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For decades, psychostimulants have been the gold standard pharmaceutical

treatment for attention-deficit/hyperactivity disorder (ADHD). In the

United States, an astounding 9% of all boys and 4% of girls will be prescribed

stimulant drugs at some point during their childhood. Recent meta-analyses

have revealed that individuals with ADHD have reduced brain volume loss

later in life (>60 y.o.) compared to the normal aging brain, which suggests

that either ADHD or its treatment may be neuroprotective. Crucially, these

neuroprotective effects were significant in brain regions (e.g., hippocampus,

amygdala) where severe volume loss is linked to cognitive impairment and

Alzheimer’s disease. Historically, the ADHD diagnosis and its pharmacotherapy

came about nearly simultaneously, making it difficult to evaluate their effects

in isolation. Certain evidence suggests that psychostimulants may normalize

structural brain changes typically observed in the ADHD brain. If ADHD itself

is neuroprotective, perhaps exercising the brain, then psychostimulants may

not be recommended across the lifespan. Alternatively, if stimulant drugs

are neuroprotective, then this class of medications may warrant further

investigation for their therapeutic effects. Here, we take a bottom-up holistic

approach to review the psychopharmacology of ADHD in the context of

recent models of attention. We suggest that future studies are greatly needed

to better appreciate the interactions amongst an ADHD diagnosis, stimulant

treatment across the lifespan, and structure-function alterations in the

aging brain.
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Introduction

Attention-deficit/hyperactivity disorder is one of the most
common psychiatric disorders in children (Biederman and
Faraone, 2005; Simonoff et al., 2008; Banaschewski et al., 2017;
Sayal et al., 2018). The psychiatric nosology of ADHD is
primarily based on its clinical phenomenology and diagnosed
with the use of standardized diagnostic rating scales (Thome
et al., 2012). Classically, ADHD has been described as a highly
heritable (60–75%) neurodevelopmental disorder, characterized
along the domains of inattention, hyperactivity, and impulsivity
(Wolraich et al., 1996; Swanson et al., 1998) with increased
novelty seeking behavior recently noted to be a core feature of
ADHD (Donfrancesco et al., 2015).

One of the defining characteristics of ADHD is the
heterogeneity of behavioral presentations, yet the diagnosis
replicates with reasonable success rates across practitioners
(McGough, 2014; Faraone et al., 2015). Early descriptions of this
disorder suggested that hyperkinetic and inattentive symptoms
during childhood generally attenuated by late adolescence
(Laufer and Denhoff, 1957), a description maintained through
the DSM-IV. However, it is now recognized that 60–70% of
pediatric cases continue to have functional impairments into
adulthood (Fischer et al., 2002; Sibley et al., 2016), though in
many cases only three to four symptoms (sub-threshold for
diagnostic criteria) may continue after adolescence (Faraone
et al., 2006).

It is evident that variations in the epidemiology and
pharmacoepidemiology of ADHD are found across the globe.
A meta-analysis of worldwide prevalence in 27 countries in
children and adolescents with ADHD was reported at 3.4%
(Confidence Interval 95% 2.6–4.5) (Polanczyk et al., 2015). For
example, it was estimated that the prevalence rate of childhood
ADHD in 2020 would be 1% (95% Confidence Interval: 0.875–
1.125) in Slovenia (Štuhec et al., 2015), and less than 50% of
patients in Slovenia were treated with medication for pediatric
ADHD (Stuhec and Locatelli, 2017). In contrast, a systematic
and meta-analysis report in China found a childhood ADHD
prevalence rate of 6.26% (95% Confidence Interval: 5.36–
7.22%) (Wang et al., 2017) and utilization of prescriptions for
ADHD medication was more than 50% in patients aged 6–
11 years (Wang et al., 2021). Variability of prevalence rates
could be explained by methodological approaches, specifically
in diagnostic criteria, source of information, and requirement
of impairment for diagnosis (Polanczyk et al., 2014; Visser
et al., 2014). Pharmacoepidemiology studies have revealed
geographic variability both globally (Raman et al., 2018)
and cross-nationally (Zito, 2000) with respect to diagnostic
practices, clinical management, and societal differences toward
pharmacotherapy in children. Differences in clinical decision-
making and medication utilization are also time-varying, further
complicating lifespan studies on ADHD populations (Chang
et al., 2019).

A number of studies have examined the trajectory
and stability of ADHD symptoms across the lifespan. In
children, approximately 5% (predominantly male) prevalence
rates are generally reported (e.g., Wolraich et al., 1996). In
contrast, adult prevalence rates are more gender balanced
and estimated at ∼3% (Fayyad et al., 2007). However, adult
prevalence rates are higher if the DSM-5 requirement for
a childhood-onset (before age 12) is removed (Caye et al.,
2016). A recent meta-analysis reported 2.58% prevalence
for adult ADHD with a childhood onset, with 6.76% of
adults overall having ADHD symptoms (Song et al., 2021).
A longitudinal study across four decades found that 90% of
adult ADHD cases lacked a childhood history (Moffitt et al.,
2015).

Taken together, these reports suggest that there may be
at least two different disease trajectories, and the potential
for the existence of multiple etiologies (Moffitt et al.,
2015; Caye et al., 2016). There is some evidence that
the neural substrates subtending the inattentive phenotype
are distinct from other ADHD presentations. For example,
when independent component analysis, a technique used to
isolate statistically independent brain networks, was applied to
resting state fMRI data, approximately double the number of
components were computed in inattentive subjects compared
to either typically developing or hyperactive ADHD subjects
(Colby et al., 2012).

Despite copious research, a clear link between the clinical
features of ADHD and its biological substrates remains at
least somewhat elusive. However, neuropsychological, imaging
and genetic studies have converged on a few central features
with correlates across domains. Contemporary neurocognitive
models of ADHD consider deficits in executive functioning,
specifically response disinhibition, to be a core deficit (Curatolo
et al., 2010; Purper-Ouakil et al., 2011). Neuropsychological
and imaging studies have implicated abnormalities in prefrontal
cortex (PFC), a brain region thought to be critical for many
aspects of executive function such as sustaining and dividing
attention as well as inhibiting distraction (Arnsten and Li,
2005; Seidman, 2006; Christakou et al., 2013). PFC lesions often
produce a behavioral profile of distractibility, forgetfulness,
impulsivity, poor planning, and locomotor hyperactivity similar
to ADHD (Brennan and Arnsten, 2010).

Attention-deficit/hyperactivity disorder is mitigated by
pharmacological medications that increase concentrations or
residence time of dopamine and norepinephrine in the synapse.
According to evidence-based guidelines and meta-analyses
of pharmacological management of ADHD, stimulants are
considered the first-line treatment in both children (Faraone
and Buitelaar, 2010; Chan et al., 2016; Catalá-López et al., 2017;
Wolraich et al., 2019) and adults (Rostain, 2008; Cunill et al.,
2016; De Crescenzo et al., 2017; Stuhec et al., 2019), while
non-stimulants remain second-line option treatments (Bolea-
Alamañac et al., 2014; Chan et al., 2016; Caye et al., 2019).

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.938501
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-938501 September 20, 2022 Time: 15:39 # 3

Dutta et al. 10.3389/fnhum.2022.938501

Here, we suggest that more studies should focus on
examining pharmacotherapy-based treatment for ADHD across
the lifespan. However, isolating the effects of psychostimulant
treatment is difficult for a number of reasons. First, the high
rate of psychiatric comorbidity in adults (Kessler, 2006; Sobanski
et al., 2007) and children (Kadesjö and Gillberg, 2001; Reale
et al., 2017) with ADHD frequently necessitates combination
of psychopharmacology, which may pose a risk of drug–
drug interactions, and further complicate lifespan studies of
pharmacotherapy. This is important in light of the differences
in profiles of dopaminergic capacity and dopamine transporter
availability in ADHD and comorbidities (Howes et al., 2012;
Jauhar et al., 2017). Second, psychostimulants are known to
carry the risk of abuse (Barkley et al., 2003; Weaver et al., 2005),
which is pertinent given that youths with ADHD are more
likely to experiment with psychoactive substances (Elkins et al.,
2007; Wilens et al., 2011), and its increasing usage (Zuvekas
and Vitiello, 2012; Olfson et al., 2013) may further complicate
studies on psychostimulant treatment alone. Growing evidence
also suggests an overlap in genetic susceptibility between
substance abuse and ADHD (Goldman et al., 2005; Lesch
et al., 2008; Wang, 2013; Demontis et al., 2019). Current
guidelines recommend the non-stimulant atomoxetine as a first-
choice treatment for adults with substance use disorder (SUD)
and ADHD, but evidence of efficacy is still lacking (Kooij
et al., 2010). Although evidence on the use of stimulants for
patients with SUD and ADHD is mixed, Consensus Statements
recommend the use of stimulants in adults (Klassen et al., 2012;
Torgersen et al., 2013) and adolescents (Özgen et al., 2020).
Therefore, there is a need to clarify if substance abuse patients
with ADHD will abuse prescription drugs and if treatments will
maintain their effectiveness in the presence of SUD (Mariani
and Levin, 2007; Molina et al., 2013; Kooij et al., 2019; Wilens
et al., 2003; MTA Cooperative Group, 2004). Third, there is
still a need for guidelines on evidence-based hierarchies on
the efficacy and tolerability of all pharmacological treatments
for ADHD in children and adults. Evidence from a systematic
and network meta-analysis study supports methylphenidate in
children and adolescents, and amphetamines in adults, as the
preferred first-choice medications for short-term treatment, but
new research should assess long-term effects of these drugs
(Cortese et al., 2018). On the other hand, methylphenidate
was recommended as the first-line treatment for ADHD in
adults in the UK (Bolea-Alamañac et al., 2014), and statistically
significant response of lisdexamfetamine was found in children
and adolescents with ADHD (Roskell et al., 2014) but safety
data proved inconclusive due to low event rates. Fourth,
genes (Bruxel et al., 2014, 2015; Myer et al., 2018) and gene-
environment (Pagerols et al., 2018) factors influence the efficacy
of pharmaceutical drugs for ADHD (Elsayed et al., 2020).
Fifth, only stimulants and atomoxetine were found to reach Ia
evidence levels (Bolea-Alamañac et al., 2014), thus requiring
further evidence-based medicine research on other common

and novel pharmacological treatments for individuals with
ADHD of all ages.

Lastly, and most importantly, a delay in brain degeneration
was observed in adults with ADHD regardless of medication
status. Hoogman et al. (2017) found that in certain brain regions,
age-related volumetric decline (age > 60) was less pronounced
in the ADHD group compared to age-matched controls, notably
in amygdala and hippocampal regions (Figure 1). Given that
volumetric loss in these brain regions is a hallmark of cognitive
impairment later in life, there is a clear need for studies that
examine the relationships between neurodegeneration, ADHD,
psychostimulant use, and their neuroimaging-genetic correlates.

Given these concerns, it is critically important to review
how psychostimulant treatment for ADHD affects the structural
integrity of the brain throughout the lifespan and how these
treatments should best be administered to patients with ADHD,
given that medication may resolve differences in the ADHD
brain, and thus counteract the potential for ADHD itself to
provide neuroprotection in late life. Bridging multiple levels of
description from a molecular to a system levels of abstraction
may improve our understanding of how these substances
enhance or attenuate behavioral symptoms across ADHD
presentations. It may also lead to quantitative metrics that aid
in individualized treatment regimens during early and late stage
titration periods across the lifespan.

In this paper, we first review the pharmacology of drugs
commonly prescribed to children and adults with ADHD. We
then discuss structural and functional neuroimaging differences
in the ADHD brain. Interestingly, there is mixed evidence
as to whether or not pharmaceutical treatment normalizes
these structural differences. Here, we review this evidence in
the context of recent findings which note a delay in late life
neurodegeneration in the ADHD population, particularly in
brain regions noted to decline in Alzheimer’s disease (AD). An
important future line of inquiry may address the overlap or lack
thereof between ADHD, neurodegenerative diseases, and their
respective genetics. Finally, we suggest that improved models of
ADHD and pharmaceutical treatment across the lifespan may
help update clinical decision-making in light of recent evidence.
Our method for identifying relevant literature for inclusion in
this review is described in Supplementary Methods.

Principal drug targets:
Catecholaminergic systems

One of the defining characteristics of ADHD is its
heterogeneity of symptom presentation, and multiple genetic
variations have been linked to increased risk for the ADHD
(Faraone and Mick, 2010). A recent review found that about a
third of ADHD’s heritability is due to polygenetic components,
each contributing small effects to the overall presentation
(Faraone and Larsson, 2019). In this sense, multiple genetic
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FIGURE 1

Moving averages, corrected for age, sex, intracranial volume, and site for subcortical volumes. Error bars denote the standard error. As
individuals with ADHD approach late adulthood (>60), volume remains relatively higher than controls in certain subcortical structures, such as
the hippocampus, accumbens, putamen, and amygdala. Reproduced with permission (Hoogman et al., 2017).

variants and combinations thereof may subtend a given
cluster of behavioral attributes grouped under a given ADHD
behavioral phenotype, thus creating an equifinality effect.
Conversely, identical twin studies have demonstrated that a
single genotype can lead to a diversity of presentations and a
spectrum of severities. Thus, both equifinality and multifinality
effects are evident with ADHD. A variety of neurocognitive
endophenotypes that mediate pathways between the genotype
and phenotype have been identified and have helped unravel the
complexity of this disease across the lifespan (Boxhoorn et al.,
2019).

Several genetic markers of ADHD identified to date involve
alterations in dopamine (DA) and noradrenaline signaling (NA)
(Pliszka et al., 1996). There are certain similarities between
dopaminergic and noradrenergic signaling and disruptions
thereof in the brain. For example, both DA and NA are primarily
synthesized in localized nuclei: the substantia nigra and locus
coeruleus, respectively (Beaulieu and Gainetdinov, 2011; Bhatia
and Saadabadi, 2020). However, both the dopaminergic (Friston
et al., 1994) and noradrenergic (Smythies, 2005) systems are
thought to project diffusely across the brain (Stahl, 2003;

Gerfen and Surmeier, 2011; Purves, 2012), thus having the
potential to “broadcast” their responses to exert widespread
effects in the brain. Both systems also exert varied effects
across different time scales depending on whether response
patterns are (sustained) or phasic (transient) and there is
evidence that both exert varied effects depending on whether
they modulate top-down or bottom-up processing (Manev and
Uz, 2009; Badgaiyan et al., 2015). Noradrenaline is thought to
modulate multiple functions in the brain from learning rates
(Aston-Jones and Cohen, 2005; Sales et al., 2019) to attention
(Sved et al., 2001). Tonic firing of the locus coeruleus is
correlated with arousal levels and behavioral flexibility (Mefford
and Potter, 1989). In contrast, salient stimuli are thought to
evoke more brief, high frequency phasic responses (Sales et al.,
2019).

Therefore, there are relatively few candidate pathways that
are thought to be involved in the ADHD phenotype, in contrast
to many other psychiatric disorders (Hauser et al., 2016). Here,
we summarize the major classes of pharmaceuticals aimed at
treating ADHD and their putative involvement with DA and NA
signaling.
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Stimulants
Stimulants are considered the gold standard pharmaceutical

treatment and generally recommended as a first line of
treatment for children and adults with severe or moderate
ADHD (Centers for Disease Control and Prevention [CDC],
2005; Pliszka and AACAP Work Group on Quality Issues, 2007;
Subcommittee on Attention-Deficit/Hyperactivity Disorder,
Steering Committee on Quality Improvement and Management,
Wolraich et al., 2011; Bolea-Alamañac et al., 2014). An estimated
70% of patients respond favorably to the initial stimulant
selection (Elia et al., 1991; Schachter et al., 2001; Barbaresi
et al., 2006). Methylphenidate and amphetamine treatment for
ADHD reach level Ia in terms of effectiveness (Bolea-Alamañac
et al., 2014) and as revealed by meta-analyses comparing
stimulant drug and placebo interventions in both children
(Faraone and Buitelaar, 2010; Cortese et al., 2018) and adults
(De Crescenzo et al., 2017; Cortese et al., 2018) with ADHD.
However, all stimulant formulations of methylphenidate (MPH)
and amphetamine (AMPH) are classified as Schedule II
drugs, denoting high risk for misuse, diversion, and potential
neurotoxicity (Wilens et al., 2003, 2008; Casey et al., 2007;
Clemow and Walker, 2014; McGough, 2014), as well as tolerance
or sensitization if used at high doses. In the case of risk of misuse
of psychostimulants or comorbidity to SUD, atomoxetine is
recommended as a first-choice treatment, however, evidence
of efficacy is limited (Bolea-Alamañac et al., 2014). Here, we
briefly summarize the neuropharmacology and cellular pathway
alterations induced via these key stimulant drugs while also
noting its long-term effects.

Amphetamine

Amphetamine (AMPH; IUPAC name: 1-phenylpropane-2-
amine), the active component of drugs like Adderall, Dexedrine,
and Vyvanse, acts as an indirect agonist to catecholamines.
The term amphetamine typically refers to the racemic mixture,
or equal parts mixture, of dextro and levo amphetamine,
though the drugs themselves typically have varying mixtures of
these enantiomers, as well as derivations thereof. The cellular
signaling pathways altered by AMPH are complex. Repeated
exposure to psychostimulant drugs can lead to both acute
and enduring effects on neurobiological substrates in the brain
(Howell and Kimmel, 2008). The primary short-term effects of
these drugs tend to increase the concentration and/or residence
time of monoamines [e.g., dopamine (DA), norepinephrine
(NE)] in the synapse by promoting efflux into the synaptic cleft,
and inhibiting or competing with monoamines for reuptake.

Amphetamine is lipophilic, and can therefore enter neurons
via direct diffusion across the cellular membrane (Gulaboski
et al., 2007). However, the chemical structure of AMPH is
similar to DA (Figure 2); it is therefore unsurprising that
AMPH can also enter via these monoamine transporters
(Mortensen and Amara, 2003; Sulzer et al., 2005; Howell and
Kimmel, 2008) and compete with these endogenous ligands

for their transport machinery (Mortensen and Amara, 2003;
Zhu and Reith, 2008) thereby reducing monoamine clearance
from the synapse. For example, the dopamine transporter
(DAT), a monoamine transporter, is an integral transmembrane
protein that typically functions to import or clear DA from
the synapse, and represents an important target site for
both MPH and AMPH (Spencer et al., 2005; Larisch et al.,
2006).

Amphetamine can also increase efflux of monoamines into
the synapse via multiple mechanisms. First AMPH can inhibit
of a variety of vesicular monoamine transporters (VMATs),
including VMAT1 and VMAT2, as well as interacting with
excitatory amino acid transporters (e.g., SLC1A1), which are
also biological substrate targets for non-stimulant drugs (e.g.,
atomoxetine) (Hammerness et al., 2009). In particular, VMAT2
is a transporter protein, which serves to import monoamines
from the cytosol into vesicles for storage and later release
into the synapse. AMPH can bind to VMAT2 and inhibit its
normal vesicular import function, leading to a reduction of
monoamines released during exocytosis. However, when AMPH
enters synaptic vesicles expressing VMAT2, the vesicular pH
gradient collapses, which in turn causes stored amines to be
released into the cytosol, thus increasing their intracellular
concentration (Sulzer and Rayport, 1990; Sulzer et al., 2005).
The increased cytosolic concentration of monoamines, in
turn, induces “reverse transport” through primary plasma
membrane monoamine transporters (Sulzer et al., 1995; John
and Jones, 2007) such as DAT. DAT is an Na+/Cl– symporter
(Khelashvili et al., 2015), driven primarily via Na+ ion and
amine concentration gradients (Wheeler et al., 1993; Bröer and
Gether, 2012). Therefore, reverse efflux is more likely during
neuronal depolarization.

Amphetamine is also a powerful agonist for trace amine-
associated receptor 1 (TAAR1), a G-protein coupled receptor,
which acts in conjunction with plasma membrane monoamine
transporters to regulate the extracellular concentrations of
these monoamine neurotransmitters (Kobayashi et al., 2010).
By activating TAAR1, protein kinase A (PKA) and protein
kinase C (PKC) are activated leading to increased cyclic
AMP, which in turn inhibits the synaptic influx function of
integral membrane monoamine transporters, again resulting
in diminished clearance from the synapse (Kebabian, 1978;
Johnson et al., 2005a; Miller, 2011). The short term intracellular
mechanisms of action of AMPH: increasing monoamine release
into the synapse, and diminish reuptake rates, are summarized
in Figure 2.

Differential functional brain activities are present in
dexamphetamine (S-amphetamine, D-amphetamine) and
levoamphetamine (R-amphetamine, lisdexamfetamine).
Presently, the modern formulation of amphetamine for ADHD
treatment is a combination of racemic amphetamine and
d-amphetamine (Knackstedt, 2013). Lisdexamfetamine
is metabolized by red blood cells to yield its active
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FIGURE 2

Mechanisms of action for stimulant drugs. (Box, Upper Left). Chemical structures for the (top) Amphetamine and (bottom) Methylphenidate.
Stimulant mechanisms of action. Methylphenidate (MPH) acts as an antagonist drug by binding and inhibiting dopamine transporters (DATs) and
norepinephrine transporters (NETs), thereby reducing reuptake of (DA) and norepinephrine (NE) from the synaptic cleft. Amphetamine (AMPH)
can enter neurons either via direct diffusion across the plasma membrane or via competition with the endogenous transport machinery for DA
(i.e., the dopamine transporter (DAT)). Once inside the cell, AMPH binds at distinct sites on the vesicular monoamine transporter 2 (VMAT2),
causing vesicular gradient collapse, which in turn induces DA release from the vesicles into the cytosol, increasing intracellular concentrations
of DA, and reversing the concentration gradient across the cellular membrane, promoting efflux of DA into the synapse. AMPH is also strong
trace amine associated receptor 1 (TAAR1) agonist. Activation of TAAR1, through protein kinase A (PKA), protein kinase C (PKC), and adenylyl
cyclase signaling, causes phosphorylation of DAT, which has long N and C intracellular termini. Phosphorylation of the N-terminus can promote
DA reverse efflux into the synapse. Phosphorlylation of DAT can also inhibit its function, thus diminishing the plasma membrane transporter
from clearing DA from the synapse. The number of DATs localized to the plasma membrane is also dynamically regulated, and a reduction of
DATs following AMPH treatment is thought to subtend many of the long-term effects of stimulant treatment.

metabolite, D-amphetamine, and L-lysine (Pennick, 2010).
D-amphetamine was shown to be 3–4 times more potent
than l-amphetamine in the striatum, but not in the cortex,
thus, D-amphetamine has a greater affinity for striatal DAT
than l-amphetamine (Knackstedt, 2013). S-Amphetamine
is more potent in CNS stimulation, while R-amphetamine
is slightly more potent in its cardiovascular action
(Varesio and Veuthey, 1995). Similar to dexamphetamine,
lisdexamfetamine is posed to be an effective treatment of
ADHD (evidence level Ia) in randomized, double-blinded,
placebo-controlled trials in children (Biederman et al.,
2007) and adults (Adler et al., 2008) with ADHD and
in open-label long-term investigations in adults (Weisler
et al., 2009). Side effect profiles are similar in both D-
amphetamine and lisdexamfetamine, but recreational abuse
may be substantially lower in lisdexamfetamine than that of
immediate-release D-amphetamine (Jasinski and Krishnan,
2009).

Methylphenidate

Methylphenidate (MPH; IUPAC name: methyl 2-phenyl-
2-piperidin-2-ylacetate), active in drugs such as Ritalin,
Methylin, Concerta, and Focalin, blocks dopamine (DAT) and
norepinephrine (NET) transporter (Kuczenski and Segal, 1997;
Solanto, 1998; Heal and Pierce, 2006; Iversen, 2009), which
leads to increased dopamine (DA) and norepinephrine (NE)
concentrations and/or residence time within the synaptic cleft
following impulse release (Volkow et al., 2001, 2005). MPH also
shares part of its basic structure with catecholamines, which is
putatively related to its antagonistic role as a DA/NE reuptake
inhibitor (Figure 2). Systematic reviews and meta-analyses
reveal differences in the efficacy profiles of amphetamine
(AMPH) and methylphenidate (MPH) in adults and children
with ADHD. In two meta-analyses, both AMPH and MPH
showed comparable efficacy in adults (Faraone and Glatt, 2009)
and children (Catalá-López et al., 2017) with ADHD. Other
meta-analyses revealed amphetamine as having greater efficacy

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.938501
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-938501 September 20, 2022 Time: 15:39 # 7

Dutta et al. 10.3389/fnhum.2022.938501

than methylphenidate and non-stimulants in children (Faraone
and Buitelaar, 2010; Stuhec et al., 2015; Joseph et al., 2017)
and adults (De Crescenzo et al., 2017; Stuhec et al., 2019) with
ADHD. A reduction of adult ADHD symptoms was observed
in lisdexamfetamine, whereas mixed amphetamine salts and
methylphenidate reduced symptoms moderately compared to
placebo (Stuhec et al., 2019). In children and adolescents with
ADHD, efficacy in reduction of ADHD symptoms compared
to placebo is small for bupropion, modest for atomoxetine
and methylphenidate, and high efficacy for lisdexamfetamine
(Stuhec et al., 2015). Similarly, lisdexamfetamine dimesylate
had the highest efficacy than guanfacine extended release,
atomoxetine, and methylphenidate extended release among
children and adolescents with ADHD (Joseph et al., 2017).
Tolerability of both treatments are relatively comparable
(Faraone, 2018). It must be noted that current observations
of methylphenidate treatment on dopaminergic signaling are
based on the effects seen in normal versus pathological
conditions. In healthy animals, there are long term changes
in reduction of striatal dopamine transporters densities (Moll
et al., 2001) and variability in firing rate among dopaminergic
midbrain neurons (Brandon et al., 2003; Viggiano et al., 2003,
2004); although the neurotrophic effects may differ (Gill et al.,
2012) based on age (Fukui et al., 2003) and quantity of dose
(Volkow et al., 1998). In rat midbrain slices, methylphenidate
inhibits dopamine transporters and this depression of firing is
mediated by synthesized dopamine that increases intracellularly
due to reuptake inhibition (Morón et al., 2002; Federici et al.,
2005).

Converging evidence from in vitro to rodent to human
studies suggest that the d enantiomer is thought to mediate
therapeutic effects for the behavioral symptoms of ADHD
(e.g., Patrick et al., 1987; Teo et al., 2003; Ding et al., 2004;
Markowitz and Patrick, 2008; Markowitz et al., 2009), though
clinical evidence suggests that the l-enantiomer is very effective
at treating behavioral symptoms in children (Hubbard et al.,
1989). Many studies suggest that the chirality is important and
that the l enantiomer is non-specific, and may actually interfere
with the specific targeting of the d version of this molecule.

Long term effects of stimulant treatment

The extent to which long-term exposure to stimulants
induces persistent neuroplasticity has not been fully elucidated,
partly due to the fact that an X-ray structure for DAT was
only reported somewhat recently in Drosophila (Penmatsa et al.,
2013). Phosphorylation of monoamine transporters induced
via a range of kinases (e.g., protein kinase C) appears to
alter transporter functionality (Johnson et al., 2005a). The
DAT has long N and C intracellular termini, which provide
multiple sites for phosphorylation and regulation (Foster et al.,
2003; Giambalvo, 2003). For example, phosphorylation of the
N-terminus of DAT appears to be tightly linked to DA efflux
(e.g., Khoshbouei et al., 2004), and may be requisite for AMPH

induced DA efflux (e.g., Kantor and Gnegy, 1998; Mortensen
and Amara, 2003).

Stimulant treatment can also alter the quantity and
plasmalemal expression of monoamine transporters (Krause
et al., 2000; Kahlig and Galli, 2003; Johnson et al., 2005a;
McGinty et al., 2008; Zhu and Reith, 2008). In vitro studies in rat
striatal synaptosomes have demonstrated increased trafficking
of DAT to the plasma membrane following rapid treatment
(∼1 min) with AMPH (Furman et al., 2009). In contrast,
numerous in vitro studies have demonstrated that longer
exposure (>∼30 min) results in DAT internalization (e.g., Chi
and Reith, 2003; Johnson et al., 2005b). In untreated adult
humans with ADHD, SPECT imaging studies have shown
an increase in DAT specific ligand binding (TRODAT-1) in
striatum compared to controls, and a significant reduction in
binding after 4 weeks of MPH treatment (Krause et al., 2000),
consistent with longer exposure in vitro studies.

Overall, long-term effects of stimulant treatment may
result from a number of factors including phosphorylation of
monoamine transporters (Khelashvili et al., 2015), alterations
in the dynamic expression and quantity of transporters
at the plasma membrane (Zhu and Reith, 2008), and the
induction of downstream gene expression (McGinty et al.,
2008; Zhu and Reith, 2008). Alterations in brain structure and
function revealed by neuroimaging may provide further insight
into prolonged effects of pharmacotherapy for ADHD (see
neuroimaging section below).

Non-stimulants
About 10–30% of ADHD patients respond poorly to

stimulant medication (Greenhill et al., 2002; Spencer et al.,
2004). For these patients, non-stimulant agents can be second-
line treatment options, used when stimulants are ineffective,
or used in combination with stimulants to enhance treatment
response (Zito et al., 2008; Sallee et al., 2009; Subcommittee on
Attention-Deficit/Hyperactivity Disorder, Steering Committee
on Quality Improvement and Management, Wolraich et al.,
2011; Kornfield et al., 2013). The two most common FDA-
approved non-stimulants for ADHD are Alpha-2-Adrenergic
Agonists and Atomoxetine.

Alpha 2-adrenergic agonists

Alpha 2-adrenergic agonists typically bind to α 2 adrenergic
receptors, causing vasodilation of the arteries (see Figure 3;
Hossmann et al., 1980; Cinnamon Bidwell et al., 2010).
Clonidine [brand names Kapvay and Catapres; IUPAC name:
N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazole-2-amine] is
an imidazoline derivative and a non-selective α2 adrenergic
agonist. It binds to all subtypes of α2-adrenergic receptors
(Roth and Driscol, 2011): α2A, α2B, α2C. Alpha 2A-receptors
have been found in the locus coeruleus, frontal cortex,
cerebellum, septum, hypothalamus, and hippocampus (Guyenet
et al., 1994; Grijalba et al., 1996; Talley et al., 1996;
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FIGURE 3

Clonidine and Guanfacine alpha 2 adrenergic agonist drugs. Clonidine acts on various α2- adrenergic subtypes (α2A, α2B, and α2C), while
guanfacine is a selective α2A adrenergic agonist. Presynaptic stimulation of these autoreceptors inhibits NE release. Post-synaptic stimulation of
these α2-adrenergic receptors activates a series of steps: G-protein alpha is released and sent to adenylyl cyclase by guanosine triphosphate
(GTP). Binding to adenylyl cyclase lowers adenosine triphosphate (ATP), which decreases the intracellular production of the secondary
messenger cyclic adenosine monophosphate (cAMP). This reduces phosphorylation and inhibits NE release. Both drugs act as sympatholytic
drugs, decreasing sympathetic outflow. Atomoxetine (ATM) is a selective antagonist drug to NE and has a lower affinity to serotonin (SERT) and
dopamine (DAT) transporters. ATM blocks NETs, thereby increasing NE in the synaptic cleft.

Saunders and Limbird, 1999; Offermans and Rosenthal, 2004).
Alpha 2B-receptors are localized in the thalamus, hippocampus,
and cerebellar Purkinje layer (Saunders and Limbird, 1999).
Alpha 2C-receptors are expressed in several subcortical regions
including the thalamus, amygdala, substancia nigra and ventral
tegmentum area (Saunders and Limbird, 1999; Offermans
and Rosenthal, 2004). Guanfacine [brand names Intuniv,
Estulic, and Tenex; IUPAC name: N-(diaminomethylidene)-
2-(2,6 dichlorophenyl)acetamide] is a selective agonist drug
for α2A adrenergic receptors, with a 60x and 20x higher
affinity to these receptors than to α2B- and α2C-receptors,
respectively (Uhlén et al., 1995; Kawaura et al., 2014).
Clonidine and guanfacine are level Ib in evidence-based
medicine practice (Bolea-Alamañac et al., 2014), signifying
level of evidence for individual RCTs (with narrow confidence
intervals) (Burns et al., 2011). Combination of stimulants with
alpha 2 agonists (clonidine, guanfacine) and monotherapy
of alpha 2 agonists have not been extensively studied in
adults (Bolea-Alamañac et al., 2014). Comorbidity of ADHD
and other psychiatric conditions alter evidence levels to III
and IV (Bolea-Alamañac et al., 2014). Guanfacine remains

the preferential α2 adrenergic agonist with about 50–60%
of children responding favorably as placed alongside relative
efficacy with other non-stimulant drugs and effective in treating
youths with symptoms of hyperactive/impulsive-inattentive
(evidence level Ia) (Biederman et al., 2008; Bolea-Alamañac
et al., 2014). In youths with ADHD, a medium effect size
for efficacy and tolerability were reported, but these have
to be weighed against possible adverse events of fatigue,
somnolence/sedation, hypotension, bradycardia, and possible
QTc prolongation (Hirota et al., 2014). Clarity of dose-response
relationship for efficacy and tolerability outcomes are greatly
needed using head-to-head controlled studies that compare α2
adrenergic agonists with stimulants and atomoxetine (Hirota
et al., 2014).

Atomoxetine

Atomoxetine [ATM; IUPAC name: (3R)-N-methyl-3-
(2-methylphenoxy)-3-phenylpropane-1-amine; brand name
Strattera] is a noradrenergic antagonist drug that inhibits
reuptake of NE by blocking NETs (Witcher et al., 2003; Corman
et al., 2004), leading to an increase in NE in the synaptic
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cleft (Figure 3). In addition, ATM has a low affinity for
serotonin and DA transporters that also inhibit reuptake of
these monoamines across certain brain regions, such as the
PFC (Bymaster et al., 2002; Sauer et al., 2005; Ding et al., 2014).
For example, in animal studies, atomoxetine was shown to
selectively increase dopamine in the PFC, while not altering
areas rich with dopamine innervations such as the striatum
(Bymaster et al., 2002; Swanson et al., 2006). Atomoxetine
is the main non-stimulant drug that is recommended for
treatment of ADHD in adults (Bolea-Alamañac et al., 2014).
Clinical efficacy of stimulants and atomoxetine are comparable
(Bolea-Alamañac et al., 2014; Shang et al., 2016) in adult
ADHD (Durell et al., 2013; Fredriksen et al., 2013) and
pediatric ADHD (Cheng et al., 2007), although they cannot
be considered similar because they have differences in their
mechanisms of action and hazards (Spencer et al., 1998;
Bolea-Alamañac et al., 2014). Atomoxetine is preferred if there
are any contra-indications to stimulant treatment, such as
if methylphenidate is ineffective or not tolerated, presence
of anxiety disorder or tics, and risk of misuse or diversion
(Bolea-Alamañac et al., 2014). The presence of family history of
cardiac problems or significant cardiovascular concerns should
be monitored carefully (Bolea-Alamañac et al., 2014), such as
cases with prolonged QT interval (Štuhec and Švab, 2013) and
hypertension (Bolea-Alamañac et al., 2014). A systematic and
expanded review has shown atomoxetine to be most effective
in the treatment of ADHD symptoms in child, adolescent,
and adults with comorbidity to anxiety and oppositional
defiant disorder, while mixed or limited findings were found
for individuals with ADHD and comorbid substance-use
disorders, autism spectrum disorders, dyslexia or reading
disorder, depression, bipolar disorder, and Tourette syndrome
(Hutchison et al., 2016).

Bupropion

The antidepressant and smoking cessation agent Bupropion
[brand names: Zyban, Wellbutrin, Elontril; IUPAC name: 2-
(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] is an off-
label, non-FDA approved use for treating ADHD (Ng, 2017).
Efficacy and tolerability for bupropion reaches a level Ia (Bolea-
Alamañac et al., 2014), indicating small benefits for children
(Stuhec et al., 2015; Ng, 2017) and adults (Verbeeck et al.,
2017). Thus, more randomized controlled trials with larger
sample sizes are warranted for a better clinical evaluation
of bupropion. Bupropion is often used if methylphenidate,
atomoxetine, and amphetamines have poor clinical response
or if risk of stimulant abuse is high (Bolea-Alamañac et al.,
2014). Contraindications include seizure disorder and suicidal
ideation (Huecker et al., 2021). Compared to classical tricyclic
antidepressants, bupropion mechanism of action serves as a
norepinephrine-dopamine disinhibitor (Khan et al., 2016) and
as a non-competitive antagonism of nicotinic acetylcholine
receptors (Potter et al., 2006; Weiss et al., 2007; Verbeeck

et al., 2017). Reuptake inhibition is high for dopamine, while
norepinephrine uptake is less potent (Huecker et al., 2021).

Neuroimaging alterations in
attention-deficit/hyperactivity
disorder: Medicated versus
medication naïve

Structural and functional neuroimaging techniques permit
non-invasive imaging of the anatomy and physiology of
the human brain in vivo. In this section, we will review
structural and functional brain differences in youths and adults
who are ADHD medication naive, ADHD medicated with
pharmacotherapy, and typically developing (TD) controls, as
measured by (1) PET, (2) structural MRI, and (3) DTI at drug
naivety and pharmacotherapy intervention.

Positron emission tomography

Attention-deficit/hyperactivity disorder drug
naïve

Radioactive tracers used in PET imaging often compete
with endogenous ligands (e.g., dopamine), and measurements
therefore can be used to determine the number of available
binding sites for specific receptors (Muehllehner and
Karp, 2006). Radiotracers commonly used to study ADHD
include those that bind with dopaminergic presynaptic
terminals (i.e., radiotracers: [99MTc]TRODAT, [11C]PE2I,
[11C]cocaine, [11C]-altropane), L-amino acid transporters (i.e.,
radiotracers: [18F]DOPA), and D2/D3 receptors (i.e., radiotracer
[11C]raclopride) (Fusar-Poli et al., 2012). Compared to controls,
there is increased radiotracer binding to striatal DATs in adults
with ADHD (Dresel et al., 2000; Spencer et al., 2007), suggesting
less DA in the synaptic cleft due to high levels of DA reuptake.
Similarly, relative to controls, ADHD adult men had greater
d-amphetamine-induced decrease in striatal [(11)C]raclopride
binding, and the magnitude of this change was associated
with poor response inhibition (Cherkasova et al., 2014). In
addition, adults with ADHD have low D2/D3 receptor binding
potential across the left hemisphere of the caudate, nucleus
accumbens, midbrain, and hypothalamus (Volkow et al., 2007,
2009), suggesting low levels of D2/D3 receptors. Interestingly,
low densities of D2/D3 receptors in the nucleus accumbens are
also associated with greater risk for drug abuse (Dalley et al.,
2007). In another PET study by Volkow et al. (2002), there
was an attenuation of DAT and D3/D4 receptor availability in
the nucleus accumbens and midbrain from adults with ADHD
compared to individuals without ADHD, and this reduction
was associated with low motivation. Adolescents with ADHD
also have decreased DAT binding potential in the midbrain
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suggesting altered DA signaling, and DA 2 receptor binding in
the right caudate correlated with greater motor hyperactivity
(Jucaite et al., 2005).

Attention-deficit/hyperactivity disorder
medicated

Positron emission tomography (PET) studies have generally
found that stimulant treatment for ADHD tends to increase
the rate of dopamine release into synapses from striatal brain
regions. However, few studies have examined children due to
concerns about PET radiation. A meta-analysis of 9 PET and
10 SPECT studies revealed that patients with ADHD had 14%
greater striatal DAT density than in TD, but this was influenced
by previous exposure to ADHD medication with lower DAT
density in medication naïve ADHD subjects (Fusar-Poli et al.,
2012). Methylphenidate (MPH) blocks DAT sites in the striatum
of adults with ADHD compared to controls, leading to increased
DA in the extracellular space (Dresel et al., 2000). Ludolph
et al. (2008) found lower radiotracer binding for DATs in MPH-
treated adults in the striatum, suggesting a down-regulation of
DA turnover. In children, adolescents, and adults with ADHD, a
reduction of binding potential is seen in striatal D2/D3 receptors
after intake of MPH, which may reflect increased extracellular
DA (Rosa-Neto et al., 2005; Volkow et al., 2007). The amount
of extracellular DA regulated by psychostimulants depends on a
combination of the DAT blockade and the rate of DA release,
as well as individual differences in cell firing and stimulation
(Volkow et al., 2005). For example, one PET study noted a
possible physiological explanation for drug tolerance, where
an increase in DATs was seen in adults with ADHD who had
received less than 12 months of MPH treatment (Wang et al.,
2013).

Structural magnetic resonance
imaging

Attention-deficit/hyperactivity disorder drug
naïve

A range of structural brain alterations have been reported
in structural magnetic resonance imaging (sMRI) studies
examining children and adults with ADHD at baseline
(medication naïve). These abnormalities are often reported
in the frontostriatal circuitry (Emond et al., 2009; Cubillo
et al., 2012; Norman et al., 2016), but also affected regions
include fronto-parieto-temporal, fronto-cerebellar, and fronto-
limbic networks (Seidman et al., 2005; Rubia et al., 2014).
These multiple systems are implicated in attention, cognitive
control, and working memory (Arnsten and Rubia, 2012).
Meta-analyses of ROI or whole brain sMRI volumetric studies
of ADHD consistently report overall reduction of total or
right cerebral volumes (Valera et al., 2007; Nakao et al.,
2011), right (Valera et al., 2007) or bilateral caudate (Nakao

et al., 2011; Frodl and Skokauskas, 2012), right (Ellison-
Wright et al., 2008; Norman et al., 2016) or bilateral putamen
(Frodl and Skokauskas, 2012), right globus pallidus (Ellison-
Wright et al., 2008; Frodl and Skokauskas, 2012), right
lentiform nucleus (Nakao et al., 2011), posterior and inferior
cerebellar vermis (Valera et al., 2007), splenium of the corpus
callosum (Valera et al., 2007), anterior cingulate cortex (Seidman
et al., 2006; Frodl and Skokauskas, 2012), whereas greater
volume has been found in the left posterior cingulate cortex
(Nakao et al., 2011). Other observed abnormalities in gray
matter volume have been found in prefrontal and frontal
areas, temporal, occipital, and parietal cortices (Mostofsky
et al., 1998; Carmona et al., 2005; McAlonan et al., 2007;
Valera et al., 2007; Ahrendts et al., 2011; Nakao et al.,
2011; Castellanos and Proal, 2012; Lopez-Larson et al., 2012;
Bralten et al., 2016; Norman et al., 2016; Gehricke et al.,
2017; Lu et al., 2019; Wu et al., 2019), with some studies
indicating greater volumes than controls in frontal (Semrud-
Clikeman et al., 2017; Lu et al., 2019; Wu et al., 2019)
and caudate regions (Semrud-Clikeman et al., 2017). In the
largest cross-sectional study conducted to date on subcortical
brain volumes of ADHD, Hoogman et al. (2017) found
significantly smaller volumes for the accumbens, caudate,
amygdala, hippocampus, and putamen bilaterally. This confirms
other sMRI studies on morphology abnormalities of the
amygdala (Plessen et al., 2006; Frodl et al., 2010; Douglas
et al., 2018), hippocampus (Plessen et al., 2006; Douglas
et al., 2018), caudate (Douglas et al., 2018), and thalamus
(Douglas et al., 2018). Regardless of these significant findings,
a recent meta-analysis using activation likelihood estimation
reported no significant convergent structural MRI alterations
in children and adolescents with ADHD, highlighting the
need to explore homogenous clinical samples and analyses
(Samea et al., 2019). In contrast, adults with ADHD are
shown to have normal prefrontal, striatal, and parietal gray
matter volumes (Ahrendts et al., 2011). Differences in ADHD
presentation phenotypes have been found. The right inferior
frontal gyrus in young adults (Depue et al., 2010) and
cerebellar vermis lobes VIII–X (Bledsoe et al., 2009) in
children with ADHD combined phenotype are found to be
reduced in volume. Decreased morphology volumes in the
right lateral and left posterior thalamic surfaces (associated
with hyperactivity) and increased volumes in the right
medial thalamic surfaces (associated with inattention) (Ivanov
et al., 2010) are shown to differentiate ADHD behavioral
profiles.

Similar to volumetric results, there were significant findings
in cortical surface area and cortical thickness metrics. Lower
surface area values were found in children with ADHD, localized
to the frontal, cingulate, and temporal areas (Wolosin et al.,
2009; Mous et al., 2014; Silk et al., 2016; Ambrosino et al., 2017;
Hoogman et al., 2019), as well as less rightward asymmetry
for total hemispheric and medial orbitalfrontal cortex surface
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area (Postema et al., 2021). However, studies on gyrification or
intrinsic curvature of surface area showed inconsistent findings
whereby controls and children/young adults with ADHD did
not show significant differences (Shaw et al., 2012; Forde et al.,
2017). This suggests that cortical abnormalities in development
are related to differential brain expansion across subjects (Forde
et al., 2017). Additionally, rather than thinning of the cortex,
Ambrosino et al. (2017) suggested that cortical volume decreases
were driven primarily by surface area reductions. On the
other hand, decreases in cortical thickness (CT) were observed
throughout the cortex (Narr et al., 2009) and the magnitude of
CT decrease appears to correlate with disease severity (Almeida
et al., 2010). These CT reductions are found across the cortex,
particularly in frontal regions (Sowell et al., 2003; Makris
et al., 2007; Almeida et al., 2010; Qiu et al., 2011; Shaw et al.,
2011; Almeida Montes et al., 2013; Silk et al., 2016), temporal
(Hoogman et al., 2019), parietal (Makris et al., 2007; Almeida
Montes et al., 2013; Silk et al., 2016), and occipital (Hoogman
et al., 2019) across children and adults with ADHD (Albajara
Sáenz et al., 2019). In contrast, increased cortical thickness
was also found in a group of children/adolescents with ADHD
within the occipital lobe (Almeida Montes et al., 2013). These
studies evidence the complexity of structural abnormalities in
medication naïve ADHD subjects across all age groups.

Attention-deficit/hyperactivity disorder
neurodevelopment during drug naivety

Anatomical MRI studies of ADHD are often cross-sectional,
but prospective longitudinal studies have enabled researchers
to detect patterns of aberrant developmental trajectories in
ADHD groups compared to healthy subjects. It has long
been argued that ADHD children have a delay in brain
maturation (Shaw et al., 2007, 2012) due to late developing
fronto-striatal and fronto-cerebellar systems (Rubia, 2013) that
diminish ADHD symptoms in later adulthood. Shaw et al. (2007,
2012) found delays in peak cortical thickness and surface area
development by 2–5 years in children with ADHD, with the
most prominent delay in the prefrontal region that controls
cognitive processes of motor and attention planning. This
pattern of persistent reductions in frontal cortices of volume,
surface area, and gyrification among ADHD subjects aged 6–
28 were replicated in a recent study (Ambrosino et al., 2017).
Age-related changes in the frontal eye field (L-FEF) and left
ventral frontal cortex (L-VFC) were detected in children with
ADHD (Lu et al., 2019). A decrease in surface area of the L-VFC
and an increase in volume of the L-FEF persists in children
with ADHD (7–16 years) (Lu et al., 2019). Besides frontal
cortices, growth is also seen to be stunted in other regions.
Age related growth in gray matter of bilateral occipital lobe
appears reversed in children with ADHD (Wu et al., 2019).
Stable symptoms of ADHD over an average of 4.8 years in a
cohort of 362 youths was associated with reduction of thalamic
volume (Sudre et al., 2021). Progressive atypical contraction

was found in ventral and dorsal striatal regions that persisted
into adolescence for the ADHD group compared to surface
area expansion with age in the typically developing group
(Shaw et al., 2014). On the other hand, not all studies ascertain
these findings. Volumetric abnormalities in ADHD have been
shown to normalize or decrease in childhood (Wu et al., 2019),
adolescence (Castellanos et al., 2002), and adulthood (Perlov
et al., 2008; Greven et al., 2015; Hoogman et al., 2017) compared
to controls in the hippocampus (Perlov et al., 2008; Hoogman
et al., 2017), amygdala (Perlov et al., 2008; Hoogman et al., 2017),
accumbens (Hoogman et al., 2017), putamen (Greven et al.,
2015; Hoogman et al., 2017), caudate (Castellanos et al., 2002;
Greven et al., 2015; Hoogman et al., 2017), and medial frontal
regions (Wu et al., 2019).

Nevertheless, persistent brain abnormalities are found in
adult ADHD and are elevated due to severity levels, behavioral
profiles, environmental factors. Adults with childhood ADHD
showed sustained dysfunctions in the lateral fronto-striatal
and ventromedial orbitofrontal during attention- and reward-
related tasks similar to pediatric ADHD (Cubillo et al., 2012).
Rate of cortical thinning in the medial and dorsolateral PFC
has been associated with persistent inattentive rather than
hyperactive/impulsive symptoms in adult ADHD, whereas
cortical thickening or minimal thinning was found among
ADHD adult subjects who remitted (Shaw et al., 2013).
Interestingly, inattentive symptoms in healthy children have
previously been associated with decreased regional thickness
and thinning rate in the right lateral and left medial PFC
(Ducharme et al., 2012). These results are in consonant with
another study done by Shaw et al. (2011) where typically
developing children with high levels of hyperactivity/impulsivity
showed slow rate of cortical thinning among prefrontal,
premotor, and cingulate regions. Additionally, ADHD subjects
show a non-progressive loss of volume in the superior cerebellar
vermis from childhood to adolescent years regardless of clinical
outcome (Mackie et al., 2007). However, a downward trajectory
in volumes of bilateral inferior-posterior cerebellar lobes are
exhibited in ADHD subjects who have worst clinical outcomes
(Mackie et al., 2007; Leech and Sharp, 2014). Evidence of
severe early-life deprivation (by institutionalization) from a
cohort of children with ADHD results in reduced cortical
thickness across the lateral orbitofrontal cortex, insula, inferior
parietal cortex, precuneus, superior temporal cortex, lingual
gyrus, supramarginal gyrus, and fusiform gyrus (McLaughlin
et al., 2014) compared to age-matched community control
subjects. These regions were also found to be associated with
inattention and impulsivity (McLaughlin et al., 2014). Future
neurodevelopmental studies of anatomy may shed light on the
clinical presentations of ADHD by considering longitudinal
cohort designs that account for phenotypic heterogeneity.
Besides these factors that modulate the structural abnormalities
in the ADHD brain, exposure to stimulant medication also
alternates these brain signatures.
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Attention-deficit/hyperactivity disorder
medicated

There is mounting evidence to suggest neural anatomical
alterations in ADHD as a result of psychotherapeutic
intervention (Spencer et al., 2013; Chou et al., 2015).
Numerous cross-sectional studies have examined the effects
of psychostimulant treatment on ADHD. We first discuss
cross-sectional studies that quantified volumetric alterations in
the ADHD brain over the course of pharmacotherapy, followed
by a discussion of morphometry results. Although there are
relatively fewer longitudinal studies, we summarize extant
literature of studies examining pre/post medications effects on
structural MRI measures.

Volumetric cross-sectional studies

Overall voxel-based morphometry (VBM) studies have
yielded mixed results when considering the effects of stimulant
medication on brain structure. In general, studies that reported
significant effects suggest that certain subcortical and cortical
nuclei are normalized in medicated ADHD children compared
to medication naïve ADHD children. A meta-regression analysis
found no association between gray matter volume abnormalities
and long-term stimulant medication use from ADHD patients
across childhood and adulthood ages (Norman et al., 2016).
Villemonteix et al. (2015) reported a volume reduction in
middle frontal and precentral gyrus in treatment naïve ADHD
children compared to both medicated children with ADHD
and controls (Villemonteix et al., 2015). For subcortical areas,
Semrud-Clikeman et al. (2006) found an association between
duration of treatment and normalized GM volume in the
caudate and left nucleus accumbens (ACC) in children with
ADHD. Similarly, the right anterior cingulate cortex was
found to be normalized in children and adolescents with
a treatment history in ADHD-combined (Semrud-Clikeman
et al., 2014).

Contrary to results that showed brain normalization,
Schweren et al. (2015) found that a combined treatment
group (methylphenidate and antipsychotics) of adolescents with
ADHD results in reduction of total cortical volume, bilateral
ventral diencephalon, and left thalamus compared to healthy
controls. This was not found in the group that were only
medicated with methylphenidate (Schweren et al., 2015). Thus,
the findings may indicate that antipsychotic treatment could
counteract the normalizing effects of methylphenidate on brain
structure, but the authors are quick to note that they did not
have an untreated ADHD group which hinders interpretation
of the results (Schweren et al., 2015). Furthermore, another
cross-sectional study found that current stimulant use versus no
current use was associated with lower surface area in two frontal
cortex regions (Hoogman et al., 2019).

Interhemispheric laterality findings of stimulant medication
have been mixed. Patterns of absolute asymmetry volumes
appear to increase in the caudal anterior cingulate and isthmus

cingulate for medicated ADHD youths compared to medication
naïve ADHD youths (Douglas et al., 2018). In a longitudinal
replication design, increase absolute asymmetry volume was
greater in medication naïve than medicated ADHD youths
in cortical regions of the frontal, occipital, parietal, and
temporal (Dutta, 2020). Postema et al. (2021) found current
medication use was associated with surface area asymmetries
in the precuneus and transverse temporal, and with thickness
asymmetries in the inferior parietal cortex and precentral.
Lifetime psychostimulant medication use involved asymmetries
of surface area insula, supramarginal gyrus, and rostral anterior
cingulate cortex, and thickness asymmetry of the paracentral
lobule (Postema et al., 2021). The asymmetry of precentral gyrus
thickness was associated with an ADHD diagnosis across all age
groups (Postema et al., 2021). Thus, it appears that stimulants
both increase and decrease structural brain asymmetries.

In contrast, other cross-sectional studies have found no
volumetric differences in the ADHD brain as a result of
medication intake. Greater (Semrud-Clikeman et al., 2017) or
smaller (Castellanos et al., 2002; Semrud-Clikeman et al., 2006)
volumes of the caudate were no different based on medication
history/status in children and adolescents with ADHD. These
also translated to other regional volumetric findings in the
cerebellum (Castellanos et al., 2002), right prefrontal (Semrud-
Clikeman et al., 2017), bilateral anterior cingulate cortex
(Semrud-Clikeman et al., 2006), insula and middle temporal
gyrus (Villemonteix et al., 2015). A cross-sectional mega-
analysis on subcortical nuclei found that stimulant medication
for ADHD was not related to structural changes across the
lifespan, noting that the effects may be too local to be picked
up by volumetric analysis (Hoogman et al., 2017). Indeed,
morphology analyses may provide more insight into regional
differences.

Morphology studies

A variety of studies suggest that more localized
morphological alterations appear to resolve or normalize
after treatment with stimulants that enhance DA signaling. For
example, Sobel et al. (2010) found attenuation of morphology
deformations in specific basal ganglia regions in ADHD
medicated children, suggesting that stimulants may normalize
morphological differences in the caudate, putamen, and
globus pallidus. Sub-regions of the cerebellum, such as the
posterior inferior vermis, show reduced attenuation in ADHD
medicated children compared to medication naïve subjects
(Berquin et al., 1998; Bledsoe et al., 2009). Morphology
analyses from youths (children and adolescents) with ADHD
reveal increased volumes in the anterior cingulate cortex
(ACC) (Semrud-Clikeman et al., 2006), anterior thalamic
pulvinar (Ivanov et al., 2010), splenium of the corpus callosum
(Schnoebelen et al., 2010), and left lateral cerebellar surface
(Ivanov et al., 2014) associated with intake of stimulant
treatment. On the other hand, follow-up analyses revealed
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atypical surface area morphology in the PFC for ADHD
children prescribed with stimulant medication (Dirlikov et al.,
2015).

Longitudinal studies

Relatively fewer studies have investigated longitudinal
changes before and after medication onset prospectively. Some
evidence suggests that the age of medication onset and treatment
duration may play a role in predicting the magnitude of
medication effects on brain structure and function. For example,
Shaw et al. (2009b) found the rate of change between adolescents
(12.5–16.4 years) with ADHD taking psychostimulants differed
from those not taking psychostimulants in cortical thickness
measures of the right motor strip, left middle/inferior frontal
gyrus, and right parieto-occipital region, but importantly,
this was not associated with clinical outcome. They found
cortical thinning was more pronounced in the group not
taking psychotherapy (0.16 mm/year) compared to the group
taking psychotherapy (0.03 mm/year) (Shaw et al., 2009b).
On the contrary, no association between psychostimulant
medication and the development of the surface morphology
for the basal ganglia (caudate, putamen, globus pallidus)
was found (Shaw et al., 2014). Instead, the ADHD group
(childhood to adolescence), regardless of medication status,
showed progressive contraction of the ventral striatal surfaces
(1.75 mm2 per year) compared to controls (rate of increase
0.54 mm2 per year) (Shaw et al., 2014). In adults with ADHD,
before and after 3 years of psychostimulant treatment, left
putamen GM volumes are similar to controls, but increased
compared to non-medicated ADHD adults suggesting a
normalizing effect (Pretus et al., 2017). Similarly, after 1–
2 years of MPH treatment, adult ADHD patients revealed
recovered nucleus accumbens (Nacc) gray matter volumes
relative to controls (Hoekzema et al., 2014). van Elst et al.
(2016) observed an increase in cerebellar GM volume for
MPH-treated adults with ADHD after a year of treatment,
but no change in cortical thinning. Two meta-regression
analyses of VBM studies (Nakao et al., 2011; Frodl and
Skokauskas, 2012) and one qualitative review (Spencer et al.,
2013) examined long-term psychostimulant effects. These
studies found that long-term stimulant medication use was
associated with normalized basal ganglia volumes (Nakao
et al., 2011; Frodl and Skokauskas, 2012; Spencer et al.,
2013) thus suggesting no evidence that stimulant drugs cause
abnormal brain development in ADHD (Spencer et al., 2013).
Another longitudinal study found brain volume asymmetry
decreases across the cortex (frontal, temporal, occipital, and
parietal) with stimulant medication (8 weeks exposure to MPH
and/or guanfacine) compared to medication naïve ADHD
youths (Dutta, 2020). Thus, it is likely that the impact of
psychostimulants on neurodevelopment is enabling anatomic
normalization (Friedman and Rapoport, 2015). Figure 4
displays subcortical alterations seen in ADHD medication naïve

subjects and ADHD-Rx (medicated), and Figure 5 images
cortical changes seen in medication naïve and treated ADHD
subjects.

Diffusion tensor imaging

Attention-deficit/hyperactivity disorder drug
naïve

Diffusion tensor imaging (DTI) examines direction and
displacement of water molecules in the brain in order to infer
white matter (WM) architecture (Basser et al., 1994). Region of
interest (ROI) studies have found asymmetry in WM integrity
in ADHD individuals. Figure 6 displays each of these regions
along with their asymmetries in fractional anisotropy and mean
diffusivity found in ADHD children and adults: the superior and
inferior longitudinal fasciculus (Hamilton et al., 2008; Makris
et al., 2008; Pavuluri et al., 2009; Silk et al., 2009b; Kobel
et al., 2010; Liston et al., 2011; Nagel et al., 2011; van Ewijk
et al., 2012; Cortese et al., 2013; Lawrence et al., 2013; Svatkova
et al., 2016); the anterior, posterior, and superior of the corona
radiata (Pavuluri et al., 2009; Kobel et al., 2010; Nagel et al.,
2011; Qiu et al., 2011; Cortese et al., 2013); posterior and
anterior thalamic radiation (Silk et al., 2009b; Cortese et al.,
2013; Svatkova et al., 2016); cerebellum and cellebellar peduncle
(Ashtari et al., 2005; Makris et al., 2008; Bechtel et al., 2009;
Kobel et al., 2010; Nagel et al., 2011); the splenium, isthmus,
and genu of the corpus callosum (Chao et al., 2009; Pavuluri
et al., 2009; Cao et al., 2010; Peterson et al., 2011; Qiu et al.,
2011; Dramsdahl et al., 2012) and the posterior and anterior
limb of the internal capsule (Pavuluri et al., 2009; Silk et al.,
2009b; Nagel et al., 2011; Qiu et al., 2011; van Ewijk et al.,
2012; Cortese et al., 2013). Voxel-based analyses (VBA) also
confirm ADHD white matter deficits in: the unicinate fasciculus
(Silk et al., 2009b; Shaw et al., 2015); forceps minor (Qiu
et al., 2011; van Ewijk et al., 2012; Lawrence et al., 2013;
Svatkova et al., 2016); corticospinal tract (Hamilton et al., 2008;
Svatkova et al., 2016); cingulum bundle (Makris et al., 2008;
Konrad et al., 2010; Svatkova et al., 2016) and sagittal stratum
(Peterson et al., 2011; Cortese et al., 2013). Abnormalities
may depend on ADHD presentation, where inattention has
been linked to impairments in frontostriatal circuits while
hyperactivity has been linked to impairments in frontolimbic
circuits (Konrad and Eickhoff, 2010; Lei et al., 2014; Svatkova
et al., 2016). These results parallel the dual pathway model of
ADHD, suggesting that frontostriatal pathways lead to executive
dysfunction while frontolimbic pathways lead to rewarding
response and motivation deficits (Sonuga-Barke, 2003, 2005;
Castellanos et al., 2006).

Attention-deficit/hyperactivity disorder
medicated

The impact of ADHD medication on WM microstructure
remains unclear. Ashtari et al. (2005) found no significant effects
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FIGURE 4

Subcortical brain alterations in ADHD-free (medication naïve) and ADHD-Rx (medicated). These figures were created using ggseg library from R
program (Mowinckel and Vidal-Piñeiro, 2020).

FIGURE 5

Cortical brain alterations in ADHD-free (medication naïve) and ADHD-Rx (medicated). These figures were created using ggseg library from R
program (Mowinckel and Vidal-Piñeiro, 2020).

on FA values between ADHD-Rx (medicated) and ADHD-
Free (medication naïve) groups in six brain regions. Luis-
García et al. (2015) found MD was reduced in methylphenidate
(MPH) medicated ADHD patients in fronto-striatal WM tracts
(Luis-García et al., 2015). In their longitudinal study, de
Zeeuw et al. (2012) found a decrease of FA for all ADHD
groups regardless of MPH treatment duration. Asymmetry

patterns for FA measures of the uncinate fasciculus and
inferior lateral fasciculus appear to normalize with stimulant
medication compared to ADHD-Free (medication naïve)
subjects (Douglas et al., 2018). Figure 6 displays fiber
regions that were found to differ in ADHD children and
adults when under psychostimulant treatment and medication
naive.
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FIGURE 6

Illustrative figure of tractography fibers showing significant differences across ADHD treatment naïve and treated individuals. In ADHD-Free
(treatment naive), subjects had differences of fractional anisotropy (FA) and mean diffusivity (MD) in the following white matter regions:
cingulum (decrease FA in adults and increase FA in children; Makris et al., 2008; Konrad et al., 2010; Svatkova et al., 2016), uncinate fasciculus
(UF) (increase FA in children and decrease FA in adults; Silk et al., 2009b; Shaw et al., 2015), inferior longitudinal fasciculus (ILF) (increase and
decrease of FA in children/adults), superior longitudinal fasciculus (SLF) (increase and decrease in FA in children/adults; Hamilton et al., 2008;
Makris et al., 2008; Pavuluri et al., 2009; Silk et al., 2009b; Kobel et al., 2010; Liston et al., 2011; Nagel et al., 2011; van Ewijk et al., 2012; Cortese
et al., 2013; Lawrence et al., 2013; Svatkova et al., 2016), corticospinal tract (CT) [decrease FA in adults and increase FA in children; increase MD
in children; Hamilton et al., 2008; Luis-García et al., 2015; Svatkova et al., 2016; included are white matter regions of the superior, anterior, and
posterior corona radiata (decrease FA for children/adolescents/adults; Pavuluri et al., 2009; Kobel et al., 2010; Nagel et al., 2011; Qiu et al., 2011;
Cortese et al., 2013), the anterior and superior limb of the internal capsule (decrease FA in children/adolescents/adults; Pavuluri et al., 2009; Silk
et al., 2009b; Nagel et al., 2011; Qiu et al., 2011; van Ewijk et al., 2012; Cortese et al., 2013), and the cerebellar peduncle (decrease/increase FA in
children; increase FA in adolescents; Ashtari et al., 2005; Makris et al., 2008; Bechtel et al., 2009; Kobel et al., 2010; Nagel et al., 2011)], inferior
fronto-occipital fasciculus (IFOF) [included is the sagittal stratum (decrease FA in adults; increase FA in children; Peterson et al., 2011; Cortese
et al., 2013)], anterior and superior thalamic radiation (decrease FA in adults; increase FA in children/adolescents; increase MD in
children/adolescents; Silk et al., 2009b; Cortese et al., 2013; Svatkova et al., 2016), and corpus callosum [included white matter tracts include
the splenium, genu, isthmus (decrease FA in children/adolescents/adults; increase FA in children/adolescents; increase MD in
children/adolescents; Chao et al., 2009; Pavuluri et al., 2009; Cao et al., 2010; Peterson et al., 2011; Qiu et al., 2011; Dramsdahl et al., 2012;
Luis-García et al., 2015)] and the forceps minors (decrease FA in children; Qiu et al., 2011; van Ewijk et al., 2012; Lawrence et al., 2013; Svatkova
et al., 2016). ADHD-Rx (treated) children had decreases in MD for the following white matter tracts (Luis-García et al., 2015): unicinate
fasciculus, inferior longitudinal fasciculus, corticospinal tract, and corpus callosum (sector IV). All images were created using DTI data from DTI
Studio (Jiang et al., 2006; Fedorov et al., 2012).

Neurocomputational theories of
catecholamines and attention

Catecholaminergic brain systems, such as dopamine (DA)
and norepinephrine (NE), are important neuromodulators that
control attention. In light of their shared biosynthesis,
intracellular signaling, and innervation pathways, it is
critically important to differentiate their functions within
a unified paradigm to explain the pathophysiology of
ADHD. Computational psychiatry attempts to develop
neurocomputational models that can describe the cognitive
deficits typical of ADHD as they relate to brain function. While
extent attempts are scarce, they are promising (see Williams and
Dayan, 2005; Frank et al., 2007a,b; Luman et al., 2010; Hauser
et al., 2016; Ziegler et al., 2016). Behavioral profiles of ADHD
have been differentiated given current neurocomputational

models: A hyperactive/impulsivity presentation can be
expressed as a behavioral switching between less valuable
options, whereas an inattentive presentation is a shift between
goal orientation and an inability to stay focus on one individual
goal (Hauser et al., 2016). The catecholaminergic profiles
of each ADHD presentation is still difficult to disentangle
though the clear distinction is made between dopamine and
norepinephrine action selection models that could explain the
overarching diagnosis. A decrease in ‘dopamine’ precision leads
to high entropy or to many surprising events for the brain
to process, whereas ‘norepinephrine’ heightens learning to
both typical and novel information thus increasing attentional
variability. Here, we merge computational, algorithmic, and
implementation Marrian levels of analysis (Marr, 2010) to
demonstrate how catecholamines can be dissociated to explain
ADHD phenotype.
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Dopamine

Dopamine was discovered as a neurotransmitter in 1957
by neuropharmacologist Arvid Carlsson during exploits of
DA in the basal ganglia and motor function in patients with
Parkinson’s disease (Carlsson, 1959, 1993). Interest in dopamine
as a mechanism for reward-based learning and motivation
gained momentum through use of electrophysiological
recordings and pharmacological manipulations of DA in
animals (Olds and Milner, 1954; Wise, 1982; Schultz, 1986;
Schultz et al., 1993; Viggiano et al., 2003, 2004). These early
experiments uncovered two patterns of DA firing: tonic and
phasic activity (Schultz, 1986, 2001). Tonic firing patterns
consist of slow and sustained extracellular DA neuron firing,
while phasic activation consists of sudden firing rate change
(50–110 ms; duration < 200 ms) of DA concentrations.
Intermediary levels of firing reflect slow burst firing lasting
seconds to minutes (Schultz, 2001). Current theoretical
neurocomputational models examine phasic and tonic DA
signaling in select brain regions. One such model, reinforcement
learning theory (Sutton and Barto, 1998), proposes an adaptive
decision-making framework based on optimizing behavior to
obtain future reward or avoid punishments. This trial-and-
error learning process is established under four main schemes
(Sutton and Barto, 1998; Montague et al., 2004; Dayan and
Daw, 2008; Samson et al., 2010; Daw and Tobler, 2014): (1)
a reward function or value to a state, (2) a weighted running
average update that accounts for all rewards received previously
in the presence of the stimulus with the most recent reward
weighted heavily than the prior rewards, (3) a value function
updating the prediction based on the current reward/state and
direction of the weight, and (4) reward prediction error (RPE)
comparing what reward the subject experiences on a specific
trial and what reward they expected based on previous learning.
The RPE reflects the rate of firing of D1 and D2 neurons in
the ventral tegmental area (VTA) and the substancia nigra
pars compacta (Schultz et al., 1997; Schultz, 2001; Lammel
et al., 2012), striatum (Hernández-López et al., 1997, 2000;
Daw et al., 2011; Watabe-Uchida and Uchida, 2018), lateral
orbitofrontal cortex (Tobler et al., 2007), hippocampus and PFC
(Gurden et al., 2000). Fast latency (50–110 ms) and duration
(<200 ms) of phasic DA RPEs are observed during food/liquid
rewards (animal experiments), conditioned reward-predicting
stimuli (classical, simple choice RT, delayed go/no-go, visual
discrimination tasks), and non-noxious stimuli that induce
avoidance (Schultz, 2001). Dopamine depression or activation-
depression responses are seen following stimuli that resemble
the reward, following novel or intense stimuli, or during reward
omission errors (Schultz, 2001).

Under some other accounts, dopamine neurons are
postulated to signal ‘prediction error’ rather than reward. In
this view, the brain makes inferences about the environment
and tests these against sensory evidence in order to reduce

free energy (i.e., prevent entropy or time average of surprise)
(Friston, 2010; Friston et al., 2015, 2017; Parr and Friston, 2017).
A Markovian decision process of a probabilistic generative
model is considered: P (π) = σ(−γ · G(π)), whereby P prior
distributions over policies π is equal to policies selected based on
free energy G multiplied by an inverse temperature parameter
−γ corresponding to precision of beliefs (i.e., dopamine firing)
about policies over a softmax normalized exponential σ. Here,
γ reflects the rate of DA firing. Encoding of dopamine as a
‘precision signal’ is illustrated in a number of empirical studies
such as repetition suppression during learning (Bromberg-
Martin and Hikosaka, 2009), hippocampal place cell activity
during spatial tasks (Moser et al., 2015; Retailleau and Morris,
2018), and errors of omission and commission during oddball
tasks (Bendixen et al., 2012). Besides its modulations in
reward and precision, dopamine is ascribed to a number of
other behaviors including belief and latent states (Rao, 2010),
critic (ventral striatum) versus actor roles (dorsal striatum)
(O’Doherty et al., 2004), hierarchical levels of abstraction
learning when confronted with novelty (O’Reilly and Frank,
2006; Badre et al., 2010), judgment of time (Kurth-Nelson and
Redish, 2009; Soares et al., 2016; Hamid et al., 2019), quality
versus quantity stimuli attributes (de Berker et al., 2019), values
for each effector (Gershman et al., 2009), and future events
besides reward (Gardner et al., 2018).

Several behavioral markers of ADHD can be explained
by theories of reinforcement learning and precision error.
For example, the decision temperature parameter determines
if a subject will choose the optimal response or a variable
response amongst all other alternative options (Herrnstein,
1961). Increasing the levels of the temperature parameter elicits
variable and exploratory behavior, which is the case for ADHD.
Individuals with ADHD do not always choose or exploit the
best option, rather they exhibit response variability and response
inconsistency (Hauser et al., 2016). Patients with ADHD
display increased reaction time (RT) variability (Castellanos
and Tannock, 2002; Tamm et al., 2012; Kofler et al., 2013) in
working memory, and go/no-go and stop tasks with increased
activity in the frontal regions and default mode network (DMN)
(Uddin et al., 2008; Fassbender et al., 2009; Mohan et al.,
2016). During the continuous performance task (CPT), ADHD
subjects respond more often to non-target related responses
(errors of omission) than target-related responses (errors of
commission) (Losier et al., 1996; Huang-Pollock et al., 2012)
with implicated circuits of the PFC, insula, and parietal areas.
In the context of decision-making, individuals diagnosed with
ADHD are more likely to choose immediate and small rewards
across delay of gratification tasks, delay discounting tasks
(Patros et al., 2016) and probabilistic reversal learning task in
the medial PFC (Hauser et al., 2014). This could suggest poor
reward prediction error signals (Tripp and Wickens, 2008).
On the other hand, ADHD subjects are suggested to have
divergent learning patterns by choosing suboptimal choices
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through exploratory behaviors as indicated by an increased
decision temperature (Friston et al., 2014; Schwartenbeck et al.,
2015b). We illustrate low and high temperature parameters
in the context of exploitation-exploration action selection for
dopamine (Figure 7).

Norepinephrine/noradrenaline

Norepinephrine, or noradrenaline, has also been viewed
from a computational neuroscience perspective. Similar to
dopamine, tonic and phasic levels of firing are examined in the
context of behavioral tasks. Within theory on precision (Yu and
Dayan, 2005; Dayan and Yu, 2006; Parr and Friston, 2017),
noradrenergic transmission is proposed as a signal of
‘unexpected uncertainty’ or volatility of state transitions.
This theory stems from noradrenergic cell activity during
task demands that induce unexpected changes, including
novelty, the introduction of novel reinforcement agents, and
reversing or eliminating prior contingencies (Bouret and Sara,
2005; Nieuwenhuis et al., 2005; Bouret and Richmond, 2015).
Drug treatment using idazoxan, an a2 receptor antagonist
that activates noradrenergic system, was effective only when
rats had to change from spatial to visual cues during a maze
navigation rather than during these tasks, suggesting NA’s role
in attentional shift (Curet et al., 1987; Devauges and Sara,
1990). In monkeys, non-target stimuli that resulted in false
alarm responses elicited phasic locus coeruleus (LC) activation
during a vigilance discriminative task (Rajkowski et al., 2004).
Pupillometry measures have been linked to noradrenergic
activity (for a review, see Koss, 1986; Larsen and Waters, 2018)
of the LC, brainstem (e.g., areas of colliculi), and cingulate
cortex as seen in extracellular recordings in rhesus macaques
(Joshi et al., 2016), and human fMRI BOLD activity during
rest and the oddball paradigm (Bush et al., 1999; Bush, 2011;
Murphy et al., 2014). Other important roles denoted by
noradrenergic activity include arousal modulations (Berridge
and Waterhouse, 2003; Berridge, 2008; Pattij et al., 2012; de Gee
et al., 2017), increased reaction time variability coinciding with
tonic levels of NA firing, and ‘network reset’ behavioral planning
through phasic NA levels (Aston-Jones and Cohen, 2005; Bouret
and Sara, 2005; Dayan and Yu, 2006; Llorente et al., 2006; Frank
et al., 2007a; de Gee et al., 2017), and exogenous attentional set
shifting by phasic (exploitation) and tonic (exploration) NA
levels (Aston-Jones and Cohen, 2005; Gabay et al., 2011; Pattij
et al., 2012; Mathot et al., 2014; Tervo et al., 2014). A recent
computational approach to norepinephrine has been linked
to learning rates (Sales et al., 2019) under the active inference
model (Schwartenbeck et al., 2015a; Friston et al., 2017). In brief,
they explore noradrenergic activity as a state-action prediction
error that can evoke both ‘explore-exploit’ and ‘network reset’
behavioral modifications. Phasic LC responses are linked to
prediction of a reward in a Go/No-Go paradigm with reversal

contingencies, and high tonic levels of LC activity were elicited
during exploration and task disengagement (Sales et al., 2019).
Prediction errors are enabled through LC innervations, while
belief updates or responses to state-action prediction errors are
broadcast via ascending projections from LC to the cortex (e.g.,
frontal cortex, anterior cingulate cortex, dorsal PFC) (Gläscher
et al., 2010; Karlsson et al., 2012; Tervo et al., 2014; Ebitz and
Platt, 2015; Sales et al., 2019).

Noradrenergic signaling influences attention through
learning, saliency, and exploitative-exploratory behavioral
avenues. NA action selection models, such as the decision
temperature (Jepma and Nieuwenhuis, 2011; Eldar et al.,
2016; Hauser et al., 2016) and learning rates (Sales et al.,
2019), can describe ADHD phenotypes. Similar to dopamine,
noradrenaline does affect response variability in ADHD,
whereby high tonic but low phasic signaling is associated
with reaction time variability (Aston-Jones and Cohen, 2005;
Manev and Uz, 2009). The high tonic NA levels increase the
representation of other stimuli cues in the environment, thus
dissociating less strongly to high-valued options and preference
for less optimal options (Servan-Schreiber et al., 1990; Eldar
et al., 2013; Hauser et al., 2016). Evidence of NA dysfunction
is reported in the prefrontal cortical region in rodent models
of ADHD (Fan et al., 2011) and in human participants during
response inhibition tasks (de Campo et al., 2011). The difference
between noradrenaline learning and dopamine learning is that
NA is associated with focus of relevant information and rate
of learning, whereas dopamine is associated with precision of
value that is ascribed to options. In an explore/exploit task,
we illustrate total reward intake based on norepinephrine
alpha parameters with slow, fast, and flexible model decays
(Figure 8).

Discussion

Pharmaceutical treatment for ADHD often leads to regional,
but not global, brain alterations as observed across numerous
structural neuroimaging modalities (Castellanos et al., 2002,
2008; Nakao et al., 2011; van Ewijk et al., 2012; Svatkova
et al., 2016; Hoogman et al., 2017). Stimulants also seem to
attenuate brain volume decreases and regional morphology
asymmetries in basal ganglia across children, adolescents, and
adults with ADHD (Semrud-Clikeman et al., 2006; Bledsoe
et al., 2009; Shaw et al., 2009a; Ivanov et al., 2010; Schnoebelen
et al., 2010; Sobel et al., 2010; Nakao et al., 2011; Villemonteix
et al., 2015). Less is known about ADHD treatment effects
on white matter structure since few systematic DTI treatment
studies have been conducted to date (Ashtari et al., 2005; de
Zeeuw et al., 2012; Luis-García et al., 2015). Smaller white
matter volumes and asymmetric patterns in white matter
microstructure are seen in both medicated and non-medicated
ADHD youths (Castellanos et al., 2002; Douglas et al., 2018;
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FIGURE 7

A softmax decision steepness parameter influences high and low temperatures for the action selection of dopamine. A high temperature
renders variable behaviors as seen in ADHD, whereas a low temperature renders stable behaviors. Inspired by Hauser et al., 2016, Figure 1.

FIGURE 8

Here we illustrate a simple explore/exploit task for behavioral output with fixed alpha (α) learning parameters. α = 32 represents a slow model
decay learning with hyperflexible behavior to change strategies after one single failed trial, whereas α = 2 represents a fast model decay where
behavior is inflexible and persistence in behavior is shown. A less stable environment reflects changes in reward for every 10–15 trials, whereas a
more stable environment reflects changes after 50–60 trials. We also display flexible alpha parameter that is able to adapt, however, flexible 1 is
a behavioral output that enables an agent to rapidly switch in task demands, whereas flexible 2 displays an agent that varies behavior, but is not
able to attain learning over time. A possible model of ADHD can reflect a variation of these learning parameters. Inspired by Sales et al., 2019,
Figure 7.

Dutta, 2020), although these effects are more pronounced in
non-medicated ADHD youths. It is possible this asymmetry
may subtend the behavioral features of ADHD; however,
such asymmetries may also serve as advantageous later
in life.

In longitudinal PET and SPECT studies (van Dyck et al.,
2002), typically developing individuals experience a 6–8%
decline in striatal DATs per decade. Longitudinal studies in PET
have not been conducted in ADHD populations but, typically,
there is low DAT availability in non-medicated patients, whereas

Frontiers in Human Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnhum.2022.938501
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-938501 September 20, 2022 Time: 15:39 # 19

Dutta et al. 10.3389/fnhum.2022.938501

there is a high DAT availability in medicated patients among
striatal regions. It is possible that either of these extremes
can provide benefits toward striatal dopamine transporter
integrity later in life. In essence, drug treatment for ADHD
does not always appear to increase global brain volume or
attenuate morphology abnormalities across all white and gray
matter. Conversely, stimulant drugs are not suggested to cause
abnormal development in ADHD populations.

Interestingly, with increasing age, certain brain regions
tend to normalize on their own without the help of
psychostimulant treatment. For example, caudate volume
seems to normalize by mid-adolescence to early-adulthood in
ADHD participants, both stimulant-treated and non-treated
populations (Castellanos et al., 1994, 2002). In addition, some
studies report comparable brain volumes between treatment-
naïve and treated ADHD populations. As mentioned earlier,
pharmacotherapy has frequently been seen to normalize
brain regions within the basal ganglia (Sobel et al., 2010).
However, with or without treatment, children and adolescence
with ADHD have relatively smaller global gray matter brain
volumes compared to healthy age-matched participants. The
growth of these brain volumes, although smaller, parallel age-
matched controls, reflecting fixed neurobiological abnormalities
(Castellanos et al., 2002; Nakao et al., 2011). In late adulthood
such brain volumes tend to remain constant regardless of
treatment and comorbidity, whereas aged-matched controls
experience a decrease in brain volume.

Despite the importance of these findings, most ADHD
studies are confounded by relatively small sample sizes,
cross-sectional study design, and un-matched patient
subgroups. These methodological issues currently hamper
structural neuroimaging’s contribution to the diagnostic
assessment of ADHD. Thus, standard clinical approaches to
medication adjustment remain the best course when treatment
ceases to provide positive effects (McGough, 2014; Barkley,
2015). Essential to good practice, clinicians must carefully
document target symptoms, treatment responses, prescription
information, dosage, and quantity of medication with each
prescription, while also considering the possibility of abuse,
misuse, and diversion of these drugs as the patient ages
(McGough and McCracken, 2000; Craig et al., 2015; Rajeh et al.,
2017). Patients with ADHD are prescribed about 3.8 times more
amphetamine in 2005–2014 than methylphenidate (1.6 times
from 2005 to 2014) (Moran et al., 2019). Moran et al. (2019)
found that family medicine or internal medicine physicians
(the most frequent prescribers) prescribed amphetamine about
72.5% of patients compared to pediatricians (51.6%) and
psychiatrists (63.7%). This coincided with a rise of psychotic
episodes based on prescription of these stimulants to ADHD
cohorts (Moran et al., 2019). New onset psychosis was twice as
high in ADHD patients that began amphetamine than among
ADHD patients who began methylphenidate (Salo et al., 2013;
Moran et al., 2019). Recall that methylphenidate acts as an
inhibitor of dopamine transporters, whereas amphetamine

releases four times as much dopamine in the synapse (Schiffer
et al., 2006). The large heterogeneity of ADHD phenotypes
also makes it difficult to access or appreciate the differences
in catecholamine profiles. Medication selection should also be
carefully considered based on comorbidities, co-medications,
and pharmacokinetics such as patients who poorly metabolize
pharmacological treatments (Bolea-Alamañac et al., 2014). This
evidence suggests the need to cautiously screen for risk factors
and to consistently monitor for reliability of the stimulant drug
treatments after its administration to patients.

Neuroimaging studies have suggested that children with
ADHD have diminished brain volume in certain subcortical
structures compared to healthy controls (Castellanos et al.,
2002; Qiu et al., 2009; Frodl and Skokauskas, 2012; Hoogman
et al., 2017). Recently, a cross-sectional mega-analysis across
the lifespan revealed that ADHD in late adulthood may
have a delay in brain degeneration. For example, in healthy
individuals the volume of the hippocampus and the amygdala
normally declines later in life (Hoogman et al., 2017), and
this decline is more pronounced in people with prodomal
dementia (or mild cognitive impairment) and AD (Nho et al.,
2012; Fujishima et al., 2014; Kehoe et al., 2014; Matsuda, 2016;
Femminella et al., 2018). Interestingly, an ADHD diagnosis is
associated with reduced volumetric decline in these structures
later in life. It is important, however, to consider that these
results were not influenced by psychostimulant use and no
differences in volumes were found when comparing ADHD
subjects who had never taken medication (82 patients) and
ADHD subjects who used stimulant medication for more than
4 weeks (637 patients) (Hoogman et al., 2017). Our review
summarizes that pharmaceutical treatment either leads to no
changes or normalizes brain alterations in select brain regions
in ADHD as quantified across a variety of neuroimaging
modalities ranging from PET to MRI. While many studies have
demonstrated decrease in volume and morphology attenuations
following medication treatment (Semrud-Clikeman et al., 2006;
Bledsoe et al., 2009; Ivanov et al., 2010; Sobel et al., 2010;
van Elst et al., 2016; Douglas et al., 2018; Dutta, 2020),
others did not find any measurable or quantifiable association
of taking pharmaceutical drugs for ADHD on the brain. If
ADHD poses a delay in brain degeneration later in life and
if pharmaceutical treatment eliminates this neuroprotective
element by normalizing structural changes associated with an
ADHD diagnosis, then this benefit may be counteractive to
neuroprotective volume into the geriatric years. On the other
hand, pharmacological drugs for ADHD may potentially lead
to neurodegenerative diseases. It is presumed that about 23%
of cases with childhood ADHD will eventually develop MCI
or dementia in older age, comparable to 21.5% of healthy
subjects with no history of ADHD (Callahan et al., 2017).
Whether there is a relationship between stimulant use during
childhood or adult years from ADHD subjects and later MCI
is largely unknown. It is important to note that screening
methods for ADHD are often overlooked or confused with MCI

Frontiers in Human Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnhum.2022.938501
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-938501 September 20, 2022 Time: 15:39 # 20

Dutta et al. 10.3389/fnhum.2022.938501

diagnosis (Ivanchak et al., 2012), and there is a high frequency
of antecedent ADHD symptoms to patients with dementia or
AD (Ivanchak et al., 2012; Zhang et al., 2015; Fluegge and
Fluegge, 2018). On the other hand, several lines of research in
genetics (The Brainstorm Consortium et al., 2018; Pagoni et al.,
2020) and neuroanatomy (Callahan et al., 2017) do not point
to a direct link between ADHD and later MCI. There may be
unrelated mediators that increase risk for later MCI or dementia,
such as comorbidity (i.e., depression, anxiety, substance use)
(Ivanchak et al., 2012) or stimulant use. Few neuroimaging
and pharmacological studies have derived such relations as
of yet, providing future opportunities to explore. Given that
the evidence is inconclusive, it may be beneficial to act in a
cautionary fashion when prescribing pharmaceutical treatment
to ADHD. In this sense, one should weigh the benefits and
limitations of medication treatment, including the severity of
the disease presentation and comorbidities, against the potential
risk of eliminating a benefit later in life.

The findings in this review paper have their limitations
and their interpretations merit great caution. We did not use
established methods of systematic review protocols and risk of
bias (Higgins et al., 2011, 2019; Moher et al., 2015; Zeng et al.,
2015), instead we tried to leverage a large number of existing
and relevant studies. Therefore, the review may be flawed by
selection bias, performance bias, detection bias, attrition bias,
reporting bias, and other bias (Higgins et al., 2011). Our review
may have missed studies due to bias in eligibility criteria and
coverage of the retrieved studies. Additionally, similar to other
reviews and meta-analytic studies (Cunill et al., 2016; Cortese
et al., 2018), there are methodological and clinical heterogeneity
in the included studies, such as study design, patient samples,
and outcome measurements. It should be noted that our review
does not support any pharmacological treatment over another
and does not reveal any significant differences between the
variations of short- and long- acting formulations. Few head-
to-head studies exist due to insufficient patient samples and
events that can be conducted to account for differences in dosage
and intensity of all types of pharmacological treatments. Risk
of bias in other studies is also important and can be more
apparent than what was reported in our review. Therefore,
there is still room for improvement in future systematic
reviews regarding the topic of lifespan considerations for the
pharmacological treatment of adult and pediatric ADHD. It is
a limitation that only few databases were used in this review
paper, of which it is likely that important studies were not
captured.

In summary, subjects with ADHD may present differential
trajectories of brain structure across the lifespan, with early
abnormalities followed by a delay in brain degeneration
later in life relative to controls. Drug treatment for ADHD
does not always appear to increase global brain volume or
attenuate morphology abnormalities across all white and gray
matter. Rather, treatment seems to increase brain volume

in a region-specific manner that normalizes ADHD brain
structure, though these effects may vary throughout the lifespan.
Indeed, additional studies are needed to determine the extent
to which an ADHD diagnosis may be neuroprotective later
in life. If so, determining the mechanisms that subtend
this neuroprotective effect is essential. For example, it is
reasonable to suggest that ADHD individuals switch more
rapidly between stimuli to which they attend either externally
(in hyperactive) or internally (in inattentive presentations).
In this sense, the switching may in some sense exercise the
brain. The delay in maturation hypothesis has continued to
be a predominant theory in the field. Future studies may
therefore focus on linking this maturation delay with delay
in degeneration later in life. Unsupervised techniques (e.g.,
non-negative matrix factorization) (Anderson et al., 2014)
may also be useful for identifying subgroups within or
across the presentation domains that preferentially respond to
pharmaceutical treatment throughout life, and the extent to
which these subgroups overlap with those who may receive
benefit from the behavioral manifestations of ADHD. Does
the potential benefit of pharmaceutical treatment early in
life (i.e., children, adolescents) outweigh the possibility that
pharmaceutical treatment early in life may have detrimental
effects in later adulthood? These questions must be examined
in future longitudinal work in order to minimize the risk and
maximize the utility of currently available ADHD medications.
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