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Abstract: Foodborne pathogenic bacteria have become a worldwide threat to human health, and rapid
and sensitive bacterial detection methods are urgently needed. In this study, a facile microfluidic chip
was developed and combined with recombinase-aided amplification (RAA) for rapid and sensitive
detection of Salmonella typhimurium using a non-contact eddy heater for dynamic lysis of bacterial
cells and a 3D-printed fan-shaped active mixer for continuous-flow mixing. First, the bacterial
sample was injected into the chip to flow through the spiral channel coiling around an iron rod
under an alternating electromagnetic field, resulting in the dynamic lysis of bacterial cells by this
non-contact eddy heater to release their nucleic acids. After cooling to ~75 ◦C, these nucleic acids
were continuous-flow mixed with magnetic silica beads using the fan-shaped mixer and captured in
the separation chamber using a magnet. Finally, the captured nucleic acids were eluted by the eluent
from the beads to flow into the detection chamber, followed by RAA detection of nucleic acids to
determine the bacterial amount. Under the optimal conditions, this microfluidic chip was able to
quantitatively detect Salmonella typhimurium from 1.1 × 102 to 1.1 × 105 CFU/mL in 40 min with a
detection limit of 89 CFU/mL and might be prospective to offer a simple, low-cost, fast and specific
bacterial detection technique for ensuring food safety.

Keywords: microfluidic chip; eddy heating; 3D fan-shaped mixer; recombinase-aided amplification;
Salmonella detection

1. Introduction

The outbreak and prevalence of foodborne diseases not only place a substantial
burden on global healthcare systems but also have a serious impact on economic and
social stability [1]. Globally, one in ten people is affected by foodborne pathogens annually.
Among these pathogens, Salmonella is the leading cause [2], and typhoid fever is a life-
threatening infection caused by Salmonella typhimurium [3]. Since food contamination may
occur at every stage of food supply chains from field to table, monitoring and identification
of contaminated foods are crucial to safeguard food supply chains [4,5]. To date, the
gold-standard culture method is still the most reliable way to detect bacteria, but it is time-
consuming and not suitable for on-site monitoring [6,7]. Other recommended methods,
such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR),
are time-saving, but ELISA has to screen specific antibodies and PCR requires expensive
equipment [8–10]. Therefore, fast, accurate, low-cost and in-field detection techniques are
in urgent need.
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In recent years, various isothermal nucleic acid amplification technologies have re-
ceived widespread attention because they exhibit molecule detection features such as
accuracy, efficiency and speed [11]. More importantly, they did not rely on programmed
temperature changes. Loop-mediated isothermal amplification (LAMP) [12,13], recom-
binase polymerase amplification (RPA) [14–16], hybridization chain reaction (HCR) [17]
and recombinase-aided amplification (RAA) [18–20] were proposed and applied for bac-
terial detection. RAA received increasing attention since it could be completed under a
constant low temperature (~39 ◦C), and was able to detect nucleic acids of Salmonella as
low as 5 fg per reaction in 20 min [21]. RAA-based bacterial detection mainly includes the
following two steps: DNA extraction and DNA detection. In general, DNA extraction was
manually performed off-chip by well-trained technicians through first lysing bacterial cells
to release DNA, then extracting DNA from lysate and finally purifying DNA to remove
inhibitors (e.g., proteins and salts) [22–25]. For bacterial cell lysis, thermal lysis was a
simple and effective method with no need for extra reagents and was extensively used
in molecular biology analysis. Conventional thermal lysis was often carried out by first
adding bacterial samples into a centrifugal tube and then heating them at 100 ◦C in a water
or oil bath [26]. However, it generally required a long time to preheat the water or oil and
incubate the bacterial samples. For nucleic acid extraction, magnetic silica beads (MSBs)
were often used since they could well remove the background to avoid its negative effect
on subsequent DNA detection [27], but they were easy to sediment due to their large size
(micrometer level) and needed continuous vortex. Besides, DNA extraction and detection
were basically separate, and this might lead to potential cross-contaminations. With the
development of microfluidic technology, microfluidic systems provide a new solution to
perform quantitative nucleic acid analysis in a shorter time by simply-trained technicians
due to their low consumption and automatic control [28–30]. Some microfluidic chips
were reported to combine with RAA for the detection of Salmonella or other foodborne
pathogens, as summarized in Table S1. These studies successfully achieved automated
DNA amplification and detection on the chips; however, they still needed additional steps
of bacterial lysis and DNA extraction off the chips. Hence, the integration of lysis, extrac-
tion, purification, amplification and detection is urgently needed to enable point-of-care
testing of foodborne bacteria.

Here, we developed an integrated microfluidic chip from bacteria lysis to DNA ex-
traction, amplification and detection (Figure 1A). As shown in Figure 1B, a spiral channel
was first wound around an iron rod and heated with an eddy heater to continuous-flow
lyse the bacterial cells, which released their nucleic acids, which were mixed with the
MSBs using a 3D-printed fan-shaped mixer and separated from the lysate using a magnet.
Then, the nucleic acids were eluted with the eluent to flow into the detection chamber.
Finally, the extracted DNA was isothermal amplified and RAA detected to determine the
bacterial amoun. The main novelty of this work is the microfluidic chip using non-contact
eddy heating to continuous-flow lyse bacterial cells and the 3D-printed active mixing to
continuous-flow mix the lysed DNA with MSBs. More importantly, the bacterial detection
procedure, including lysis, mixing, separation, elution, amplification and detection, was
integrated onto this single microfluidic chip.
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Figure 1. The schematic of this microfluidic chip for Salmonella typhimurium detection. (A) The
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2. Materials and Methods
2.1. Materials

Salmonella typhimurium (ATCC 14082) was used as target bacteria, Escherichia coli
O157:H7 (ATCC 43888), Listeria monocytogenes (ATCC 13932) and Staphylococcus aureus
(ATCC 25293) were used as non-target bacteria. For nucleic acid extraction and purification,
the magnetic universal genomic DNA extraction kit was purchased from Tiangen Biotech
(Beijing, China). For nucleic acid amplification, the RAA reaction kit was purchased
from Amp-Future (Weifang, China). The EvaGreen fluorescent dye was purchased from
Maokang Biotech (Shanghai, China).

Real-time quantitative PCR was performed using SsoFast™ EvaGreen Supermix on
the CFX-384 PCR System (Bio-Rad, Hercules, CA, USA). The primer sets were designed
based on the Salmonella invA gene’s conserved short fragments referring to the previous
publication [21] and synthesized by Sangon Biotech (Shanghai, China). Bromocresol purple,
sodium hydroxide and citric acid (Sinopharm, Wuhan, China) were used for evaluating the
mixing performance. Luria-Bertani medium (Aoboxing Biotech, Beijing, China) was used
for bacterial culture.

2.2. Development of Microfluidic Chip

The microfluidic chip was designed using Solidworks software, and the molds of the
microfluidic chambers, channels and fan-shaped mixer were fabricated using an Object24
3D printer (Stratasys, Eden Prairie, MN). From Figure 1B, the chip mainly included a
spiral lysis channel (volume: 100 µL) for lysing the bacterial cells and the following four
chambers: (1) a cooling chamber (volume: 200 µL) for cooling the boiled lysate, (2) a
mixing chamber (radius: 5 mm, height: 10 mm, volume: ~600 µL) for stirring the lysate
and MSBs to form the MSB-DNA complexes, (3) a trapezoidal chamber (volume: ~50 µL)
for separating and washing the complexes and eluting the DNA off the complexes, and
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(4) a detection chamber (200 µL centrifugal tube) for amplifying the purified DNA. The
fan-shaped mixer was assembled inside this mixing chamber and rotated by the water
flow. From Figure 1C, this microfluidic chip consisted of three layers (the fabrication
process was shown in Figure S1). After each layer was fabricated by polydimethylsiloxane
(PDMS), three layers were bonded together after surface plasma treatment. The bottom
layer (length: 4.2 cm, width: 3.8 cm, height: 0.3 cm) contained a cylindrical hole (dia:
1.0 mm) to assemble a rotation axis for the fan-shaped mixer. The middle layer contained
the following three components: (1) a spiral lysis channel (id: 0.8 mm, od: 1.2 mm, length:
20.0 cm) coiling around an iron rod (od: 5.0 mm, length: 1.5 cm), (2) an ellipsoidal cooling
chamber (length: 7.5 mm, major axis: 4.0 mm, minor axis: 4.0 mm) and (3) a cylindrical
chamber (dia: 1.0 cm, height: 5 mm) for housing the fan-shaped mixer at the center and two
tangential inlets (length: 1.0 cm, width: 0.5 mm, height: 0.5 mm). The top layer contained a
matching cylindrical hole to assemble the rotation axis, a trapezoid separation chamber
(longer top-line: 7.0 mm, shorter bottom-line: 4.2 mm, height: 3.0 mm, thickness: 3.0 mm)
to capture and wash the MSB-DNA complexes, and an outlet (dia: 5.6 mm) to connect with
a centrifugal tube for RAA detection (Figure 1D).

2.3. Bacterial Cells Lysis and DNA Extraction

The bacterial cells were lysed by applying a voltage of 12 V on this self-developed
eddy heater. The temperature was measured using both a temperature probe (NR81530,
LiHuaDa, Shenzhen, China) and a smartphone infrared thermal imager (HT-102, XinTai,
Dongguan, China). First, the microfluidic chip was placed on the eddy heater to preheat the
iron rod for 30 s, making its temperature reach ~150 ◦C. Then, 1 mL bacterial sample was
centrifuged at 10,000 rpm for 5 min, mixed with 100 µL DNA extraction buffer and injected
into the microfluidic chip at different flow rates using a syringe pump (11Elite, Harvard
Apparatus, FL, USA). Finally, the lysate was mixed with 15 µL MSBs to form the MSB-DNA
complexes, followed by magnetic separation for 2 min, cleaning with washing buffer for
4 times and elution with 50 µL eluent to obtain the purified DNA, which was determined
using quantitative PCR to evaluate the performance of DNA lysis. The sequences for the
primer set were listed in Table S2 and PCR reaction was performed as follows: 95 ◦C for 30 s,
40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s [31]. All the samples were tested in triplicates
using the same protocol.

2.4. DNA Separation and RAA Detection

After the MSB-DNA complexes were formed in the mixer, they were first captured
in the trapezoid separation chamber by the magnet. Then, washing buffer was injected
to remove the residual, followed by injecting the air at 2 mL/min for 3 min to accelerate
the ethanol volatilization and 50 µL eluent (deionized water) to elute the DNA. Finally,
RAA reaction was performed at 39 ◦C in a total volume of 50 µL comprising 29.4 µL
RAA enzymes buffer A, 11.6 µL target DNA templates, 2 µL 10 µM forward primers,
2 µL 10 µM reverse primers, 2.5 µL EvaGreen fluorescent dye (20×) and 2.5 µL 280 mM
magnesium acetate. The fluorescent signals were collected every 1 min (λex: 445 nm; λem:
526 nm) for 25 min in a microplate fluorescence reader (infinite M NANO, Tecan, Swiss),
and the fluorescence spectrum of the EvaGreen fluorescent dye from the fluorescence
reader was shown in Figure S2. The threshold time (Tt) was determined as the time for
the fluorescence intensity to exceed the sum of the average intensity of first 8 min plus
3× standard deviations.

2.5. Spiked Sample Preparation and Detection

The preparation of spiked pork samples was referring to China’s food safety national
standards GB 4789.4-2016. Briefly, 25 g pork meats were first sliced and diluted with 225 mL
sterile phosphate buffer, then homogenized with a stomacher and stood for 15 min to obtain
the supernatant, and finally mixed with different concentrations (1.1 × 102–105 CFU/mL)
of bacteria cells to prepare the spiked pork samples, which were detected using both this
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microfluidic chip and the gold standard culture plating method. For bacterial detection
using this microfluidic chip, after each prepared sample was first injected into the lysis
channel at optimized flow rate (0.5 mL/min) to release the nucleic acids, the lysate was
then continuous-flow mixed with the MSBs at optimized fluid rate (10 mL/min) to extract
the nucleic acids, which were finally amplified and detection by RAA.

3. Results and Discussion
3.1. Effect of Eddy Heating for Bacterial Cells Lysis

Bacterial cell lysis is the precondition to nucleic acid extraction. In this study, heating
lysis was employed for continuous-flow lysis the bacterial cells using an eddy heater. This
heater was simply developed based on Faraday’s law of electromagnetic induction by
using an iron rod and an alternating electromagnetic field generator (ZVS, QICHUANG,
Qingdao, China). When the iron rod was exposed to the alternating electromagnetic field, a
large eddy current was generated inside the iron rod due to the small resistance of iron,
and thus the iron rod was rapidly heated up to a high temperature, which was estimated
using the smartphone infrared thermal imager. The temperature change of the iron rod at a
different time and different voltage, as shown in Figure S3A,B, which the temperature could
reach up to ~150 ◦C in 30 s when the voltage of 12 V was applied. As shown in Figure 2A,
the Teflon tubing was tightly wound around the iron rod to form the spiral channel, and
deionized water was injected into the channel to accurately measure its actual temperature
in the channel as ~100 ◦C using the thermocouple probe (shown in Figure S3). Figure 2B
showed the simulation results using the ANSYS software (Canonsburg, PA, USA), which
were consistent with the measured temperature. Besides, an ellipsoidal cooling chamber
was used to collect the lysate and allow it to standing for 1 min to decrease the temperature
to ~75 ◦C, which was also confirmed using this thermocouple probe. Therefore, when the
mixture of bacterial sample and lysis buffer was injected to continuously flow through this
spiral channel, the mixture was kept at a high temperature for a certain time, which was
determined by the length of this channel at a constant flow rate, allowing the sufficient
lysis of bacterial cells. Thus, different flow rates from 0.1 to 3.0 mL/min were used to lyse
the Salmonella cells at 1.1 × 106 CFU/mL by this eddy heater in the presence of lysis buffer,
followed by extraction of nucleic acids through a manual MSB-based method and detection
of nucleic acids through real-time PCR. As shown in Figure 2C, the Ct value increased from
22.9 to 23.3, when the flow rate decreased from 0.5 to 1 mL/min. This was mainly because
the higher flow rate of the bacterial sample shortened the heating time for destroying the
bacterial cells and releasing their DNA. A further decrease in the flow rate to 0.1 mL/min
did not lead to an obvious increase in the Ct value. Thus, the flow rate was optimized at
0.5 mL/min. After the temperature was generated up to 150 ◦C and the aqueous bacterial
sample was injected at 0.5 mL/min into the tubing, the sample was observed to be first
evaporated into a gas at the fourth round and then returned back to liquid at the cooling
chamber (Video S1).

To ensure the sufficient lysis of bacterial cells, Salmonella cells at 1.1 × 107 CFU/mL
were heated and lysed at different times to release the nucleic acids, which were determined
using real-time qPCR. From Figure 2D, when the time was changed from 6 to 12 s, the
Ct value significantly decreased from 19.3 to 17.8 (p < 0.05), indicating more cells were
lysed and thus more nucleic acids were obtained. Besides, a further increase in the time
to 24 s did not lead to an obvious decrease in the Ct value. This showed that the time
of 12 s was sufficient for heating the bacterial cells. Therefore, the length of this spiral
channel was calculated as the product of the optimal time and the flow rate to be 20 cm.
Table 1 showed the comparison with the existing chemical or other lysis methods. This
heating lysis was significantly faster (~12 s) and could continuous-flow lyse the bacterial
samples. This might be because the bacterial cells in the fluidic channel suffered from more
homogeneous heating and higher temperatures by this eddy heater, resulting in an easier
rupture of bacterial cells.
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Table 1. Comparison of this lysis method with recently foodborne pathogens lysis method.

Methods Targets Lysis Time Amount/Volume References

Photothermal lysis Escherichia coli O157:H7 6 min 5.0 × 105 CFU/50 µL [32]
Chemical lysis Salmonella typhimurium 10 min 5.0 × 102 CFU/72 µL [33]

Mechanical lysis Enterococcus faecalis 6 min 1.0 × 106 CFU/100µL [34]
Electrical lysis Salmonella enterica 40 s 1.0 × 106 CFU/100 µL [35]
This method Salmonella typhimurium 12 s 1.1 × 107 CFU/100 µL

To further demonstrate the advantage of this continuous-flow heating lysis method
over the conventional static one, the bacterial cells at 1.1 × 104–1.1 × 107 CFU/mL were
in parallel lysed using this heating lysis method at 0.5 mL/min and the conventional one
in centrifugal tubes, and real-time qPCR was used to amplify the lysate for determination
of the released DNA. The same concentrations of bacterial samples were heated at 100 ◦C
for 10 min and used as positive controls, and deionized water was used as a negative
control. From Figure 2E, the Ct values for this continuous-flow lysis were slightly lower
than those for the conventional lysis, indicating that more nucleic acids were released
due to more lysed bacterial cells by this continuous-flow heating lysis. Especially, for the
high concentration (1.1 × 107 CFU/mL) of bacterial cells, the mean Ct value of triple tests
for this continuous-flow lysis was significantly lower (p < 0.05), and the lower Ct values
indicated that more nucleic acids were lysed from the bacterial cells. Statistical analysis
was performed using SPSS (IBM SPSS 22, New York, NY, USA).

3.2. Performance of 3D Fan-Shaped Mixer

The mixing of the MSBs with the lysate played a crucial role in nucleic acid extraction.
Since the large-size of MSBs (~1 µm) were easy to settle down due to their gravity, resulting
in the reduced chances to adsorb the DNA in the lysate, the active fan-shaped mixer was
3D-printed and assembled in the center of this mixing chamber (Figure 3A). When the
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lysate and MSBs were injected into the mixing chamber to hit the blades of this mixer,
the mixer automatically rotated on the axis, resulting in effective mixing of the lysate and
MSBs in the continuous-flow condition. Besides, to avoid the sedimentation of MSBs, the
lysate and MSBs were designed to enter this mixing chamber from its bottom and their
mixture was designed to leave this chamber from its top. Video S2 was recorded to show
the sufficient mixing of MSBs with the red ink. To verify this, the dynamic flow simulation
was conducted using the ANSYS software based on the Reynolds Average Navier-Stokes
equations. Figure 3B showed a clear vortex flow, which might lead to sufficient mixing in
the whole chamber.
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The rotation of this fan-shaped mixer is the precondition for sufficient mixing of the
continuous-flow solutions and has to overcome the sliding friction and fluidic resistance.
Thus, different flow rates were applied to check the minimum one for rotating the mixer.
As shown in Video S3, when the flow rate was gradually increased from 2 to 6 mL/min, the
mixer remained static because the driving force resulting from the hit on the blade was still
smaller than the slide friction and fluidic resistance. When the flow rate was increased to
6 mL/min, the mixer started to rotate slowly and became faster at higher flow rates. Thus,
the flow rate had to exceed 6 mL/min to rotate this mixer.

To test the mixing efficiency of this mixer, bromocresol purple with 0.3 M sodium
hydroxide (NaOH) and 0.1 M citric acid was injected from two inlets into this mixing
chamber at different flow rates, respectively. Besides, the mixing chamber without this
mixer was used for comparison. The color of bromocresol purple was observed to shift from
purple (pH 5.2) to yellow (pH 6.8), which was recorded and analyzed by ImageJ software.
The mixing rate (MR) is defined as the ratio of standard deviation to mean value, i.e.,

MR =

1 −

√
1
N ∑N

i=1
(
Ii − I

)2

I

× 100%
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where, Ii is the pixel intensity of point i, Ī is the mean intensity of all the points, and
N is the total number of points. Figure 3C showed that the mixing rate increased with
the flow rate because a faster flow rate accelerated the rotation of this mixer and thus
improved the mixing effect. Besides, the rates for the mixing chamber with this mixer
were obviously higher than those without this mixer, indicating this active mixer enhanced
the mixing efficiency. Besides, the mixing rate at 10 mL/min was more than 95% and
basically remained the same level for higher flow rates. Thus, the flow rate was optimized
at 10 mL/min.

The time for mixing the released nucleic acids with the MSBs is also vital for DNA
extraction. Thus, the nucleic acids of Salmonella typhimurium at 100 ng/µL, which were
extracted using enzyme lysis and MSBs purification and determined using a Nanodrop 2000
spectrophotometer (Thermo Fisher, Waltham, MA, USA), were simultaneously injected
with the MSBs into the mixing chamber, and a peristaltic pump (Kamoer Fluid Technology,
Shanghai, China) was used with a three-way connector to recycle the continuous-flow
mixing for a different time, followed by magnetic separation and DNA elution to obtain
the extracted DNA, which was determined using the Nanodrop spectrophotometer to
calculate the capture efficiency, i.e., the ratio of the extracted DNA to the original one. From
Figure 3D, the capture efficiency increased with the mixing time from 0 to 7 min and reach
~90% at a mixing time of 7 min or longer. Therefore, the mixing time was optimized to be
7 min.

3.3. Performance of Microfluidic Chip

For quantitative detection of unknown concentrations of Salmonella typhimurium in a
sample, different concentrations of viable Salmonella typhimurium at 1.1 × 102–1.1 × 105

CFU/ mL were detected under optimal conditions using this microfluidic chip and the
standard culture plating method to establish its mathematical model. All the tests were
conducted in triplicate. From Figure 4A, the time threshold decreased from 7.1 to 6.0 min
as the bacterial concentration increased from 1.1 × 102 to 1.1 ×105 CFU/ mL. A linear
relation between time threshold (Tt) and bacterial concentration (C) was observed and
can be expressed as Tt = −1.37×lg(C) + 16.58 (R2 = 0.9954). The lower detection limit was
calculated as 89 CFU/mL, referring to 3× SNR.
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To evaluate its specificity, other foodborne pathogens (Listeria monocytogenes, Es-
cherichia coli O157:H7 and Staphylococcus aureus) at 1.1 × 105 CFU/mL were tested and
compared to Salmonella typhimurium at 1.1 × 104 CFU/mL. Besides, a negative control
(deionized water) was also detected. The original amplification curves were obtained from
the fluorescence reader and shown in Figure S4, and it was clearly observed that the fluores-
cence intensities of the background were different, which might lead to a difficult analysis
of the fluorescent signals. To minimize the impact of the background, the fluorescence
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intensity of each point (F) in the amplification curve was normalized by the following
equation: F = (Fi − F0)/(Fm − F0), where F0 is the initial intensity at the starting time
(t = 1 min); Fm is the maximum intensity at the ending time (t = 25 min); Fi is the fluores-
cent intensity measured using the reader. From Figure 4B, only Salmonella typhimurium
showed a fluorescence signal in 10 min, while the other bacteria and negative control did
not have significant signals, indicating that it had good specificity.

To further evaluate its applicability, the spiked pork samples with known bacterial
concentrations were detected. The recovery (R) was calculated as the ratio of the detected
concentration (Cd) to the added one (Ca), i.e., R= Cd/Ca × 100%. As shown in Table 2, the
recovery for different concentrations ranged from 84.3% to 103.2% with an average recovery
of 94.1%, indicating it could be used for practical detection of Salmonella typhimurium in
real pork samples.

Table 2. The recovery of the spiked Salmonella typhimurium.

Added Concentration
(CFU/mL)

Detected Concentration
(CFU/mL)

Recovery Rate
(%)

110 104.3 ± 21.6 94.8% ± 19.6%
1100 1135.0 ± 189.0 103.2% ± 17.2%

11,000 9277.2 ± 1544.7 84.3% ± 14.0%

The time for the whole bacterial detection procedure was 40 min, including 1 min for
lysis, 1 min for cooling, 7 min for mixing, 5 min for washing and 25 min for detection. The
excellent performance of this microfluidic chip could be attributed to the following aspects:
(1) effective bacterial cell lysis using this continuous-flow eddy heating; (2) sufficient mixing
using this fan-shape active mixer; (3) accurate DNA detection using this RAA method. More
importantly, the whole bacterial detection procedure, including lysis, mixing, washing,
capture, separation and detection, was integrated onto one single chip and completed in a
short time.

4. Conclusions

In this work, we successfully explored a microfluidic chip and combined it with RAA
for quantitatively detecting Salmonella typhimurium. This eddy heating was demonstrated
with the ability to effectively lyse the flow-through bacterial cells. The 3D-printed fan-
shaped active mixer was verified to sufficiently mix the lysate and MSBs. The bacterial
lysis, DNA purification and RAA detection were integrated into one single chip to achieve
sample-in-result-out detection of Salmonella as low as 89 CFU/mL. This microfluidic chip
was featured with low cost (<$3/chip and ~$150/peripheral), short time (40 min from
sample-in to result-out) and minimal cross-contamination (closed microfluidic chip and
non-contact heating). It might be further improved by miniaturizing the device and chip
for point-of-care testing of foodborne pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12090726/s1, Figure S1: The fabrication of the mixing chamber,
Figure S2: The fluorescence spectrum of the EvaGreen fluorescent dye from the fluorescence reader,
Figure S3: The performance of the eddy heater, Figure S4 The original amplification curves measured
using the fluorescent reader; Table S1: Comparison of reported bacterial detection methods combining
microfluidics with RAA, Table S2 The primer sets sequence; Video S1: Lysis section, Video S2: Mixing
section, Video S3: Mixing rate.
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