the Agria cultivar
was correctly classified with 20% of all 75 datasets observed. Since there was no case of
incorrect classification in the LDA method, the classification accuracy was 100%.

Furthermore, the value of the receiver operating characteristic (ROC) was very sensi-
tive for the classification of the five potato cultivars (true positive rate; 0.960).
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Table 5 shows the testing results for classifiers challenged with a new dataset of potato
samples; statistical results were reported using Equations (2)–(7). Among the models tested,
both linear and quadratic LDA classifiers provided the best performance, including recall
and specificity. The classification recalls of these five categories (with the ANN and LDA
method) were 96 and 100%, respectively, while their precision percentages were 96.666
and 100%, respectively. Using the precision and recall percentage values, shown in the
gray cells in the last row and rightmost column of the matrix, respectively, the computed
F-measure of these four categories were 95.923%, and 100%, respectively. Despite the
fact that Precision and Recall are valid metrics in their own right, one can be optimized
at the expense of the other; therefore, the F-Measure was used. In the case of the five-
potato cultivar classification prediction, in most experimental proofs, the e-nose was able
to correctly correlate the input data with the actual input concentrations. The results show
that the overall accuracy of the electronic nose, when using it in the classification of five
potato cultivars, was very satisfactory.

Table 5. Performance parameters of LDA and ANN models.

Models Accuracy Precision Recall Specificity AUC Fscore

LDA 1.000 1.000 1.000 1.000 1.000 1.000
ANN 0.984 0.966 0.960 0.990 0.978 0.959

4. Discussion

According to the results, the highest carbohydrate content was observed in Sprite,
Sante, and Jelly cultivars, equal to 277, 266, and 237 µg/mL, respectively; the Sprite cultivar
had the highest content of sugar (8.151). The difference in the sugar content of different
cultivars is due to the differences in the hydrolysis of starch (the main component of potato
tubers), which occurs as a result of the crop respiration; the lower the starch content in a
cultivar, the less sugar has the cultivar. It is important to note that the chemical composition
depends on the potato cultivar, soil, climate, and agronomic factors. In general, it can be
said that potatoes with more sugar content are suitable for the chips industry and potatoes
with medium sugar content are suitable for frying [35].

Gumul et al. [36] measured the sugar content for five different potato cultivars. They
also stated that the lower the sugar content of different potato cultivars, the lower the
quality of the product, because at high temperatures, sugars react with Maillard to form
potential substances that are dangerous to human health. This reaction is also observed
during the thermal processing of food [23]. Rutolo et al. [37] studied the detection of potato
soft rot caused by pectobacterium carotovorum using an array of low-cost gas sensors.
Their goal was to investigate the potential of a set of low-cost gas sensors to diagnose the
disease. In laboratory conditions, they analyzed 80 potatoes with and without soft rot by
an array of 11 different gas sensors. The results showed that 100% detection accuracy can
be achieved with only three sensors.

Rasekh and Karami [26,27] reported similar results for predicting fruit juice fraud.
In addition, the results obtained in this study were far higher than the values reported
by Ayari et al. [38] for the detection of oxidation in animal and herbal oils. These results
were also more accurate than the research by Yu et al. [39] on the classification of green tea,
based on data provided by electronic nose. Rusinek et al. [40] described the differences
in the quality of stored rapeseed, during which there was a loss of material quality. The
electronic nose device has been successfully used to determine differences in coffee grades,
based on aroma studies [32,41]. In these works, advanced statistical methods were used
to describe the relationships between the obtained parameters. Similar results have been
reported by other researchers [42–45].

5. Conclusions

This paper reports on the use of MOS gas sensors analysis equipment to detect
and investigate odors associated with potato cultivars. Given that there is currently no
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cost effective, non-destructive, reliable, and practical approach for the classification and
identification of potato cultivars, this method has the potential to be used as a fast and non-
destructive method to identify different potato cultivars. Using this method for identifying
potato cultivars will be very useful for researchers to select and produce pure cultivars and
for farmers to produce uniform and certified crops.

The large number of potato varieties, lack of awareness about its new cultivars among
farmers to cultivate, time-consuming and inaccurate process of identifying different potato
cultivars, and the significance of identifying potato cultivars and other agricultural products
(in every food industry process) all necessitate new, fast, and accurate methods. It will be
very useful for researchers to select and produce pure cultivars and for farmers to produce
uniform and certified crops. Therefore, the results of this study can be effective in the rapid
identification of potato cultivars.
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