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Abstract: Nanostructured carriers have been widely used in pharmaceutical formulations for der-
matological treatment. They offer targeted drug delivery, sustained release, improved biostability,
and low toxicity, usually presenting advantages over conventional formulations. Due to its large
surface area, small size and photothermal properties, graphene oxide (GO) has the potential to be
used for such applications. Nanographene oxide (GOn) presented average sizes of 197.6 ± 11.8 nm,
and a surface charge of −39.4 ± 1.8 mV, being stable in water for over 6 months. 55.5% of the mass
of GOn dispersion (at a concentration of 1000 µg mL−1) permeated the skin after 6 h of exposure.
GOn dispersions have been shown to absorb near-infrared radiation, reaching temperatures up to
45.7 ◦C, within mild the photothermal therapy temperature range. Furthermore, GOn in amounts
superior to those which could permeate the skin were shown not to affect human skin fibroblasts
(HFF-1) morphology or viability, after 24 h of incubation. Due to its large size, no skin permeation
was observed for graphite particles in aqueous dispersions stabilized with Pluronic P-123 (Gt–P-123).
Altogether, for the first time, Gon’s potential as a topic administration agent and for delivery of
photothermal therapy has been demonstrated.

Keywords: biocompatibility; carbon nanomaterials; graphite; phototherapy; skin disease

1. Introduction

Skin diseases are one of the leading causes of global disease burden, affecting millions
of people worldwide. In the United States of America (USA), nearly 85 million people are
seen by a physician for at least one skin disease every year. This leads to an estimated
direct health care cost of USD 75 billion and an indirect lost opportunity cost of USD
11 billion. Further, mortality was noted in half of the 24 skin disease categories. The
costs and prevalence of skin disease are comparable with or exceed other diseases with
significant public health concerns, such as cardiovascular disease and diabetes. Chronic
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and incurable skin diseases, such as psoriasis, atopic dermatitis (AD), and vitiligo are
associated with physical discomfort and impairment of patients’ quality of life whereas
malignant diseases, such as basal cell carcinoma, if not early and properly treated can lead
to mortality. Therefore, new and more effective treatment strategies are needed to deal
with skin disease [1,2].

Guidelines for treatment of Psoriasis, AD, and Vitiligo include as first or second line
options phototherapy with ultraviolet radiation combined or not with drugs (e.g., psoralen),
while for basal cell carcinoma (BCC), photodynamic therapy (PDT) with photosensitizers,
such as 5-aminolevulinic acid (5-ALA), activated by near-infrared (NIR) radiation are listed
in the first line of treatments [3–6]. This therapy has also been reported in the literature for
the abovementioned diseases [7]. However, such treatments still present limitations due to
the low stability, toxicity, and skin penetration of commonly used drugs [8].

Nanostructured carriers are an upcoming option for drug delivery because of their
advantages over conventional formulations. Nanoparticles can penetrate skin depending
on size, charge, and surface chemistry. These colloidal particulate systems with sizes
often around or below 200 nm offer targeted drug delivery, sustained release, improved
biostability, and low toxicity. Nanoparticles are observed to penetrate skin intracellularly,
intercellularly, or via hair follicles. Many nanocarriers such as polymeric, inorganic and
lipid nanoparticles have been developed, and some like carbon based nanomaterials still
need further exploration for future use in dermatological applications [9,10].

Carbon materials have been generally reported to have strong light absorption while
maintaining their stability, and therefore being a promising new class of agents for pho-
totherapy. Furthermore, such materials’ skin biocompatibility has been observed since
ancient times, where manmade permanent tattoos using pulverized charcoal could be
placed under the skin without apparent adverse effects [11].

A more recent type of carbon materials, graphene-based materials (GBM), have been
widely explored as promising drug delivery vehicles. The large specific surface area of GBM
facilitates efficient loading of drugs via surface adsorption or chemical functionalization.
Graphene-based nanosystems have been shown to improve the stability, bioavailability,
and photodynamic efficiency of organic photosensitizer molecules. They have also been
shown to behave as electron sinks for enhanced visible light photodynamic activities.
Owing to its intrinsic near infrared absorption properties, GBM can be designed to combine
both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency.
Compared with other nanocarriers, GBM possess much higher drug loading capacity
and radiation absorbance. It has been shown that GBM can be targeted to specific cells,
for delivery of photosensitizers in PDT [12–17]. Furthermore, GBM are similar to active
substances used in the treatment of dermatological conditions, such as psoriasis (e.g.,
anthracene, anthralin, psoralen, coal tar), which reaffirms the potential for phototherapeutic
effect using GBM themselves and their good affinity with the drugs to be delivered. GBM
have been shown to be biocompatible up to high concentrations that will hardly be achieved
in dermatological phototherapy [18–20]. Moreover, some GBM have been reported to be
biodegradable by human enzymes [21,22]. For those reasons, the use of GBM can be
regarded as a promising option for target applications.

Graphene is the elementary structure of graphite and is composed of a single layer
of sp2 hybridized carbon atoms organized in a hexagonal crystalline structure, forming
a two-dimensional sheet. This material possesses high surface area, mechanical strength
and thermal and electrical conductivity that supports its application in fields as diverse as
energy technology, nanoelectronics, composite materials, and sensors [23–31]. In addition,
graphene also possesses good optical transparency (97.7%) and high extinction coefficient
in the NIR range, responsible for its high photothermal conversion ability [32].

The application of graphene in the biomedical area is limited by its hydrophobicity,
which can be surpassed by its oxidation and consequent introduction of oxygen-containing
functional groups, such as carboxyl, hydroxyl and epoxide groups [33]. Graphene oxide
(GO) is similar to graphene, but the presence of these polar and reactive groups allows
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surface functionalization and coupling with other molecules such as chemotherapeutic
drugs or photosensitizers that make possible its utilization as drug carriers. Thus, several
biomedical applications of GO have also been studied, including biosensing/bioimaging,
drug delivery, antibacterial or cancer photothermal therapy [34–38].

Beyond their polarity, materials’ size is of key importance in biomedicine. Consid-
ering that biological systems as membranes and protein complexes are natural nanos-
tructures, the utilization of nanomaterials has a clear advantage in the interaction with
these structures, making cellular uptake, penetration into blood vessels and renal clearance
possible [39]. Thus, the successful application of GO in the biomedical field requires size
reduction to the nanoscale.

The administration of nano graphene oxide (GOn) in in vivo models to test the efficacy
of these materials as platforms for cancer or infections treatment, is generally done by
intravenous or intratumoral injection [40–44]. However, these approaches present some
disadvantages, once they are invasive procedures, more susceptible to trigger adverse
reactions [45,46]. Thus, the topical application of GOn to treat skin diseases, including skin
cancer, local infections or other diseases for which the treatment can be delivered through
this route, is positioned as an interesting approach, since it is a non-invasive procedure that
allows a localized material distribution, preventing any systemic side effects [45–49].

In view of these aspects, for the first time, to our knowledge, the permeability of single
layer GO with nanometric lateral dimensions (GOn) and micrometric graphite stabilized
with Pluronic P-123 (Gt–P-123) water dispersions through human skin have been studied.
The influence of materials’ lateral dimensions and exfoliation procedure in skin permeation
were also discussed. Finally, GOn photothermal therapy potential and biocompatibility
were evaluated.

2. Materials and Methods
2.1. Graphite Dispersions Preparation

Graphite powder (size ≤ 20 µm, Sigma Aldrich, St. Louis, MO, USA) dispersions
were stabilized with Pluronic P-123 (Sigma Aldrich, St. Louis, MO, USA). Graphite powder
(Gt) and Pluronic P-123 (P-123) at final concentrations of 1000 µg mL−1 and 0.5% (w/w),
respectively, were dispersed in deionized water and then sonicated for 10 min using an
ultrasonic bath (ATM40-3LCD, Ovan, Barcelona, Spain) to obtain stable dispersions.

2.2. GOn Dispersions Production

Graphite oxide (GtO) was produced by Gt oxidation (size ≤ 20 µm, Sigma Aldrich,
St. Louis, MO, USA) using the modified Hummers method, as described elsewhere [18,50].
Briefly, 4 g of graphite was added to a mixture of 40 mL of phosphoric acid (H3PO4, Chem-
Lab, Zedelgem, Belgium) and 160 mL of sulfuric acid (H2SO4, VWR, Frankfurt, Germany)
under stirring, and cooled using an ice bath. Then, 24 g of potassium permanganate
(KMnO4, JMGS, Odivelas, Portugal) were added gently under stirring. Subsequently,
600 mL of H2O was slowly added, controlling temperature using an ice bath. Finally,
hydrogen peroxide (H2O2, 26.5 mL, VWR, Frankfurt, Germany) was added and the mixture
was left to rest overnight. Afterwards, the solution was decanted to separate the solid
phase from the acidic solution, centrifuged at 4000 rpm for 20 min and redispersed in
distilled water. The process was repeated until water pH was achieved in the supernatant.
The pellet was recovered, redispersed in distilled water and sonicated for 8 h using a
high-power ultrasonic probe (UIP1000hd, Hielscher Ultrasonics GmbH, Teltow, German)
to simultaneously exfoliate GtO and breakup the sheets to lateral sizes close to a hundred
nanometers, yielding the final product, nanographene oxide (GOn) at a concentration of
7 mg mL−1, which was further diluted for testing.
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2.3. Characterization
2.3.1. Optical Microscopy

Gt–P-123 dispersions at a Gt concentration of 1000 µg mL−1 were placed in a 48-well
cell culture plate (500 µL) and observed under an inverted optical microscope (CKX41,
Olympus, Tokyo, Japan) coupled with a digital camera (SC30, Olympus, Tokyo, Japan).

2.3.2. Transmission Electron Microscopy

GOn sheets’ morphology and dimensions were evaluated using transmission electron
microscopy (TEM, JEOL JEM 1400 TEM, Tokyo, Japan). An amount of 10 µL of GOn
dispersed in water (50 µg mL−1) as placed on a carbon-coated TEM grid and left to stand
for one minute. The surplus of the dispersion was removed using filter paper by capillarity.
GOn lateral dimensions were measured from several different TEM images using ImageJ
1.53a software [51].

2.3.3. Dynamic Light Scattering and Zeta Potential Measurements

The size of GOn particles, polydispersibility index (PDI) and values of zeta potential
were assessed using a Zetasizer (Nano-ZS, Malvern Instruments, Malvern, UK) by dynamic
light scattering (DLS) and electrophoretic light scattering (ELS). GOn (25 µg mL−1) was
tested using a disposable Zetasizer cuvette (Malvern Instruments, Malvern, UK), at room
temperature, and pH 6. Measurements were done in triplicate and results are presented as
the average and standard deviation.

2.3.4. Ultraviolet-Visible Spectroscopy

Absorption spectra in the range of 200–850 nm for GOn, G-P-123, and P-123 (only)
were obtained using a spectrophotometer (Lambda 35 UV/Vis, Perkin-Elmer, MA, USA).
Samples at 25 µg mL−1 concentration were analyzed in a 50 µL quartz cuvette (Hellma
Analytics, Müllheim, Germany) with 10 mm light path length. All measurements were
subjected to baseline correction using water as a blank control at room temperature.

2.4. Skin Permeation Experiments
2.4.1. Human Samples

Human skin samples with a thickness of 0.8 mm were obtained from one healthy
woman subjected to abdominal surgery in the Department of Plastic Surgery of the São
João Hospital (Porto, Portugal). A written informed consent form was provided to the
donor and the the Bioethics Committee of the São João Hospital approved the experimental
protocol (protocol code: 90_17). The skin sample was washed with ultrapure water, and
afterwards the hair and subcutaneous adipose tissue were removed using scissors. The skin
was kept at −20 ◦C wrapped in aluminum foil until being used [52] as recommended by the
European Center for the Validation of Alternative Methods, the International Programme
on Chemical Safety and the EU Scientific Committee on Consumer Products.

2.4.2. Skin Permeation Assays

Human skin permeability to Gt–P-123 and GOn was assessed using Franz diffusion
cells with 9 mm clear jacketed with flat ground joint, 0.785 cm2 of permeation area, and
with a receptor compartment with 5 mL of volume (PermeGear, Inc., Hellertown, PA, USA).

The skin previously prepared was mounted in the Franz cells with stratum corneum
(SC) facing the donor compartment. The receptor chamber was filled with 0.1 M phosphate
buffer (PBS) at pH 7.4, and maintained at 37 ◦C under stirring at 300 rpm, ensuring sink
conditions. Afterwards, 500 µL of Gt (1000 µg mL−1) or GOn dispersions (300, 400, 500,
and 1000 µg mL−1) were added to the donor compartment and sealed with paraffin film
to ensure occlusive conditions in order to prevent loss of sample from the surface of the
skin and also to maintain human skin hydrated during the assay [53]. Then, at 1, 2, 3, 4, 5
and 6 h, a receptor medium aliquot (100 µL) was recovered to determine by absorbance the
amount of material that permeated through the skin. The same volume of PBS was then
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readded to the same compartment. A calibration curve for both materials was prepared
to extrapolate Gt–P-123 or GOn concentrations at the receptor compartment. Materials’
permeated mass was obtained by multiplying the sample concentration for the volume
of receptor compartment. Results are presented as cumulative mass and percentage of
material that permeated through the skin. All assays were performed in triplicate.

2.5. GOn Photothermal Therapy Potential

In order to evaluate the ability of GOn to convert light into heat, 500 µL of the
dispersion at different concentrations (300–1000 µg mL−1) was placed in a cell culture
plate (48-well). A control was performed filling wells with water only. Samples irradiation
was performed using a LED-based source with 150 mW cm−2 of irradiance and with a
peak emission in NIR region (810 nm) [54]. Samples’ temperature increment induced by
irradiation was monitored during 30 min using a type K thermocouple (Hanna instruments,
Póvoa de Varzim, Portugal) placed at half-height and centered in the liquid. Assays were
performed in 3 different experiments, with 3 replicates for each condition, and results are
reported as the average and standard deviation of absolute temperature.

2.6. In Vitro Studies
2.6.1. Cell Culture

HFF-1 human skin fibroblast cells (SCRC-1041, ATCC, Manassas, VA, USA) were uti-
lized in the biological studies. Cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM, ATCC, Manassas VA, USA) supplemented with 1% (v/v) penicillin/streptomycin
(Biowest, Nuaillé, France) and 10% (v/v) fetal bovine serum (Alfagene, Lisbon, Portugal).
Cells were kept at 37 ◦C in a humidified atmosphere with 5% CO2.

2.6.2. Resazurin Assay

The effect of GOn on HFF-1 cells’ viability was assessed using different material
amounts (180–600 µg/well, corresponding to 300–1000 µg mL−1). Each well has an area of
0.91 cm2. Cells at a density of 1 × 104 cells/well were seeded in 48-well cell culture plates
and incubated for 24 h at 37 ◦C and 5% CO2. Afterwards, cell medium was removed and
GOn dispersions were added in a final volume of 600 µL per well (in complete DMEM).
After, 24 h incubation, cell viability was quantified by using the resazurin assay. GOn disper-
sions were removed, cells were washed 3 times with PBS and then incubated at 37 ◦C and
5% CO2 for 2 h with 10% (v/v) resazurin (Sigma-Aldrich, St. Louis, MO, USA) previously
prepareded in cell culture medium. The supernatant fluorescence (λex/em = 530/590 nm)
of each well was determined using a Synergy Mx micro-plate reader (Bio-Tek Instruments,
VT, USA). Cell viability decrease positive and negative controls were performed incubating
HFF-1 cells with 10% (v/v) dimethyl sulfoxide (DMSO) in complete DMEM and complete
DMEM only, respectively. Results for each condition were normalized to the negative
control (cells in complete DMEM only) and reported as % of the control. All experiments
were performed in triplicate and six replicates for each condition were performed.

2.6.3. Live/Dead Assay

The effecf of GOn on cells morphology and viability was evaluated by performing
a live/dead assay. Cells were seeded and exposed to GOn as described for the resazurin
assay. After 24 h, cells were washed 3 times with PBS and incubated with calcein (1 µM)
and propidium iodide (2 µg mL−1) in PBS during 15 min at 37 ◦C in the dark. Then, cells
were washed twice wih PBS and analyzed using an inverted fluorescence microscope
(Axiovert 200, Zeiss, Jena, Germany).

2.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software version 8.4.2
(GraphPad Software, San Diego, CA, USA). One-way analysis of variance (ANOVA) with
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Tukey’s test for multiple comparisons were performed. Differences between experimental
groups are considered significant whenever p < 0.05.

3. Results and Discussion
3.1. Gt and GOn Dispersions Physico-Chemical Characterization

Graphite (Gt) was dispersed by sonication in water, however, it precipitated due to
its large size (≤20 µm) and hydrophobicity. Therefore, it was stabilized with Pluronic
P-123 (P-123), a non-ionic surfactant composed of poly(ethylene oxide) and poly(propylene
oxide) blocks [55]. Nanosized GO (GOn) was produced by Gt oxidation and exfoliation
using a modified Hummers method, followed by high-power ultrasonication. Figure 1
shows Gt, Gt–P-123, and GOn aqueous dispersions at a concentration of 1000 µg mL−1.
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Figure 1. Images of graphite without Pluronic P-123 (Gt), Graphite + Pluronic P-123 (Gt–P-123) and
graphene oxide (GOn) dispersions, at a concentration of 1000 µg mL−1, in glass vials for stability
evaluation. Sedimentation is visible on the Gt sample after only a few seconds.

The presence of P-123 at a concentration of 0.5% (w/v) stabilized Gt in water, allowing
the attainment of a homogenous blackish dispersions without formation of any precipitate.
Such dispersions are stable for a 12 h period, after which the sedimentation becomes
visible. However, it is possible to easily redisperse them by manual shaking. GOn water
dispersions presented a typical brownish appearance and good stability. Such dispersions
present a shelf-life of at least 6 months (longest observation period tested).

Gt–P-123 water dispersions were observed by optical microscopy (Figure 2), being
revealed to have small particles with sizes from a few µm to large agglomerates up to
200 µm.
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The morphology and size of GOn nanosheets were evaluated by TEM. Figure 3
shows that our high-power sonication size reduction metod allowed achievement of well
exfoliated GOn single layer particles with an average size of 190 ± 144 nm. Furthermore,
70% of the particles measured presented sizes below 200 nm (Figure 3B), 90% were under
290 nm, and all particles measured presented lateral sizes below 450 nm. In addition, no
agglomeration was observed (Figure 3A), confirming the good dispersibility and degree of
exfoliation of the GOn particles.
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Figure 3. GOn particle morphology and size. (A) Representative TEM images of GOn aqueous dispersions (50 µg mL−1).
Scale bar represents 200 nm. (B) GOn particle size distribution determined from TEM images.

Table 1 shows particle size, polydispersity index (PDI) and surface charge of GOn
measured using a Zetasizer by DLS and ELS, respectively. Gt–P-123 dispersions presented
a particle size too large to be analyzed using a Zetasizer; however, it has already been
clearly observed in optical microscopy images (Figure 2), furthermore, this is a commercial
material whose particle size has already been described. GOn presented hydrodynamic
diameters of 197.6 ± 11.8 nm, with a PDI of 0.396 ± 0.013. Particle size average value
determined by DLS for GOn is consistent with TEM measurements. The smaller size
distribution range observed might have to do with particles being stabilized and folded
due to intraplanar hydrophilic interactions when well dispersed in water, opposing to
when adsorbed on the TEM grid’s surface [56]. The surface charge was −39.4 ± 1.8 mV,
which is a high value that explains the excellent aqueous dispersion stability visually
observed for more than 6 months for this material [57].

The absorbance spectra of GOn, Gt–P-123, and P-123 were determined by UV/Visible
spectroscopy (Figure 4). GOn spectra presented an absorbance peak at λmax = 230 nm,
attributed to π–π* electronic transitions in sp2 clusters, and a shoulder peak at 300 nm,
corresponding to n–π* transitions of free electron pairs in oxygen atoms in C=O bonds from
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carboxyl and carbonyl groups [51]. Gt–P-123, presented a typical spectrum for graphitic
materials, with peaks at 223 and 273 nm [58]. Residual absorbance was detected for
Pluronic-only when at the same concentration used to stabilize Gt in water.

Table 1. Size, surface charge and polydispersity index of GOn aqueous dispersions diluted at a
concentration of 25 µg mL−1 and pH 6 (n = 3).

Material Size (nm) Polydispersity Index Surface Charge (mV)

GOn 197.6 ± 11.8 0.396 ± 0.013 −39.4 ± 1.8
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Figure 4. UV/Visible absorption spectra for water dispersions of nanographene oxide (GOn), graphite
stabilized with Pluronic P-123 (Gt–P-123), and Pluronic P-123 only (P-123) (at the same concentration
used to stabilize Gt).

3.2. Skin Permeability of GOn and Gt–P-123

The permeation through human skin of GOn and Gt–P-123 was evaluated immo-
bilizing the skin samples between the donor and receiver compartments of Franz cells
(Figure 5A). The donor compartment was filled with 500 µL of GOn (300–1000 µg mL−1)
or Gt–P-123 (1000 µg mL−1). Samples were collected from the receptor compartment every
hour, for 6 h. The amount of material that permeated the skin was quantified by UV/Visible
spectroscopy. GOn and Gt–P-123 concentrations were determined from absorbance values
at wavelengths correspondent to the maximum absorption peaks in their spectra (230 nm
for GOn and 223 nm for Gt–P-123). This was performed by matching the absorption
values obtained with calibration curves performed with a range of known concentrations
of both materials.

Gt–P-123 was not detected in the receptor compartment even after 6 h, indicating
that it cannot permeate through the skin sample. This reaffirms the relevance of reaching
nanometric size to achieve and maximize skin permeation of nanoparticles [59]. This
material has therefore no use as a possible vehicle for drug delivery or phototherapy in
skin diseases, and was not further characterized.

Results for GOn skin permeation are presented in Figure 5B. GOn was capable of
permeating across the skin in a time-dependent manner for all concentrations tested. It is
relevant to notice that, besides presenting a lateral size below 200 nm, GOn is formed by a
single layer of carbon atoms, therefore presenting a very low thickness and high flexibility,
which facilitates transport through skin. On the other hand, Gt is composed of numerous
stacked graphene layers.

Skin permeability of GOn at concentrations of 300, 400, 500, and 1000 µg mL−1 was
evaluated every hour for a period of 6 h (Figure 5B). The cumulative percentage of GOn
that permeated from the donor to the receptor compartment was found to decrease as
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concentration increased. After 6 h in contact with skin 55.3, 91.4, 99.3 and 99.8% of the GOn
placed in the donor compartment at 1000, 500, 400 and 300 µg mL−1, respectively, reached
the receptor compartment. For high concentrations, permeation is hindered by deposition
of larger particles and agglomerates along time.
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Figure 5. Skin permeation studies for GOn. (A) Schematic representation of the skin permeability experimental setup using
a Franz cells system. (B) Cumulative percentage of GOn that permeated from donor to receptor compartment at different
concentrations (300–1000 µg mL−1). Results are presented as the average and standard deviation.

After 1 h of experiment, the percentages of GOn at 1000 and 500 µg mL−1 at the
receptor compartment were of 18.4 and 20.2%, respectively. After 3 h, permeation values
were of 42.6 and 54.0%, in the same order. After 4 h, the permeation of GOn at 1000 µg mL−1

started to stabilize due to surface deposition and agglomeration. Values observed were of
49.0% and 61.6% for GOn at 1000 and 500 µg mL−1, respectively. After 6 h, the percentage
of permeation obtained at 1000 µg mL−1 was 1.65-, 1.79- and 1.80-fold lower than when
using GOn at 500, 400 and 300 µg mL−1. However, using GOn at 1000 µg mL−1 allowed the
achievement of a higher absolute mass of material in the receptor compartment (276.7 µg),
when compared to GOn at 500 (228.5 µg), 400 (198.6 µg) and 300 µg mL−1 (150 µg).

3.3. GOn Photothermal Therapy Potential

Since GOn particles’ ability to permeate through human skin has been demon-
strated, they might have the potential to be used in dermatological applications, such
as photothermal therapy of skin cancer [13–16,60]. For that reason, the ability of GOn
(300–1000 µg mL−1) to convert NIR light into thermal energy was evaluated (Figure 6).
GOn heating by NIR light irradiation was demonstrated to be concentration- and time-
dependent. At a concentration of 300 µg mL−1, GOn reached temperatures of 36.0 and
40.2 ◦C, after 15 and 30 min of irradiation, respectively. For 400 and 500 µg mL−1, similar
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values were obtained of around 38 and 42 ◦C, after 15 and 30 min. Finally, at a concentration
of 1000 µg mL−1, GOn dispersions reached temperatures of 40.3 ◦C and 45.7 ◦C, after 15
and 30 min of NIR irradiation, respectively. These values corresponded to an increment of
up to 10 ◦C in relation to water only (control). Therefore, GOn dispersions confirmed to be
effective agents to induce a temperature increase within the mild photothermal therapy
temperature range, which has been reported to induce death of skin cancer cells [54,60].
Concentrations and times applied can be adjusted according to the specific patient and
desired treatment.
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Figure 6. Photothermal heating curves of water-only or GOn aqueous dispersions at concentrations
of 300, 400, and, 1000 µg mL−1.

3.4. In Vitro Biocompatibility of GOn

Since GOn has the potential to be used for applications such as skin cancer photother-
apy and topic drug delivery [13–16,54,61], it is important to assure that the used particles
are non-toxic towards healthy skin cells. For that reason, human foreskin fibroblasts (HFF-
1) were incubated with increasing concentrations (300–1000 µg mL−1) of GOn for 24 h, and
cell viability assessed through the resazurin assay (Figure 7).
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Figure 7. Cellular viability of HFF-1 cells determined using the resazurin assay. Results are normal-
ized with respect to values of the control without material (cell culture media only), and presented as
average and standard deviation. The dotted line at 70% marks the toxicity limit, according to ISO
10993-5:2009(E). No statistically significant differences were found between conditions tested.
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It is relevant to mention that, unlike what happens with HFF-1 exposed to the full
amount of material placed in the wells during 24 h, in skin permeation tests, the particles
go through the skin in a period up to only 6 h. Therefore, the time of exposure and GOn
amounts inside the skin are lower during permeation than in the in vitro biological tests
presented in this section. GOn did not induce any statistically significant decrease in HFF-1
cell viability, for all conditions tested, as compared to the control condition in which the
cells were incubated in cell culture media without materials. Figure 8 shows that HFF-1
cells presented a normal spindle like shape, characteristic of human skin fibroblasts, when
exposed or not to GOn. Moreover, no death cells, stained with PI, could be found. This
reaffirms the potential of the nanosized single layer GOn herein reported to be used in the
biomedical field, in applications such as, for example, skin cancer phototherapy or topic
drug delivery [13–16,54,61].
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4. Conclusions

In order to evaluate their potential for dermatological applications, two different
carbon materials were studied in terms of physicochemical characteristics and human
skin permeation. Graphite particles in aqueous dispersions stabilized with Pluronic P-123
(Gt–P-123) presented sizes between a few to hundreds (agglomerates) of microns. The
presence of P-123 at a concentration of 0.5% (w/v) stabilized Gt in water, allowing the
attainment of homogenous blackish dispersions without sedimentation. Such dispersions
are stable for 12 h, a period after which they precipitate. However, they can be easily
redispersed. Gt–P-123 presented a typical spectrum for graphitic materials, with peaks at
223 and 273 nm. Due its large size, no skin permeation was observed for Gt–P-123.



Materials 2021, 14, 2810 12 of 15

Nanographene oxide (GOn) particles presented average lateral sizes of 197.6 ± 11.8 nm,
and a surface charge of −39.4 ± 1.8 mV, being stable in water dispersion for up to 6 months.
GOn spectra presented an absorbance peak at λmax = 230 nm, attributed to π–π* electronic
transitions in sp2 clusters, and a shoulder peak at 300 nm, corresponding to n–π* transitions
of free electron pairs in oxygen atoms in C=O bonds from carboxyl and carbonyl groups.

GOn was capable of permeating across skin in a time-dependent manner. An amount
of 20.3% of the mass of GOn (1000 µg mL−1) put in contact with the skin sample permeated
after 1 h, while 55.5% permeated after 6 h. Lower concentrations of GOn (300–500 µg mL−1)
presented faster permeation to the receptor compartment, however, the total mass of
material that permeated was lower. Furthermore, GOn dispersions were shown to absorb
near-infrared radiation, causing local temperature to reach up to 45.7 ◦C, within mild
photothermal therapy temperature range. Concentrations and times to apply can be
adjusted according to a specific patient and desired treatment.

Finally, GOn in amounts superior to those which could permeate the skin were shown
not to affect human skin fibroblast (HFF-1) morphology or viability, after 24 h of incubation.

GOn potential as a topic administration agent and for delivery of photothermal ther-
apy has been demonstrated. This material can also be considered as a drug delivery vehicle
for drugs used in skin disease, potentially improving drugs’ stability and penetration,
allowing for reduced therapeutic doses and avoiding side effects of systemic therapy and
high topical doses.
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