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Abstract

Protein phosphorylation is deeply involved in the pathological mechanism of various neurodegenerative disorders.
However, in human pathological samples, phosphorylation can be modified during preservation by postmortem factors
such as time and temperature. Postmortem changes may also differ among proteins. Unfortunately, there is no
comprehensive database that could support the analysis of protein phosphorylation in human brain samples from the
standpoint of postmortem changes. As a first step toward addressing the issue, we performed phosphoproteome analysis
with brain tissue dissected from mouse bodies preserved under different conditions. Quantitative whole proteome mass
analysis showed surprisingly diverse postmortem changes in phosphoproteins that were dependent on temperature, time
and protein species. Twelve hrs postmortem was a critical time point for preservation at room temperature. At 4uC, after the
body was cooled down, most phosphoproteins were stable for 72 hrs. At either temperature, increase greater than 2-fold
was exceptional during this interval. We found several standard proteins by which we can calculate the postmortem time at
room temperature. The information obtained in this study will be indispensable for evaluating experimental data with
human as well as mouse brain samples.
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Introduction

Protein phosphorylation has been implicated widely in the

pathological mechanisms of neurodegenerative disorders including

Alzheimer’s disease (AD), frontotemporal dementia (FTD),

dementia with Lewy bodies (DLB), Parkinson’s disease dementia

(PDD), and Huntington’s disease (HD). For instance, hyperpho-

sphorylated forms of tau have been identified as a major

component of paired helical filament (PHF) [1], the common

pathological hallmark of AD and tau-associated FTD. Hyperpho-

sphorylation impairs the microtubule binding of tau and

destabilizes microtubules. A process mediated by various serine/

threonine kinases such as GSK3beta, PKA, Cdk5 and casein

kinase II might also accelerate aggregation of tau into PHF [2–5].

In the DLB brain, phosphorylated alpha-synuclein at Ser 129 has

been detected by mass spectrometry and phosphorylation-

accelerated aggregation of alpha-synuclein has been shown in vitro

[6]. The increase of toxicity by phosphorylation was also suspected

in a Drosophila model of PDD [7].

However, the significance of variable phosphorylation levels of

inclusion body component proteins remains controversial. For

instance, in alpha-synuclein, phosphorylated tyrosine and serine

residues seem to have opposite effects on cellular toxicity [8]. In

addition, the role of phosphorylation can differ among neurode-

generative diseases. In contrast to the cases of tau and synuclein,

phosphorylation of mutant huntingtin (Htt) at Ser 421 in response

to IGF treatment reduced toxicity [9]; similarly, phosphorylation

of Htt at Ser 13 and 16 alleviated phenotype in a mouse model of

HD [10].

Furthermore, one can easily imagine that a number of

phosphoproteins other than aggregated proteins would quantita-

tively change in the context of neurodegenerative disorders. It is

possible that such phosphorylation also affects neurodegeneration.

Therefore, in order to understand the whole scheme of

pathological functions of protein phosphorylation, it is necessary

to perform a full ‘‘omics’’ analysis of phosphoproteins in human

brains.

However, the most significant obstacle to this approach is posed

by the preservation conditions of human brains. There is no world

standard that specifies how to preserve postmortem human bodies

before the brains are cut, frozen and kept in the brain bank. After

patients’ deaths, their bodies are left on their beds at room

temperature for different length of time before being transferred to

the morgue in the pathology department. The time between brain

sectioning and freezing on dry ice also varies among samples and

among institutions.

Therefore, we need to know how the phosphoproteome changes

in postmortem brains during the process of preservation. Based on

such knowledge, we could potentially design a specific preservation

protocol for brain banks to follow in order to enable reproducible

phosphoproteome analysis in human samples. Even with such a

standard, specific methods for adjusting phosphoproteomic data

based on time and temperature would also be required. For these

purposes, we performed proteome-wide analyses of phosphopro-
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teins on mouse brains that had been kept at room temperature or

4uC for different lengths of time. The results reveal surprisingly

diverse patterns of chronological changes of phosphoproteins.

Data such as ours will be crucial in interpreting the phosphopro-

tein data obtained to date, as well as future data, from human

brain samples.

Results

Diverse changes of postmortem phosphoproteins
To investigate the effect of postmortem time on phosphopro-

teins before the brain was isolated and frozen, we kept 12 week-old

C57BL/6J mice at 25uC or 4uC for a different length of time (0, 3,

12, 72 hrs) after they were sacrificed by deep euthanasia. After the

incubation period, the mice were dissected and their brains

immediately frozen in liquid nitrogen. The brain samples were

thawed at 4uC in T-PER Tissue Protein Extraction Reagent and

immediately used for sample preparation, as described in

Methods. The quantitative whole proteome mass analysis was

performed with Q-STAR (AB SCIEX) and repeated for three sets

of samples. Each set included cerebral cortex samples from a

mouse body kept at 25uC or 4uC for different lengths of time (0, 3,

12, 72 hrs).

Relative quantity compared to the initial value at 0 hr was

obtained for each phosophoprotein, and the mean value among

three sets was calculated for each time point and temperature

(Figure 1). Surprisingly, the postmortem changes in phosphopro-

teins showed extreme diversity (Figure 1). When increase and

decrease were defined as more than 1.2 and less than 0.8 fold,

respectively, 26% of total phosphoproteins decreased rapidly from

0 to 3 hrs, while 17% of proteins increased during this interval at

room temperature (25uC). 75% of total phosphoproteins were

reduced after more than 12 hrs at room temperature (25uC), but

some exceptional phosphoproteins (5.5%) continued to increase

from 12 to 72 hrs. In contrast to the pattern at room temperature,

55% of phosphoproteins were relatively stable after more than

12 hrs at 4uC. However, there were also exceptional cases whose

levels increased or decreased rapidly.

Categorization of temperature-dependent changes of
phosphoproteins

We suspected that a mixture of different patterns might cause

the extreme diversity of chronological changes. Therefore, we

categorized the data by cluster analysis. At each temperature,

phosphoproteins were classified into four groups (Figure 2).

Group A2C showed typical patterns at each temperature, while

group D (‘‘miscellaneous’’) contained a wide variety of behaviors.

At room temperature, Group A exhibited a transient increase and

decline after 12 hrs. Group B exhibited a relatively constant and

slow decrease until 72 hrs. Group C exhibited a rapid decrease

until 12 hrs and a more gradual decrease after 12 hrs. At 4uC,

Group A tended to increase slowly; group B was almost stable

until 72 hrs; and group C decreased rapidly until 3 hrs and then

stabilized.

The classification revealed that in each temperature group, the

initial changes in phosphoprotein levels followed diverse paths

until 12 hrs. Later than 12 hrs, all phosphoproteins either

stabilized or gradually decreased at room temperature. At the

same time, there were exceptional proteins whose changes can

hardly be expected. These patterns of change were also supported

when proteins were classified by the ratio of changes (Figure 3).

Until 12 hrs, the percentage of increased (X.1.2), unchanged

(0.8,X,1.2) or decreased (X,0.8) phsophoproteins was almost

the same between 25uC and 4uC. However, the percentage of

decreased proteins (X,0.8) increased markedly at times later than

12 hrs at 25uC.

As shown in Figure 2, the pattern for Group B at 25uC looked

similar to that of Group B at 4uC. This was also the case for Group

C. This impression was supported by a comparison of phospho-

proteins belonging to these groups (Figures S1, S2, S3). The

comparison also indicated that expression of a majority of proteins

was relatively constant, and that chronological change can be

expected at both temperatures.

Selection of standard phosphoproteins
We next selected standard proteins that can be used for

quality control of brain tissue even when information about

postmortem processing conditions is not available. We first

plotted the mean value of each group (Figures 4, 5). The mean

value for total protein level declined at 0.006/hr after 12 hrs at

25uC (Figure 4); in contrast, at 4uC, the mean value was stable

until 72 hrs (Figure 5). Corresponding to each group, we selected

representative proteins that mimicked the pattern of mean values

(Figures 4, 5). The standard proteins that represented the decline

of total phosphoproteins at room temperature were Glud1,

Pacsin1 and Snap25. Glud1 is highly expressed in the brain and

is known to function as a mitochondrial enzyme converting

glutamate to 2-oxoglutarate [11], thereby affecting the blood

ammonia level [12]. Pacsin1, a neural isoform of Pacsin, is a

cytoplasmic phosphoprotein involved in vesicle formation [13]

and endocytosis regulation [14]. It also interacts with huntingtin

at synapses [15]. Snap25 is a membrane-bound pre-synaptic

protein and a component of the SNARE complex [16], which is

essential for synaptic vesicle fusion [17] and Ca2+ response [18].

On the other hand, the standard proteins representing the

stability of total phosphoproteins at 4uC were Pacsin1, Eefeld

and Prpsap2. Eefeld delivers aminoacyl tRNAs to the ribosome

[19], and is also known to catalyze the exchange of GDP bound

to Elongation Factor 1a with GTP [20] which is stimulated by

PKC [21]. Prpsap2 negatively regulates phosphoribosyl pyro-

phosphate (PRPP) synthetase [22]. These data together indicate

that Pacsin1 is a good control protein to use in evaluation of the

postmortem interval during which the body was left at room

temperature before transfer to the morgue in the pathology

department.

We also found several phosphoproteins that were relatively

stable up to 72 hrs at room temperature (Figure 6). Importantly,

one of them, Gm5506 (a-enolase) was stable also at 4uC (Figure 6).

As shown in Figures 4 and 5, the change of Pacsin1 exactly

matches with the average change of total phosphoprotein

(Figures 4, 5). Pacsin1 decreases at a constant rate at room

temperature but it is stable at 4uC for 72 hrs. In contrast, Gm5506

is stable both at room temperature and 4uC. The ratio between the

absolute signal values of Pacsin1 and Gm5506 at 0 hr (76.1:75.1) is

also known. From these values, we can calculate the postmortem

time at room temperature according to the formula (Figure 7).

Discussion

This study had three main goals: 1) to investigate how the

phosphoproteome is changed in postmortem brains over the

course of preservation; 2) to propose a specific preservation

protocol that is suitable for phosphoproteome analysis of brain

tissue; 3) to develop a specific method for adjusting phosphopro-

tein data based on time and temperature. For these purposes, we

performed whole-proteome analyses of phosphoproteins using

mouse brains that had been kept at room temperature or 4uC for

different lengths of time.

Postmortem Change of Brain Phosphoproteome
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First, we learned that the chronological changes in phospho-

proteins are surprisingly diverse. Most proteins (82.5% at RT and

93.7% at 4uC) change following several typical patterns (Group A,

B or C). However, the change of the other proteins is hardly

prospected (Group D). This result suggests several things. If a

phosphoprotein of interest belongs to the three regular groups

(Groups A2C), we can evaluate whether the value obtained in an

experiment is increased or decreased based on the pattern

obtained in this study. If a target phosphoprotein in future

research belongs to Group D, however, caution must be taken in

evaluating its levels. Although the patterns are limited to 126

proteins in our current study, the database would be expanded to a

larger number of phosphoproteins. We are now obtaining data

with a higher grade of mass analysis; the results will be made

available as an open database in the future.

As hyperphosphorylation of some specific proteins has been

implicated as causative in neurodegenerative disorders, we asked

whether our current results included such important proteins.

However, APP [23-27], Presenilin1/2 [28,29], tau [30,31],

Apolipoprotein E [32], Cdk5 [33], TDP-43 [34] or GSK-3beta

[35], which are implicated in Alzheimer’s disease and tauopathy,

were not included in these results. Also, alpha-synuclein [36,37],

Leucine-rich repeat kinase 2 [38,39], ubiquitin carboxyl-terminal

hydrolase L1 [40], Parkin [41], Pink1 [42], Grb10-Interacting

GYF Protein-2 [43], or Omi/HtrA2 [44], which are implicated in

Parkinson’s disease, are not included. The postmortem changes in

these proteins will also become clear in a future study.

Although postmortem changes in phosphoproteins were diverse

over the first 12 hrs, they were generally inclined to decrease from

12 to 72 hrs. Since only one protein was increased more than

Figure 1. Postmortem dynamics of phosphoproteins revealed by quantitative mass analysis. The numbers of proteins and peptides
identified from three sets of mass analysis are listed. 126 proteins were identified with more than 95% fidelity from the merged data of three sets. The
lower graphs show the chronological change of phosphoproteins during preservation at 25uC and 4uC.
doi:10.1371/journal.pone.0021405.g001
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Figure 2. Cluster analysis of postmortem phosphoprotein dynamics. Dendrograms of total identified proteins at RT (25uC) and 4uC were
drawn by cluster analysis. Cerebral cortex phosphoproteins were classified into four groups according to the changing pattern (upper panels). At
25uC, 34, 46, 24 and 22 proteins belong to Groups A, B, C and D, respectively. At 4uC, 33, 64, 21 and 8 proteins belong to Groups A, B, C and D,
respectively. Lower graphs show the patterns of chronological change for phosphoproteins in each group.
doi:10.1371/journal.pone.0021405.g002

Postmortem Change of Brain Phosphoproteome
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2-fold during 72 hrs at room temperature, and only two proteins

were increased more than 2-fold during 72 hrs at 4uC, increases

more than 2-fold can be suspected as abnormal in any postmortem

samples that were kept at 4uC within 72 hrs. However, after

getting such a result, one should come back to postmortem omics

data such as ours in order to check the validity of the result.

Second, we can now propose how the brain samples should be

prepared for the analysis of phosphoproteins. Our results showed

that some proteins rapidly decreased within 12 hrs at room

temperature (Figure 2, Group C at RT) while some other proteins

increased within 12 hrs at room temperature (Figure 2, Group A at

RT). After 12 hrs, most phosphoproteins declined at a constant rate

(0.006/ hr), and we learned that the mean value of phosphoproteins

at room temperature was remarkably decreased at 72 hrs (Figure 3).

Even at 4uC, some proteins were increased or decreased within

12 hrs (Figure 2, Groups A2C at 4uC). Later than 12 hrs,

however, the amounts of phosphoprotein were very stable

(Figure 2, Groups A2C at 4uC). This probably means that it

takes some time before the brain temperature reaches 4uC, and

some phosphoproteins change quantitatively during the time. But

after the brain temperature was brought to 4uC, phosphoproteins

were stable until 72 hrs. Measurement of postmortem deep brain

temperature supported this speculation (Figure S4).

Thus, the body should be chilled to 4uC as soon as possible, no

later than 12 hrs after death. In other words, the brain

temperature should become 4uC within 12 hrs postmortem. Even

with more or less immediate chilling, however, one should refer to

our database in this study (Figure S5) showing how each

phosphoprotein changes over the course of the first 12 hrs. We

will update the database, covering far more phosphoproteins, in

the near future.

Third, we propose a method for estimating the postmortem

time spent at room temperature. Pacsin1 decreases at a constant

rate at room temperature, exactly matching with the average

change of total phosphoprotein (Figures 4, 5). In addition, Pacsin1

is stable at 4uC for 72 hrs. In contrast, Gm5506 is stable both at

room temperature and 4uC. The absolute signal value ratio

between Pacsin1 and Gm5506 at 0 hr (76.1:75.1) is also known.

Therefore, we could calculate the postmortem time at room

temperature from these values (Figure 7). We would be able to use

Eefeld and Prpsap2, as well as Hspa8/Hsp70-4 or 14-3-3 a/b, as

other standards for the same purpose. If we can obtain a fresh

human brain sample and measure the absolute ratio between

Pacsin1 and Gm5506/a-enolase at 0 hr, this method can be used

to calculate the postmortem time in humans. However, for ethical

reasons, we have not obtained such a value currently.

Figure 3. Comparison between RT and 46C groups. (A) Identified phosphoproteins at each time point were classified into three groups based
on the relative quantity to the initial value at 0 hr. (B) Corresponding groups are compared between RT (25uC) and 4uC to evaluate the similarity
between groups.
doi:10.1371/journal.pone.0021405.g003
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This study left several issues for future studies. First, we may

have to add earlier time points to detect certain unexpected

changes of phosphoproteins. Second, we need to analyze other

parts of the brain like brainstem, cerebellum, and spinal cord. The

dynamics of phosphoproteins in such brain parts might be

different from that of cerebral cortex. The information will be

necessary for the phosphoprotein in human diseases like

spinocerebellar ataxia or multiple system atrophy.

In conclusion, our data has provided crucial information that can

be used to interpret future data, as well as previously reported

experimental data regarding phosphoproteins. We may have to re-

evaluate previous reports using human samples from the standpoint

of postmortem time and temperature. Future experiments using

human samples should definitely be evaluated using our data, which

will be expanded and delivered as an open database.

Materials and Methods

Ethics statement
All procedures were approved by the Institutional Animal Care

and Use Committee of the Tokyo Medical and Dental University

(MR:2010-002) and performed according to the guidelines of

Ministry of Education, Culture, Sports, Science and Technology

(MEXT) of Japanese government.

Sample preparation
12 week-old C57BL/6J mice were kept at 25uC or 4uC for

different lengths of time (0, 3, 12, 72 hrs) after they were sacrificed

by deep euthanasia using ethyl ether. Mice were put in a glass

bottle (5L) in which the air was saturated by ethyl ether. The mice

were deeply anesthetized by ether vapor at three minutes later

Figure 4. Representative genes of each clustered group at RT. Chronological changes at 25uC of the mean value of total identified
phosphoproteins (Total) and of phosphoproteins belonging to each group (Groups A2D) are shown. Proteins most similar to the mean value pattern
were also selected.
doi:10.1371/journal.pone.0021405.g004
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when they were sacrificed. Their cerebral cortex was isolated,

immediately frozen in liquid nitrogen, and stored at 280uC.

Protein was extracted from the cerebral cortex using the T-PER

Tissue Protein Extraction Reagent (Thermo Fisher Scientific Inc.,

USA). The amount of the protein was measured using the BCA

Protein Assay Reagent (Thermo Fisher Scientific Inc.).

iTRAQ labeling
Samples containing 95 mg of protein were denatured in 0.1%

SDS, and reduced in 5 mM TCEP (tris-2-carboxyethyl phosphine)

for 1 hr at 60uC. Cysteine residues were blocked with 10 mM

MMTS (methyl methanethiosulfonate) for 10 min at 25uC, and

then samples were digested with trypsin (10:1 protein/enzyme w/w)

for 24 hrs at 37uC. The digested proteins (peptides) were then

passed through a Sep-Pak Light C18 cartridge column (Waters

Corporation, USA) to be desalted. Phosphopeptides were enriched

using the Titansphere Phos-Tio Kit (GL Sciences Inc., Japan), and

desalted again with a Sep-Pak Light C18 cartridge column. The

peptides in each individual sample were labeled separately using the

iTRAQ Reagent-multiplex assay kit (AB SCIEX Ins.) for 2 hrs at

25uC. The labeled peptide pools were then mixed together. Next,

the peptide mixture was subjected to SCX (Strong Cation

Exchange) chromatography (AB SCIEX Ins.). The peptide mixture

was eluted in a stepwise gradient from 20, 60, 100, 150, 200, and

350 mM KCl in 10 mM KH2PO4 (pH 3.0), 25% acetonitrile. The

peptide fractions were dried and desalted using a Sep-Pak Light C18

cartridge column.

Quantitative whole proteome mass analysis
The dried peptide fractions were re-suspended in 2%

acetonitrile and 0.1% formic acid. Each SCX fraction was

analyzed using a DiNa Nano-flow LC system (KYA Technologies

Figure 5. Representative genes of each clustered group at 46C. Chronological changes at 4uC of the mean value of total identified
phosphoproteins (Total) and of phosphoproteins belonging to each group (Groups A2D) are shown. Representative proteins that mimic the mean
value pattern are also selected.
doi:10.1371/journal.pone.0021405.g005
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Corporation, Japan) and Q-STARH Elite Hybrid LC/MS/MS

System (AB SCIEX Ins.). The samples were loaded onto a

0.1 mm6100 mm C18 column and eluted with a gradient of

52100% solution B (80% acetonitrile and 0.1% formic acid) in

solution A (2% acetonitrile and 0.1% formic acid). The flow rate

was 300 nL/min, and ion spray voltage was 1.8 kV. The IDA

Figure 6. Stable proteins at RT and 46C. Proteins whose relative amount stayed within 0.8 to 1.2 during 72 hrs are listed. 7 and 36 proteins
matched this criterion at 25uC and 4uC, respectively. Proteins found at both temperatures are marked in red. Arrows indicate the standard protein,
which is stable at RT (25uC) and 4uC.
doi:10.1371/journal.pone.0021405.g006
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(Information Dependent Acquisition) setting was 40021800 m/z

with two to four charges. Analyst QS 2.0 software (AB SCIEX

Ins.) was used to identify each peptide. Quantification of each

peptide was based on TOF-MS electric current detected during

the LC-separated peptide peak, adjusted by the charge/peptide

ratio. Quantification of a protein was deduced by averaging the

quantities of multiple peptide peaks from the protein. These

processes were automatically performed using the Q-STARH Elite

Hybrid LC/MS/MS Hybrid System (AB SCIEX Ins.)

Cluster analysis of identified proteins
The quantitative ratio between 0 hr and the other 6 time points

(1, 25uC for 3 hrs; 2, 25uC for 12 hrs; 3, 25uC for 72 hrs; 4, 4uC
for 3 hrs; 5, 4uC for 12 hrs; 6, 4uC for 72 hrs) in each detected

protein was obtained using the Protein Pilot software (AB SCIEX

Ins.) analysis. The chronological pattern was classified into four

groups by clustering analysis using Minitab 16 software with the

Ward method and Euclidean distance. Dendrograms were drawn

using the same software.

Supporting Information

Figure S1 Proteins belonging to each cluster group at 25uC are

listed. Proteins that are members of the same groups at 25uC and

4uC are marked in red.

(TIF)

Figure S2 Proteins belonging to each cluster group at 4uC are

listed. Proteins that are members of the same groups at 25uC and

4uC are marked in red.

(TIF)

Figure S3 Full names of the gene symbols, listed in alphabetical

order.

(TIF)

Figure S4 Chronological change of the deep brain temperature

in mouse body at 25uC or 4uC. Temperature was measured using

a needle thermometer (Testo 905-T1, Japan) in mouse bodies left

at 25uC or 4uC and mean +/2 SD (n = 4) are shown in the graph.

(TIF)

Figure S5 The Excel file includes all the data on 126 proteins.

(TIF)
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