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In the last several decades, sleep-related epilepsy has drawn considerable attention

among epileptologists and neuroscientists in the interest of new paradigms of the

disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal

seizures that manifest solely during the sleep state. Sleep comprises two distinct

stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that

alternate every 90min with NREM preceding REM. Current findings indicate that the

sleep-related epilepsy manifests predominantly during the synchronized stages of sleep;

NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy

with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos

Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the

sleep state. Although some familial types are described, others are seemingly sporadic

occurrences. In the present review, we aim to discuss the predominance of sleep-related

epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and

PS, and highlight the present available pharmacotherapy options.

Keywords: epilepsy, sleep, seizure, SHE, BECTS, PS, rolandic, panayiotopoulos

INTRODUCTION

Epilepsy is characterized by frequent and unpredictable disruptions of brain functions resulting in
“epileptic seizures.” Epilepsy has a great impact on the quality of life through increased incidence
of injury and death, unemployment rates, lower monthly incomes, higher household costs and
high absenteeism at work and schools (Jennum et al., 2017; Trinka et al., 2018; Wibecan et al.,
2018). An epileptic seizure is considered as a transient episode of signs or symptoms, including
transitory confusion, staring speech, irrepressible jerking movements, loss of consciousness,
psychic symptoms such as fear and anxiety, due to the abnormal synchronous neuronal activity of
the brain. The International League Against Epilepsy (ILAE) published a recent clinical definition
of epilepsy in which a patient with any of the following conditions is considered to be an epileptic
i.e., (i) two or more unprovoked seizures within more than 24 h apart; (ii) one unprovoked seizure
and a probability of further seizures similar to the general recurrence risk, occurring over the next
10 years; (iii) definite diagnosis of an epilepsy syndrome (Fisher et al., 2014). Genesis of epilepsy is
attributed to various predispositions that include neurological, perceptive, psychological, and social
factors, which could either stimulate or worsen the syndrome. In early 2017, the point prevalence of
active epilepsy was found to be 6.38/1,000 individuals, while the lifetime prevalence was 7.60/1,000
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persons. Meanwhile, the annual cumulative incidence of
epilepsy was 67.77/100,000 persons and the incidence rate
was 61.44/100,000 person-years. The active annual prevalence,
prevalence during lifetime and the incidence of epilepsy were
found to be higher in the developing countries (Fiest et al., 2017).

A systematic review revealed that epilepsies of unknown
etiology had the highest prevalence compared to the epilepsies
of known origin (Fiest et al., 2017). These were due to known
underlying factors that cause seizures such as brain damage
(Sizemore et al., 2018), metabolic diseases (Tumiene et al.,
2018), infections (Bartolini et al., 2018), hemorrhagic stroke
(Zhao et al., 2018), and gene mutations (Leonardi et al., 2018).
These precipitating factors tilt the balance between excitatory
and inhibitory neurotransmissions which has been established
in different types of epilepsy. Physical and psychological
comorbidities are usually accompanied with epilepsy, such as
depression (Jamal-Omidi et al., 2018), sleep disorders (Castro
et al., 2018), and body injuries (Mahler et al., 2018). Advanced
cases may suffer frommemory loss (Reyes et al., 2018), behavioral
disorders (Jalihal et al., 2018), and disturbance of autonomic
functions (Fialho et al., 2018). The rate of sudden death in
epileptic patients was reported to be three times higher than non-
epileptic individuals (Kothare and Trevathan, 2018; Pati et al.,
2018).

Sleep deprivation is very common among the epileptic
patients and lack of sleep could worsen the seizure expressions
(Neto et al., 2016). In animal models, sleep deprivation was
shown to heighten the propensity to seizures (McDermott et al.,
2003). Sleep deprivation has been correlated with decline in
various aspects of brain functional connectivity (Nilsonne et al.,
2017). Generally, sleep deprivation is secondary to other factors
such as illness, emotional or psychological stress, and alcohol use.
Hence, lack of sleep alone may not be sufficient to cause seizures

Abbreviations: ILAE, International League Against Epilepsy; SHE, sleep related

hypermotor epilepsy; BECTS, benign partial epilepsy with centrotemporal spikes;

PS, Panayiotopoulos Syndrome; REM, rapid eye movement; NREM, non-

rapid eye movement; Ca2+ , calcium; K+, potassium; NFLE, Nocturnal Frontal

Lobe Epilepsy; nAChRs, nicotinic acetylcholine receptors; CHRNA2, cholinergic

receptor nicotinic alpha 2 subunit; CHRNA4, cholinergic receptor nicotinic

alpha 4 subunit; CHRNB2, cholinergic receptor nicotinic beta 2 subunit; GABA,

gamma-Aminobutyric acid; Ach, acetylcholine; PRIMA1, proline rich membrane

anchor 1; Cl−, chloride; NKCC1, Na+/K+/Cl− co-transporter-1; KCC2, K+/Cl−

co-transporter-2; PFC, prefrontal cortex; KCNT1, potassium-sodium activated

channel subfamily T member 1; KCNT2, potassium-sodium activated channel

subfamily T member 1; DEPDC5, Disheveled, Eg-10 and Pleckstrin Domain

containing proteins; GATOR1, Gap Activity Toward Rags 1; mTOR, mammalian

target of Rapamycin; mTORC1, mTOR Complex 1; NPRL2, nitrogen permease

regulator-like 2; NPRL3, nitrogen permease regulator-like 3; RE, rolandic

epilepsy; PRRT2, proline-rich transmembrane protein gene; ELP4, elongator

acetyltransferase complex subunit 4; SRPX2, sushi-repeat containing protein X-

linked 2; ARE, atypical RE; NMDARs, N-methyl-D-aspartate receptors; GRIN2A,

α2 subunit of N-methyl-D-aspartate receptors; GABRG2, gamma-aminobutyric

acid receptor subunit gamma-2; RBFOX1, RNA Binding Fox-1 Homolog 1;

RBFOX3, RNA Binding Fox-1 Homolog 3; SCN1A, sodium voltage-gated channel

alpha subunit 1; RTN4R, reticulon four receptor, NOGO RECEPTOR; SNAP29,

synaptosomal-associated protein 29; DGCR8, microprocessor complex subunit

8; ATG16L1, Autophagy 16-like 1; SAG, S-antigen; retina and pineal gland;

DGKD, diacylglycerol kinase delta; STM, sulthiamine; CBZ, carbamazepine;

OXZ, oxcarbazepine; VPA, valproic acid; LEV, levetiracetam; PPARα, peroxisome

proliferator-activated receptor alpha.

(Razavi and Fisher, 2017). A large body of literature on the effects
of epilepsy on sleep and/or sleep-deprivation on the epileptic
state has been collated (St Louis, 2011; Unterberger et al., 2015).

Sleep-related epilepsy represents nocturnal seizures that
manifest solely during the sleep state (Tchopev et al., 2018).
Approximately 12% epileptic patients are affected by sleep-
related epilepsy with the majority suffering from focal epilepsy
(Derry and Duncan, 2013; Losurdo et al., 2014). In a recent case
report, focal epilepsies were anatomically linked to epileptogenic
origins at the right frontal lobe, using white matter tractography
MRI (Tchopev et al., 2018). In a separate study, ambulatory
electroencephalogram (EEG) measurement in outpatient setting
reported frontal lobe seizures to manifest more readily between
12 a.m. and 12 p.m., particularly around 6:30 a.m., whereas
temporal lobe seizures expressed more frequently between 12
p.m. and 12 a.m., specifically around 8:50 p.m. (Pavlova et al.,
2012). In addition to seizure onset, few seizures seem to
propagate more readily during sleep, based on anatomical locus.
Medial temporal lobe regions were shownmore likely to manifest
spike production or propagation during NREM sleep stage
compared to other brain regions (Lambert et al., 2018). Sleep-
related epilepsy is often misdiagnosed as sleep disorders (Tinuper
and Bisulli, 2017), especially in cases where the seizures manifest
exclusively during sleep. Over the past decade, the discovery
of numerous pre-disposing genes and availability of advanced
diagnostic tools have shedmore light in understanding the nature
of sleep-related epilepsy.

In the present review, we discuss sleep-related epilepsy
with particular emphasis on three of the most frequently
implicated epilepsies during the sleep state which include sleep
related hypermotor epilepsy (SHE), benign partial epilepsy
with centrotemporal spikes (BECTS), and Panayiotopoulos
Syndrome (PS).

EXPRESSION OF SEIZURES IN NREM VS.
REM SLEEP STAGES

In comparison with rapid eye movement (REM) sleep, the
expression of focal seizure was 87 times more common in N1,
68 times more likely in N2, and 51 times more likely in N3. For
generalized seizures, the seizure rate was 3.1 times higher in N1,
3.13 times higher in N2 and 6.59 times higher in N3 compared to
the REM stage. Sleep-related epilepsies such as Benign Epilepsy
of Childhood with rolandic spikes were common during the
non-rapid eye movement (NREM) stages, especially during N3
(Ng and Pavlova, 2013), SHE was expressed more readily during
N1/N2 (Nobili et al., 2014; Yeh and Schenck, 2014), and PS
during N1 (Demirbilek and Dervent, 2004). Taken together, the
existing literature suggests that sleep-related seizures are more
likely to occur during the NREM stages of sleep.

NREM sleep is known as the state of neuronal
synchronization, whereas REM as the most desynchronized
sleep state. EEG findings suggest synchronization changes
are more likely to take place during the transitions between
the sleep states, rather than during the particular sleep states
(Baghbani et al., 2018). In general, two types of synchronization
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exist; long-range (involves numerous brain regions) and
local synchronization (involves adjacent neurons). During
seizures, the long-range synchronization is impaired and
local synchronization is enhanced as a result of the altered
extracellular content of calcium (Ca2+) and potassium (K+)
ions. In the pathogenesis of paroxysmal discharge, various
predisposing factors (familial vs. sporadic) could alter the
electrophysiological properties of numerous receptors, which
may potentially decrease the extracellular level of Ca2+ and
increase the extracellular content of K+, simultaneously (Amzica
et al., 2002). Such changes inhibit synaptic transmission and
propagation of action potential (Seigneur and Timofeev, 2011),
which subsequently impair long-range synchronization and
promote electrical coupling between cortical interneurons
(Galarreta and Hestrin, 2001) and glial cells (Giaume and
McCarthy, 1996). Long-range synchronization is also impaired
during the slow-wave sleep (N3) (Ng and Pavlova, 2013). A
preponderance of cortical slow oscillations takes place at this
stage that results in a significant drop in the extracellular content
of Ca2+, leading to high rates of synaptic failures (Steriade et al.,
1993; Crochet et al., 2005). For instance, during the N3 stage, the
mesenphalic reticular formation cholinergic neurons that allow
transmission of impulses from the thalamus to the cortex are
least active (less active during NREM stages) (Ng and Pavlova,
2013). As hypothesized by Timofeev et al. (2012) the significant
drop in extracellular levels of Ca2+ during slow-wave sleep can

promote the opening of hemichannels (Thimm et al., 2005)
and electrical coupling between neighboring neurons (local
synchrony) (Timofeev et al., 2012). Taken together, neuronal
synchronization (local) along with pre-existing pro-epileptic
conditions (such as channellopathies) seem to reinforce the
predominance of seizure expressions during sleep state.

The seizure expressions during NREM stages are simplified in
Table 1.

SLEEP RELATED HYPERMOTOR
EPILEPSY

SHE, or previously known as the Nocturnal Frontal Lobe
Epilepsy (NFLE) is a type of sleep-related epilepsy with frontal

TABLE 1 | Table showing the expression of seizures during NREM sleep.

NREM sleep

stage

Focal

seizurea
Generalized

seizurea
Sleep related

epilepsya

N1 87 3.1 SHE, PS

N2 68 3.13 SHE

N3 51 6.59 BECTS

anumber of times focal seizure taking place during NREM compared to REM stage.
anumber of times generalized seizure taking place during NREM compared to REM stage.
apredominance of specific sleep related epilepsy during the NREM stages.

FIGURE 1 | Pathogenesis of sleep-related epilepsy. Mutations of genes associated with channelopathy and non-channelopathy origin of sleep related epilepsy could

disrupt the balance between inhibitory and excitatory neurotransmissions in central nervous system, leading to manifestation of seizure. Various anti-epileptic drugs

alleviate seizure by restoring chemical balance in brain. TPM, topiramate; VPA, valproic acid; CBZ, carbamazepine; OXC, oxcarbazepine; LTC, levetiracetam; LCS,

lacosamide.
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and extrafrontal regions as seizure onset zones that characterized
by peculiar motor aspects of seizures (Tinuper et al., 2016;
Vignatelli et al., 2017). The hallmark feature of this rare partial
epilepsy is motor seizures that manifest almost exclusively during
the NREM stage of sleep. The familial form of this epilepsy,
also widely known as the autosomal dominant NFLE manifests
between the age 8 and 12 years (Picard and Scheffer, 2012). SHE
is the first of its kind to be associated with a causative agent,
which are mutations of 3 subunit genes of nicotinic acetylcholine
receptors (nAChRs) (Steinlein et al., 1995; Marini and Guerrini,
2007); reported in approximately 10% of the affected families
(Heron et al., 2007).

The notion that SHE is a channelopathy is derived from
early findings on mutations of nAChRs genes such as cholinergic
receptor nicotinic alpha 2 subunit (CHRNA2), cholinergic
receptor nicotinic alpha 4 subunit (CHRNA4) and cholinergic
receptor nicotinic beta 2 subunit (CHRNB2) encoding for
nAChRs containing subunits of α4β2 or heteromers with
subunits of α2/β2/β4 (Figure 1) (Di Resta et al., 2010; Wallace
and Bertrand, 2013; Becchetti et al., 2015). The anatomical
projections of cholinergic neurons from pons and basal
forebrain toward thalamus and cortex have been implicated
in the regulation of sleep-wake cycle (Saper et al., 2010).
Existing literature suggests increased acetylcholine release during
wakefulness and REM sleep, whereas marked decrease during
NREM sleep (Jones, 2008). Findings from mutant murine
models of SHE (expressing B2-V287L) showed altered sleep
pattern and development of spontaneous seizures during the
slow wave sleep state (O’Neill et al., 2013). Molecular results
show that mutated nAChRs could be hyperfunctional, and thus
maintaining abnormal gamma-Aminobutyric acid-(GABA)ergic
and glutamatergic neurotransmission, even with very minimal
acetylcholine (Ach) available to bind to (Aracri et al., 2010).
Hyperfunction of nAChRs also could be due to longer duration
of Ach remaining in the synapse. In a recent study, a novel
autosomal recessive phenotype of SHE was identified in a two-
generation Australian family of Italian origins. Whole genome
sequencing revealed mutations of proline rich membrane anchor
1 (PRIMA1) on chromosome 14 that encodes for PRIMA1
transmembrane protein, which anchors acetylcholinesterase at
synapses for hydrolysis of acetylcholine. The authors went on
to point out that perturbations in the cholinergic responses
attributed to dysfunctional acetylcholinesterase could alter
central and peripheral process of seizure expressions and likely
to transform to SHE (Hildebrand et al., 2015). More recently,
the occurrence of sleep-related epilepsy in SHE has been directly
related to dysregulation of GABAergic neurotransmission.
The reversal potential of GABAA-mediated inhibitory post-
synaptic potential requires the movement of chloride ions
(Cl−) in and out of the cells, which are mediated by co-
transporters such as Na+/K+/Cl− co-transporter-1 (NKCC1)
and K+/Cl− co-transporter-2 (KCC2) (Kaila et al., 2014). In a
murine model of SHE (expressing B2-V287L), delayed surface
expression of KCC2 was reported in layer V of prefrontal
cortex (PFC), which is the most susceptible part of PFC to
epileptiform activities. The delay was noticed during the first
postnatal weeks, which led the authors to suggest that PFC

is more prone to neuronal network-related pathologies such
as epilepsy (Amadeo et al., 2018). Neural network in layer
V of PFC is predominantly regulated by nAChRs expressing
β2 subunit (Poorthuis et al., 2012). Despite mutation at B2-
V287L, the cell surface expression of nAChRs remained the
same (Manfredi et al., 2009). Thus, functional changes were
thought to be attributable to expression of B2-V287L (Amadeo
et al., 2018). Altered Ca2+ signals following hyperactivity of
nAChRs could upregulate the surface expression of KCC2 as
a compensatory mechanism to counterbalance the overactive
neuronal network by increasing the Cl− turnover. Collectively,
these lead to retardation of GABAergic switch in PFC and
ultimately hyperexcitability (Amadeo et al., 2018).

In addition to nAChRs, mutations in KCNT1 (gene encoding
for potassium-sodium activated channel subfamily T member 1)
were also linked to a rather severe form of SHE and sporadic
SHE. The patients found with these mutations are also presented
with various psychiatric features and intellectual disabilities,
which was dissimilar to the usual form of SHE. The onset
age for KCNT1 mutation-related SHE was below the onset age
of classical SHE and the penetrance of KCNT1 mutations are
100% (Heron et al., 2012) which is higher than classical SHE.
KCNT1 encodes for KCNT1 channel subunit which binds with
potassium-sodium activated subfamily T member 2 (KCNT2) to
form the heterotetrameric complex of the channel. The KCNT1
mutations mostly affect the nicotinamide adenine dinucleotide
interaction with C-terminal of the channel, which could disrupt
the modulation of the channels’ functions (Tamsett et al., 2009).

More recent findings have focused on the non-channelopathy-
based pathogenesis of the SHE (Dibbens et al., 2013; Picard
et al., 2014; Korenke et al., 2016). DEPDC5 (Disheveled, Eg-
10 and Pleckstrin Domain containing proteins) is a gene that
encodes a protein structurally-related to Gap Activity Toward
Rags 1 (GATOR1), which is an important negative modulator of
mammalian target of Rapamycin (mTOR) Complex 1 (mTORC1)
that regulates various cell functions (Bar-Peled et al., 2013).
DEPDC5 mutations have been implicated in familial temporal
lobe epilepsy, SHE and familial focal epilepsy with variable loci
(Dibbens et al., 2013; Ishida et al., 2013; Martin et al., 2014).
Other genes expressing GATOR1 such as nitrogen permease
regulator-like 2 (NPRL2) and nitrogen permease regulator-
like 3 (NPRL3) were also linked to sporadic and familial
form of epilepsy (Ricos et al., 2016). It was thought that
mal-interaction between mTORC1 and GATOR1 may alter
cortical neuroarchitecture as epileptic patients with NPRL3
mutations were presented with dysplastic brain lesions (Sim
et al., 2016). Nevertheless, few patients despite experiencing
seizures showed no anomalies in brain imaging, suggesting the
structural changes could be microscopic or other unknown
pathway could mediate the pathogenesis (Korenke et al., 2016).
From a functional perspective, reduced negative modulation of
mTORC1 leads to overactivity of the protein complex, which
has been demonstrated in epileptic brains (Sha et al., 2012;
Sosunov et al., 2012). In addition, inhibition of mTORC1 has
been shown to block epileptogenesis (Huang et al., 2010). Thus,
it was hypothesized that hyperactivated mTORC1 signaling leads
to rhythmic increase in neuronal excitability (Cho, 2012).
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BENIGN CHILDHOOD EPILEPSY WITH
CENTROTEMPORAL SPIKES

BECTS, also known as Rolandic Epilepsy (RE) is the most
common type of epilepsy syndrome in children. The typical onset
age of BECTS is between 3 and 13 years, with spontaneous
remission of seizures upon puberty (Berg et al., 2010). The
hallmark feature of BECTS’ EEG is high voltage spike and wave,
mainly centrotemporal spikes. The seizures predominantly occur
during NREM sleep and last for 1–3min (Stephani, 2000).

Although initially described as idiopathic (Panayiotopoulos
et al., 2008), several studies postulated a hereditary link to
the disease (Vears et al., 2012; Shi et al., 2018). Numerous
potential genes predisposing to BECTS were investigated to
no avail (Neubauer et al., 1998; Strug et al., 2009; Pal et al.,
2010). Proline-rich transmembrane protein gene (PRRT2) that
was associated with paroxysmal kinesigenic dyskinesias (Chen
W. J. et al., 2011) and RE (Dimassi et al., 2014), were screened
in 9 cohorts of 53 sporadic patients and 250 controls in a
mainland Chinese population. Genomic sequencing revealed no
association between PRRT2 mutations and BECTS (Che et al.,
2017). In a separate study, genes associated with epilepsy-aphasia
spectrum, that encode for elongator acetyltransferase complex
subunit 4 (ELP4) and sushi-repeat containing protein X-linked
2 (SRPX2) (Roll et al., 2006; Strug et al., 2009), were studied
for their potential interactions in BECTS. The investigators
utilized whole genome sequencing on 290 patients with European
ancestry diagnosed with RE or atypical RE (ARE) in Germany,
Canada and Austria and no pathological link between RE/ARE
and ELP4 and SRPX2 genes were found (Reinthaler et al.,
2014). The role of ELP4 in pathogenesis of BECTS was also
downplayed by another study conducted in a Greek population
(Gkampeta et al., 2014). The genetic risk factor in BECTS was
identified in the gene that encodes for α2 subunit of N-methyl-D-
aspartate receptors (NMDARs) (GRIN2A). A mutational analysis
carried out in 2 independent cohorts of 359 patients identified
heterozygous mutations in 27 of 359 subjects and described
exon-disrupting microdeletions in 3 of 286 individuals (Lemke
et al., 2013). More recently, an unbiased gene-burden analysis
of 194 patients against 567 in-house and 33370 online ExAC
controls showed only GRIN2A rare CSDD15, CADD15 +

LOF, and LOF variants were more frequent in BECTS (Bobbili
et al., 2018). NMDARs are glutamate-bound excitatory receptors
with important roles in synaptic transmission and plasticity
(Paoletti, 2011). Numerous animal models have implicated
altered NMDARs functions in development of epilepsy (Frasca
et al., 2011; Di Maio et al., 2012). Thus, mutations in GRIN2A
are thought to affect the electrophysiological property of GluN2A
subunit containing NMDARs (Lemke et al., 2013). In addition to
GRIN2A, genes DEPDC5 (Lal et al., 2014), gamma-aminobutyric
acid receptor subunit gamma-2 (GABRG2) (Reinthaler et al.,
2015), RNA Binding Fox-1 Homolog 1 (RBFOX1), RNA Binding
Fox-1 Homolog 3 (RBFOX3) (Lal et al., 2013) and KCNT1 (Shi
et al., 2018) were also implicated in BECTS.

Persistent neuropsychiatric deficits in executive functions,
intelligence and attention have been reported in BECTS patients
despite spontaneous remission during the adolescence (Currie

et al., 2018; Ofer et al., 2018). Myriad of neuroimaging studies
associated the cognitive decline with abnormal cortical changes
(Overvliet et al., 2013; Pardoe et al., 2013). Generally, cortical gray
matter decreases over time from childhood to young adulthood
(Shaw et al., 2006). However, in the BECTS population, the
changes in cortical thickness were greater compared to the
control group and there was also delay in reaching the normative
values. This may explain the persistence of language problems
in BECTS patients even after the remission (Pardoe et al.,
2013). On the contrary, a more recent study precluded any
direct relationship between centrotemporal spikes frequency and
morphological changes in cortex of BECTS patients. However,
one particular region, R pars opercularis showed thinner cortex
in BECTS children relating the atypical cortical features with
poor processing speed (Fujiwara et al., 2018). Several studies have
shown BECTS to predominantly affect the left hemisphere of
the brain, linking BECTS to language dysfunction seen in the
children (Overvliet et al., 2013). This was further corroborated
by the discovery of widespread white matter abnormalities
confining to the left hemisphere of BECTS children with
intellectual disabilities, particularly verbal IQ (Kim et al., 2014).
In addition to intellectual disabilities, left hemisphere anomaly
was also correlated with greater social fear among BECTS
patients (Potegal et al., 2018). More recently, the network re-
organization leading to cognitive dysfunctions in BECTS was
thought to originate from right homologous brain areas. In
treatment naïve, early-onset BECTS patients, escalated brain
activity was seen in the right Broca’s area during the early stage of
the disease, suggesting the compensatory change to take place in
the right hemisphere of the brain (Chen et al., 2018). Subcortical
structures such as the basal ganglia, sensorimotor networks, and
striato-cortical circuitry were also shown to have epilepsy-related
functional connectivity with BECTS (Li et al., 2017).

PANAYIOTOPOULOS SYNDROME

PS is a common idiopathic childhood epilepsy syndrome with
predominant features of autonomic signs. The majority of
the children were found to be in the age group of 1–14
years, with 4–5 years being more predominantly affected by
PS (Caraballo et al., 2000). The most common symptoms
exhibited by PS patients are full emetic triad (nausea, retching,
vomiting), pallor, deviation in head and eyes, generalized
seizures, ictal syncope (Yalçin and Toydemir, 2017), changes in
thermoregulatory (Panayiotopoulos, 2005) and cardiorespiratory
functions (Yamamoto et al., 2018). A very recent investigation on
the incidence of PS recorded over 16months in a population aged
below 16 years old, reported 0.8/100,000 new cases. Similar study
also recorded 6.1/100,000 new cases of BECTS within the same
population, reporting 13 times higher prevalence of BECTS than
PS (Weir et al., 2018).

The transient focal EEG abnormalities that are usually seen
in the epilepsy, or also known as the “functional spikes” were
initially thought to be confined to the occipital lobe in PS patients
(Tsai et al., 2001). However, follow-up studies documented the
functional spikes to shift to extra-occipital regions such as
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prefrontal and frontal (Kokkinos et al., 2010; Yoshinaga et al.,
2010), parietal and lateral temporal lobe (Leal et al., 2008). This
multifocal hyperexcitability nature of PS has led the researchers
to correlate the affected cortical areas to the hypothalamic
autonomic centers and the limbic system to the manifestation
of transient hyperactive central autonomic network, which is
the cardinal feature of PS (Ten Donkelaar and Horim, 2011).
Generally, seizures in PS patients are sleep-related. Some studies
have reported nearly all PS-associated seizures to take place
during sleep (Caraballo et al., 2007), whereas some reported
the 69.9% seizures to occur during sleep and 12.9% during
awake (Specchio et al., 2010). More recent findings suggest the
seziures are more likely to take place during awakenings (66.7%)
(Yalçin and Toydemir, 2017). In sum, the constellation of findings
suggests the PS-associated seizures to take place either during
early awakening or sleeping hours.

The etiology of PS has been the subject of intense research,
yet much of its pathophysiology has remained elusive. In 2007,
a 12-year-old girl who presented with PS, was reported to
carry a sporadic missense mutation in sodium voltage-gated
channel alpha subunit 1 (SCN1A), the gene encodes a voltage-
gated sodium channel that was implicated in the pathology
of Dravet Syndrome (Grosso et al., 2007). Two years later,
another study reported two siblings with PS to have the SCN1A
mutation. However, the father of the children also shared
the SCN1A mutation, and surprisingly never experienced a
seizure. This suggests that SCN1Amutation may merely increase
the susceptibility to an idiopathic focal epilepsy phenotype
(Livingston et al., 2009). In another study, 2 monozygotic twins
presented with PS were found to have nomutations in the SCN1A
gene or the GABRG2 gene (another gene associated with Dravet
Syndrome). Based on the early onset of PS in these patients
and the severity of their symptoms, the authors concluded that
mutations in the SCN1A gene may regulate the severity of the
syndrome rather than the genesis of the disorder (Martín Del
Valle et al., 2011). In a very recent study, a 6-year old girl
diagnosed with PS was presented with a de novo 2.6Mb deletion
in 22q11.2 and an additional 172 kb duplication in 2q37.1 (Bertini
et al., 2017). Deletion in 22q11.2 was associated with loss of
genes involved in brain function and development, such as
RTN4R (reticulon four receptor, NOGO RECEPTOR) (Pan et al.,
2005; Ramasamy et al., 2014), SNAP29 (synaptosomal-associated
protein 29) and gene responsible for biogenesis of micro-mRNA,
especially in mammalian brain such as DGCR8 (microprocessor
complex subunit 8) (Cheng et al., 2014). In addition to this,
the 172 kb duplication in 2q37.1 was related to three genes,
which include ATG16L1 (Autophagy 16-like 1), SAG (S-antigen;
retina and pineal gland), andDGKD (diacylglycerol kinase delta).
Among these genes,DGKD coding for a cytoplasmic enzyme that
phosphorylates diacylglycerol to produce phosphatidic acid has
been implicated in epilepsy (Leach et al., 2007).

Similar to BECTS, children suffering from PS also
demonstrate cognitive deficits, particularly in global visual-
motor integration, writing, reading, arithmetic skills, verbal and
visual-spatial memory (Germanò et al., 2005). The cognitive
abnormalities reported in some of the PS patients was a result of
the propagation of the interictal activity to various brain regions,

including the frontal (Germanò et al., 2005) and parietal lobes
(Lopes et al., 2014). In concordance with this finding, a more
recent study reported changes in volume of prefrontal lobe and
prefrontal-to-frontal lobe volume ratio in 3 PS patients who
presented with status epilepticus. Conversely, the non- status
epilepticus PS patients possess cortical growth pattern similar
to that of healthy controls, suggesting the manifestation of SE
in PS may impair the cognitive behavior of some PS patients
(Kanemura et al., 2015).

PHARMACOTHERAPY FOR BECTS

The spontaneous remission of BECTS in adolescence has cast
controversy over its treatment; in particular, as to whether
or not to use anti-epileptic drugs (AEDs). A review of 110
recommendations from 96 published materials on BECTS
revealed two-third of the findings to favor and one-thirds not
to favor the use of AEDs. Most of those in favor with AEDs
use, advocate for pharmacotherapy only in cases with early onset
and multiple seizure expressions and also to limit the treatment
to 1 year (Hughes, 2010). The need for AEDs was evident
in some cases owing to the severity of the seizures, cognitive
impairments and behavioral abnormalities that accompany the
seizures in a large population of young children with BECTS
(Kavros et al., 2008; Sarco et al., 2011; Samaitiene et al.,
2012). In addition, there seem to be geographic differences in
pharmacological management of BECTS. Sulthiamine (STM)was
the most commonly prescribed AED in Austria and Germany
(Gross-Selbeck, 1995). In the United States, the preferred AED
for BECTS was carbamazepine (CBZ)/oxcarbazepine (OXZ)
(Arzimanoglou and Wheless, 2007). European epileptologists
prefer valproic acid (VPA) as the drug of choice for BECTS
(Wheless et al., 2007).

There is a considerable amount of literature on VPA use in
reducing electroclinical abnormalities (Gelisse et al., 1999; Xiao
et al., 2014), increasing the threshold of motor evoked potentials
(Nezu et al., 1997) and controlling epileptic negative myoclonus
induced by other AEDs (Yang et al., 2008). In 2013, the ILAE
recommended monotherapy with VPA for BECTS (level C
evidence) (Glauser et al., 2013). Prolonged exposure to VPA was
associated with weight gain in 40% of children (Corman et al.,
1997). CBZ was shown to successfully treat BECTS populations
in Japan (Oka et al., 2004), China (Ma and Chan, 2003),
Greek (Gkampeta et al., 2015), and the United States (Wheless
et al., 2005). Apart from reducing seizure incidences, CBZ also
improved cognitive functions in BECTS patients by altering
the epilepsy-induced changes in P300 event-related potential
(Naganuma et al., 1994). One of the most undesirable side effects
of CBZ was the drug-induced non-epileptic myoclonus and tic-
like movements (Magaudda and Di Rosa, 2012). OXZ, a chemical
twin of CBZ, was reported to normalize EEG, improved cognition
and effectively controlled seizure expressions (Tzitiridou et al.,
2005). It has a mild adverse effect profile such as headache and
sedation (Coppola et al., 2007).

STM, a carbonic anhydrase inhibitor reduced spike and
seizure frequencies (Wirrell et al., 2008), normalized EEG
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TABLE 2 | Table showing pharmacotherapy options for BECTS.

Authors Studya Dose Effects Adverse effects Adjunctive/

Monotherapy

VALPROIC ACID

Gelisse et al., 1999 Case study 750 mg/day for 15 months Reduce electrochemical

abnormalities and seizures

None reported Monotherapy

Xiao et al., 2014 Retrospective,

uncontrolled,

case-comparison

cohort study

(9.3–27 mg/kg/day)

followed at 6, 12, and 18

months

57.6% were seizure free at 6

months, 73.9% at 12 months,

100% at 18 months; 73.8%

showed EEG normalization at 12

months, 95.7% at 18 months

Mild drowsiness (17.4%), mild

weight gain (4.3%)

Monotherapy

CARBAMAZEPINE

Ma and Chan, 2003 Retrospective

observational study

(5–22.5) mg/kg for 3.35

years (mean)

Reduced seizure frequency None Specific to CBZ was

reported

Monotherapy

Kang et al., 2007 Multicenter,

randomized,

open-label,

observer-blinded,

parallel-group

clinical trial

Started at 10 mg/kg/day

and titrated to 20

mg/kg/day for over 22

weeks

Reduced seizure in 70% of

patients, improved cognitive

functions

Rashes,

Weight gain (8.6% from initial

weight)

Monotherapy

TOPIRAMATE

Kang et al., 2007 Multicenter,

randomized,

open-label,

observer-blinded,

parallel-group

clinical trial

Started at 12.5mg per day

and titrated to at least 50mg

per day in patients <30 kg

and 75mg or 100mg per

day in patients >30 kg over

4 weeks.

Reduced seizure in 69.6% of

patients

Memory dysfunction and

somnolence

Monotherapy

Liu et al., 2016 Randomized control

trial

Group A: started with 0.1–1

mg/kg/day to 2 mg/kg/day

Group B: TPM given twice a

day with final dose 4

mg/kg/day

Group A: overall seizure

reduction efficacy was at 90.9%

Group B: overall seizure

reduction efficacy was at 92.5%

Group A: 8 (anorexia and

nausea), 6 (headache and

dizziness), 2 (weight loss), 2

(hypohidrosis / adiaphoresis) 1

(difficulty in finding words), 1

(long term fever and enuresis)

Group B: 4 (light anorexia and

nausea), 2 (dizziness), 1 (weight

loss)

Monotherapy

OXCARBAZEPINE

Tzitiridou et al., 2005 Open label, long

term study

10 mg/kg/day (first week)

increased to 20–25

mg/kg/day (second and

third week), dosage was

increased to 30 mg/kg/day

(if the patients were

unresponsive)

64% were seizure free; 21%

experienced >50%

improvement; 5% no

improvement

None reported Monotherapy

Coppola et al., 2007 Prospective, open

label, pilot

trial

5 mg/kg,

followed by a 3-day titration

at increments of 5 mg/kg,

up to a maximum daily dose

of 20 mg/kg

72.2% were seizure free 1 (headache), 1 (sedation) had to

be withdrawn due to excessive

sedation

Monotherapy

LEVETIRACETAM

Coppola et al., 2007 Prospective, open

label, pilot trial

5 mg/kg,

followed by a 3-day titration

at increments of 5 mg/kg,

up to a maximum daily dose

of 20 mg/kg

90.5% were seizure free 2 (decreased appetite), 1

(decreased appetite combined

with daily frontal cephalalgia)

Monotherapy

Verrotti et al., 2007 Prospective,

multicenter trial

Started at 250 mg/daily and

titrated to 1,000–2,000

mg/daily. Followed for 12

months

42.8% patients were seizure free

(started with levetiracetam);

30.1% patients were seizure free

(patients unresponsive to other

drugs, then followed up with

levetiracetam)

Drowsiness and irritability in

9.5% of the patients

Monotherapy

(Continued)
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TABLE 2 | Continued

Authors Studya Dose Effects Adverse effects Adjunctive/

Monotherapy

Borggraefe et al.,

2013

Randomized,

double-blinded,

controlled trial

Started at 10 mg/kg

bodyweight

and was further increased

weekly

by increments of 10 mg/kg

weekly to

a final dosage of 30 mg/kg

bodyweight

81% of the patients were seizure

free for 6 months; seizure

recurrence in 19% patients

23.8% of the patients were

dropped out due to suicidal

ideation, headache, sleep

disturbance, nausea, abdominal

pain

Monotherapy

SULTHIAME

Borggraefe et al.,

2013

Randomized,

double-blinded,

controlled trial

Started at

2 mg/kg bodyweight and

was further increased

weekly

by increments of 2 mg/kg

bodyweight weekly to

a final dosage of 6 mg/kg

bodyweight

91% of the patients were

seizure free for 6 months;

seizure recurrence in 9.1%

patients

4.1% (1) of the patients were

dropped out due to adverse

events related to airways.

Monotherapy

CBZ carbamazepine.
aStudy type or design.

TABLE 3 | Table showing pharmacotherapy options for Panayiotopoulos Syndrome.

Authors Study Dose Effects Adverse

effects

Adjunctive/

Monotherapy

LEVETIRACETAM

García and Rubio, 2009 Case studies (3) (1) Started with LEV (250mg

twice a day), increased to

500mg every 12 h after 2 weeks,

dose was increased to 1,000mg

(3 months after an attack)

(2) Started with 250mg twice a

day of LEV and increased up to

1,000mg for 2 weeks.

(3) Started with LEV 250mg, and

increased up to 1,000mg in 2

weeks. After two brief episodes,

LEV 1,000mg was continued

twice/day for a year.

(1 and 2) The patient has

been seizure free for 3

years.

(3) The patient has not

experienced any seizure

from 13 to 16 years old.

None was

reported

LEV was given as adjunctive with

VPA. VPA was discontinued after

6 months’ treatment with LEV

[case 1 and 2]

Monotherapy [case 3]

VALPROIC ACID

Martín Del Valle et al., 2011 Case study Treatment was started with

valproic acid and followed for 2

years (dose not mentioned in the

study)

The patient was seizure free

for 2 years; Partial

improvement in the patient’s

EEG was reported

None was

reported

Monotherapy

LEV, levetiracetam; EEG, electroencephalogram.
aStudy type or design.

(Bast et al., 2003) with low seizure remission rate (91%
success for 24 weeks of observation) (Borggraefe et al.,
2013). Adverse effects such as impaired cognitive functions
(Wirrell et al., 2008) and metabolic acidosis (Borggraefe et al.,
2013) were associated with STM. On the other hand, LEV
was shown to control seizures without (Bello-Espinosa and
Roberts, 2003) and with minimum side effects (Verrotti et al.,
2007). Few researchers reported that LEV improves BECTS-
related impairments in auditory verbal memory and baseline

auditory comprehension (Kossoff et al., 2007). The success
rate of LEV on seizure remission was 81% as reported by
Borggraefe et al. (2013). Adverse effects such as suicidal ideations
(Borggraefe et al., 2013) and psychosis (Kossoff et al., 2001)
were related to LEV use. Topiramate, a novel AED was
shown to reduce epileptiform frequency and inhibit epileptiform
discharges in BECTS patients. Its side effect includes anorexia,
nausea, headache, and hypohidrosis / adiaphoresis (Liu et al.,
2016).
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TABLE 4 | Table showing pharmacotherapy options for sleep related hypermotor epilepsy.

Authors Studya Dose Effects Adverse effects Adjunctive/

Monotherapy

POLYTHERAPY

Yeh and Schenck,

2017

Case studies

(10)

2 cases: Carbamazepine

from 200 to 800 mg/day in

monotherapy;

3 cases: polytherapy

(combination of topiramate

or lamotrigine).

4 cases:

Oxcarbamazepine

from 300 to 1,200 mg/day

in polytherapy (2 with

topiramate, 1 with

topiramate and

acetazolamide)

One case: acetazolamide

and clonazepam;

One case: sodium valproate

300mg bid and

levetiracetam, 500mg

75% reduction in nocturnal

seizures and abolishment of

occasional diurnal attack by

more than 90%

None was reported Adjunctive

LACOSAMIDE

Samarasekera et al.,

2018

Case study Lacosamide was initiated at

dosage ranging from 300 to

600 mg/day for 6–37

months.

Five patients showed more than

50% reduction in seizure

expressions; One patient

showed 25% response; Two

patients withdrawn from

lacosamide after 2 and 24

months

2 patients: Transient fatigue

within the first 6 months

1 patient: was feeling “spaced

out”

1 patient: experienced diplopia

at 500 mg/day and symptoms

resolved after the dosage

reduced

Adjunctive lacosamide

was given in adjunct to

6 other drugs such as

carbamazepine,

topiramate,

Oxcarbazepine,

Phenytoin, valproate

and zonisamide

Liguori et al., 2016 Case study

(2)

Lacosamide 200 mg/day

was given along

carbazepine, topiramate

(case 1) and oxcarbazepine,

clonazepam (case 2); After

seizure reduction,

lacosamide was maintained

on monotherapy and

followed up for 1 year

Both patients were seizure free

at 12 months’ follow up

None was reported Adjunctive/

Monotherapy

OXCARBAZEPINE

Raju et al., 2007 Case study

(8)

Started oxcarbazepine at 10

mg/kg/day twice/daily and

the dose was increased to

15–45 mg/kg/day

Six patients: seizure reduced

within 4 days and under control

in 2 weeks; Two patients: seizure

under control at higher dose

Dizziness, somnolence, and

diplopia in 2 patients

Adjunctive/

Monotherapy

Romigi et al., 2008 Case study Oxcarbazepine was started

at 10 mg/day/kg and

increased to 20 mg/kg/day

in 10 days and followed up

for 4 months

Nocturnal seizures were

completely disappeared

None was reported Monotherapy

TOPIRAMATE

Oldani et al., 2006 Topiramate was given as

monotherapy in 21 patients:

dosage ranging from 50 to

300mg daily at bedtime and

followed up from 6 months

to 6 years.

Topiramate was

administered as add on to

carmazepine in 3 patients.

6 patients were seizure free; 15

responders and 3

non-responders.

Weight loss (6), paresthesias (3),

speech dysfunction in

phonematic verbal fluency (2). All

adverse events disappeared

within 3 months

Adjunctive/

Monotherapy

aStudy type or design.
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TABLE 5 | Table showing the mechanism of actions for anti-epileptic drugs.

Anti-epileptic Drug Mechanism of action(s)

Sulthiamine Acidification of brain tissue via inhibition of carbonic

anhydrase (Tanimukai et al., 1964)

Reduction in intracellular pH level, affects the opening of

ion channels such as Na+/H+ exchange and

Cl−/HCO−

3 exchanger (Bonnet and Wiemann, 1999;

Bonnet et al., 2000)

Topiramate Affects voltage gated sodium conductance (Zona et al.,

1997)

Block AMPA receptor activity (glutamate) (Coulter et al.,

1993)

Inhibits the release of glutamate (Hanaya et al., 1998)

Anti-cholinergic effects (Avoli et al., 1998)

Affects high-voltage N and L-type Ca2+ currents (Zhang

et al., 1998)

Valproic acid Stimulates glutamine synthetase (Phelan et al., 1985)

Reduces the activity of phosphatidylinositol

(3,4,5)-trisphosphate (Chang et al., 2014)

Prevents hyperexcitability by acting on Kv7.2 channel

and A-kinase anchor protein 5 (Kay et al., 2015)

Blockade of NMDAR mediated current (Gean et al.,

1994)

Increases the brain level of GABA (Bertelsen et al., 2018)

Carbamazepine Inhibits firing of cortical neurons by blocking the voltage

gated sodium channel (Panayiotopoulos, 2005)

Inhibits L-type calcium channels (Panayiotopoulos, 2005)

Oxcarbamazepine Blocks voltage sensitive sodium channels

(Panayiotopoulos, 2005)

Levetiracetam Modulates synaptic vesicle glycoprotein 2A (Lynch et al.,

2004)

Inhibits presynaptic calcium channels (Vogl et al., 2012)

Lacosamide Enhances slow sodium channel inactivation (Rogawski

et al., 2015)

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDAR, N-methyl-D-

aspartate; GABA, gamma-Aminobutyric acid.

Kv7.2 was referring to principal molecular components of the slow voltage-gated M-

channel.

PHARMACOTHERAPY FOR SLEEP
RELATED HYPERMOTOR EPILEPSY

CBZ has been documented as the most commonly prescribed
drug to manage SHE (Provini et al., 1999; Gambardella et al.,
2000). Almost two-thirds of the SHE patients responded well
to bedtime low doses (200–1,000 mg/kg) of CBZ. However, one
third of the patients remained resistant to the drug (Provini
et al., 2000). High blood brain barrier penetrance of CBZ
(Shorvon, 2000) indicates the propensity of the AED to react
with a variety of neuronal receptors. In agreement with this,
CBZ was shown to reduce the action potential frequency of
voltage-gated sodium channels (McLean and MacDonald, 1986;
Schwarz and Grigat, 1989) which in turn could alter the
neuronal excitability by impairing the glutamate release (Sitges
et al., 2007) or potentiating (gamma-Aminobutyric acid) GABAA

receptors (Zheng et al., 2009). More importantly, CBZ inhibits
α4β2 and α2β4 subunits of nicotinic receptors (Di Resta et al.,
2010) which have often been implicated in SHE. Therefore, it
seems that inhibition of the nicotinic receptors by CBZ may

suppress glutamate excitability and potentiate GABA activity
in the thalamocortical system and hippocampus to attenuate
hyperexcitability (Albuquerque et al., 2009; Aracri et al., 2010).

Many epileptologists reported better outcomes with OXZ in
controlling nocturnal seizures (Raju et al., 2007; Romigi et al.,
2008), even in patients unresponsive to CBZ and other AEDs
(Raju et al., 2007). Similar to CBZ, OXZ block voltage-gated
sodium channels (MacDonald and Rogawski, 2008), potentiate
GABAA receptors (Zheng et al., 2009) and inhibits α2β4 subunits
of nicotinic receptors (Di Resta et al., 2010). In addition
to OXZ, Oldani and co-researchers found administration of
topiramate (50–300mg daily at bedtime) as add-on (3 patients)
or monotheraphy (21 patients) to reduce nocturnal seizures in
62.5% of patients and six of the total patients were seizure free in
the follow-up that ranged from 6 months to 6 years. The authors
reported mild adverse events include weight loss (6 patients),
paresthesias (3 patients), and speech dysfunction (2 patients)
which disappeared within 3 months (Oldani et al., 2006). More
recently, in a Taiwanese series of 10 case studies, CBZ, OXZ, and
topiramate along with other AEDs effectively reduced nocturnal
seizures by 75% and abolished diurnal attack by more than 90%
without producing any adverse effects (Yeh and Schenck, 2017).

Claudio Liguori and colleagues administered lacosamide as
add-on therapy in 2 SHE patients that were unresponsive to
other AEDs. Addition of lacosomide (200mg/day) to polytherapy
(CBZ+TPM) and (OXZ+clonazepam) dramatically abolished
the nocturnal seizure expressions and both patients were then
continued on lacosomide monotherapy for 12 months and
remained seizures free (Liguori et al., 2016). In a separate study,
administration of LCM (300–600 mg/kg) to eight patients with
refractory-SHE reduced the seizure frequency in 5 patients for
more than 50 and 25% in one patient. The authors also reported
mild and reversible adverse events in most of the patients, such
as transient fatigue and diplopia. However, one patient was
withdrawn from lacosomide for feeling continuously “spaced
out” (Samarasekera et al., 2018).

PHARMACOTHERAPY FOR
PANAYIOTOPOULOS SYNDROME

Most clinicians believe children with PS may not require
prophylaxis therapy with AED (Panayiotopoulos, 2002, 2004).
Nevertheless, 10–20% of PS patients face persistent autonomic
status epilepticus that could last for days (García and Rubio,
2009) which place them at great risk of developing life
threatening severe cardiorespiratory dysfunctions (Camfield and
Camfield, 2005; Verrotti et al., 2005). In addition, there is a
consensus among the epileptologists that AED therapy should be
reserved for the patients with unusually frequent and severe form
of seizures that could affect the quality of their lives (Ferrie et al.,
2006). To date, there is no single monotherapy of any AED has
been shown to be superior to the rest.

Garcia and Rubio have reported recurrence of seizures in
some PS patients after 6 months of treatment with VPA. The
same authors also showed LEV (1,000–2,000 mg/kg) that initially
introduced as add-on therapy to these patients, and then as
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monotherapy, successfully reduced the occurrences of seizures
and all the patients remained seizure free for 2–3 years (García
and Rubio, 2009). In parallel to this finding, numerous studies
have documented the potential advantages of LEV in pediatric
epileptic cases owing to the AED’s lack of interaction with
other drugs, favorable elimination kinetics and significant protein
binding ability (Leppik, 2001). In addition, LEV also lacks adverse
effects such as weight gain, polycystic ovarian syndrome, hair
loss, and rash that have been most frequently implicated in the
use of VPA, CBZ and lamotrigine (Konishi et al., 1993; Barron
et al., 2000). As mentioned earlier, long term use of LEV was
associated with behavior-related adverse events (Kossoff et al.,
2001; Borggraefe et al., 2013).

Rectal, buccal or intravenous (IV) benzodiazepines were
commonly used to manage autonomic status epilepticus
manifestations in PS (Ferrie et al., 2006). However, Lacroix et al.
(2011) urged the clinicians to practice great caution over the
use of BDZ to treat autonomic seizures. The authors reported
severe respiratory depression following the benzodiazepines
administration (diazepam 0.5–0.6 mg/kg, IR; lorazepam 0.05–
0.06 mg/kg, IV) for seizures with autonomic manifestations in
five patients. The authors went on to suggest that the use of other
BDZ such as buccal midazalom, or a more autonomic tolerant
AEDs such as VPA or LE for the acute management of autonomic
seizures (Lacroix et al., 2011) should be considered.

FUTURE RECOMMENDATIONS

The past decade has witnessed the birth of various AEDs.
Despite their efficacy, they are not without severe adverse
effects, especially in prolonged exposure to refractory epileptic
patients. This calls for discovery of novel, more specific
molecular-targeting pharmacotherapies. Therapeutic diets such
as ketogenic diet and low-glycemic index diet were shown
to be effective in treating drug-resistant epileptic patients
(Pfeifer and Thiele, 2005; Neal et al., 2008). As well, adjunctive
therapy with fenofibrate was shown to markedly reduce the
seizure frequency in human and animal models of SHE
(Puligheddu et al., 2017). Fenofibrates are agonists of peroxisome
proliferator-activated receptor alpha (PPARα), which inhibits
β2-containing nicotinic receptors by phosphorylating β2 (Melis
et al., 2010; Puligheddu et al., 2013). In animal models of
SHE, chronic diet with fenofibrates reduced the nicotine-induced
spontaneous inhibitory postsynaptic current in pyramidal
neurons of the frontal lobe. This subsequently attenuated
the cholinergic overactivation and expressions of seizures
(Puligheddu et al., 2017). Taken together, these findings warrant
further investigation of the role of fenofibrate and PPARα in the
pathogenesis of sleep-related epilepsy.

Identification of GRIN2A mutations in BECTS and other
childhood epilepsies has thrown light on the role of GluN2A
subunit-containing NMDARs in epilepsy (Lemke et al., 2013;
Gao et al., 2017; Von Stülpnagel et al., 2017). Recent
findings indicate that GRIN2A mutations prolong NMDARs’
deactivation time, decrease the amplitude of current responses,
reduce glutamate potency, reduce channel open probability and
accentuate the sensitivity of NMDARs toward negative allosteric
modulators (Gao et al., 2017; Sibarov et al., 2017). It is postulated
that reduced NMDARs function may impair the inhibitory
effects of GABAergic interneurons in the prefrontal cortex (Xi
et al., 2009) and cerebral cortex (Bagasrawala et al., 2016);
leading to epilepsy (Gao et al., 2017). In addition, NMDARs
are also modulated by metabotropic glutamate receptor subtype
5 (mGlu5) (Chen H. H. et al., 2011). Negative modulation of
mGlu5 has been promising in attenuating hyperexcitability of
central nervous system (Kumar et al., 2013, 2016, 2017) and
even reducing the spike-wave discharges in numerous animal
models of epilepsy (McCool et al., 1998; Chapman et al., 2000).
More studies are needed to further elucidate the functional link
between mGlu5, GABA, and NMDARs in epilepsy. Discovery
of mutations in DEPDC5, NPRL2, and NPRL3 that encode for
GATOR1 (negative modulator of mTORC1) have pioneered
the channelopathy-independent approach in understanding the
pathological process of NFLE. To date, mTORC1 inhibitors have
only been proven successful in treating epilepsy in tuberous
sclerosis (Curatolo, 2015) and polyhydramnios megalencephaly
symptomatic epilepsy (Parker et al., 2013). Nevertheless, the
potential functional link between mutations of mTORC1-related
genes and non-lesional focal epilepsy (Myers and Scheffer, 2017)
merits future studies.

We summarized the pharmacotherapy of options for BECTS,
PS and SHE in Tables 2–4, respectively. The mechanism of
actions for the AEDs is listed in Table 5.
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