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No visible light activity is the bottle neck for wide application of TiO2, and Boron doping

is one of the effective way to broaden the adsorption edge of TiO2. In this study, several

Boron doped TiO2 materials were prepared via a facile co-precipitation and calcination

process. The B doping amounts were optimized by the degradation of rhodamine B (Rh

B) under visible light irradiation, which indicated that when the mass fraction of boron is

6% (denoted as 6B-TiO2), the boron doped TiO2 materials exhibited the highest activity.

In order to investigate the enhanced mechanism, the difference between B-doped

TiO2 and bare TiO2 including visible light harvesting abilities, separation efficiencies

of photo-generated electron-hole pairs, photo-induced electrons generation abilities,

photo-induced charges transferring speed were studied and compared in details. h+ and
·O−

2 were determined to be the two main responsible active species in the photocatalytic

oxidation process. Besides the high degradation efficiency, 6B-TiO2 also exhibited high

reusability in the photocatalysis, which could be reused at least 5 cycles with almost no

active reduction. The results indicate that 6B-TiO2 has high photocatalytic degradation

ability toward organic dye of rhodamine B under visible light irradiation, which is a highly

potential photocatalyst to cope with organic pollution.

Keywords: TiO2, doping, boron, dye pollution, photocatalytic degradation

INTRODUCTION

Environmental problems are global issues and effect all of human kind. These issues and pressures
increase in severity as society continues to develop at a very fast pace (Samanta et al., 2002; Shao
et al., 2017; Chen et al., 2018; Chowdhary et al., 2018; Tian et al., 2018; Hong et al., 2020). Water
pollution is one of the most serious environmental problems and attracts much attention (Wang
and Yang, 2016; Jiang et al., 2019b; Kapelewska et al., 2019; Quesad et al., 2019; Wu et al., 2019;
Zhao et al., 2019b). Organic dyes have been synthesized on a large scale and are widely applied
in our daily lives, resulting in tons of dyes being discharged into the aqueous environment every
year, causing many serious environmental problems (Sohni et al., 2019; Tu et al., 2019; Zhan et al.,
2019; Zhou X. et al., 2019). Rhodamine B is a toxic alkaline cationic dye, which was used as a food
additive, but has been forbidden due to its high carcinogenic potential (Wu et al., 2018; Lops et al.,
2019; Tian et al., 2019; Guo et al., 2020). Furthermore, it can also cause other serious diseases such
as visceral disease and red skin staining (Alcocer et al., 2018; Liu et al., 2019; Maria Magdalane
et al., 2019). It is very difficult to degrade rhodamine B under natural conditions. Methods for the
effective removal of rhodamine B are therefore of great importance.
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SCHEME 1 | Synthesis scheme of B-TiO2.

FIGURE 1 | XRD spectrum of B-TiO2 and bare TiO2.

In recent decades, photocatalysis has exhibited its high
potential in waste water treatment, due to its inherent merits
including low costs, renewability, being environment-friendly,
and its high efficiency. TiO2 is a widely used photocatalyst
because of its chemical stability, high redox reactivity, easy
preparation, and low cost. However, it can not adsorb and use
visible light because of its wide energy band gap. So only ∼4%
solar energy of ultraviolet light can be used by TiO2, and 45%
solar energy of visible light can not be used (Jiang et al., 2018a,
2019a; Yin et al., 2018; Ahadi et al., 2019; Zhou F. et al., 2019;
Komtchoua et al., 2020). In order to broaden the light adsorption
of TiO2 to visible light, many efforts have been conducted (Zhao
et al., 2019a; Zhang et al., 2020). Doing has attracted increasing
interest in recent years (Jiang et al., 2018a; Kamaludin et al., 2019;
Lu et al., 2019; Xiu et al., 2019; Yan et al., 2019).

In this study, boron was used to dope into TiO2 to
prepare the photocatalyst of B-TiO2. B-TiO2 shows high
photocatalytic degradation ability toward rhodamine B under

visible light. The preparation conditions were optimized, and
the structure and photocatalytic performance of B-TiO2 were
carefully investigated. Based on the experimental results, the
photocatalytic degradation mechanism was discussed. This study
indicates that B-TiO2 has the potential to treat dye pollution
through visible light irradiation.

EXPERIMENT

Materials
All the chemicals used in this study were of analytical pure grade.
Boric acid and aqueous ammonia were purchased from Xilong
Science Co., Ltd, China. Rhodamine B and tetrabutyl titanate
were bought from the Aladdin reagent company, China. Other
chemicals are all commercial. Deionized water (DI water) was
used throughout the study. The materials were directly used
without any treatment.

Synthesis of B-TiO2
0.1mol tetrabutyl titanate was dissolved into 100ml absolute
alcohol to form a clean solution. Boric acid was dissolved into
a solution containing 2ml nitric acid, 50ml absolute alcohol
and 50ml DI water. After that, the tetrabutyl titanate solution
described above was dripped into the boric acid solution and
vigorously stirred. At the same time, aqueous ammonia was
dripped into the mixture described above to adjust the pH value
to 7. The formation of precipitation was found in the process.
After being aged for 5 days, the precipitation was separated and
dried at 110◦C. Finally, it was calcinated at 500◦C to obtain the
B doped TiO2 denoted as B-TiO2. The feeding amounts of boric
acid were changed to obtain B-TiO2 with a B mass ratio of 0, 3, 6,
9, 12, and 15%, and are denoted as TiO2, 3B-TiO2, 6B-TiO2, 9B-
TiO2, 12B-TiO2, and 15 B-TiO2, respectively. The methodology
is shown in Scheme 1.

Photocatalytic Degradation
Tenmilligrams of photocatalyst was added into 25ml rhodamine
B solution at a concentration of 5 mg/L. The mixture was stirred
in the dark for 30min to obtain adsorption equilibrium. After
that, the mixture was irradiated under visible light by a 500W
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Xe lamp (Perfectlight, Beijing, China) with λ ≦ 400 nm cutoff,
and sampled at determined intervals to examine the rhodamine
B concentration in the suspension, which was determined by the
adsorption at 552 nm.

FIGURE 2 | The photocatalytic degradation toward rhodamine B over B-TiO2

with different B doping amount.

Characterization
The morphology of the sample was investigated by scanning
electron microscopy (SEM) (Hitachi-4800, Japan) and a
transmission electron microscope (TEM) (JEM-2100, Japan).
An X-ray powder diffractometer (XRD, Rigaku III/B max, Cu
Ka) was used to analyze the samples. The pH values of solutions
were determined by a JENCO 6175 pHmeter (Renshi electronics
Co. Ltd. USA). Electrochemical impedance spectroscopy
(EIS) and photocurrent response analysis were performed by
CHI660C electrochemical workstation (Shanghai Chenhua,
China). Photoluminescence (PL) spectra were recorded on a
F-7000 fluorescence spectrophotometer (Hitachi, Japan). UV-vis
diffuse-reflectance spectra (DRS) of samples were obtained on a
UV-vis-NIR spectrometer (Lambda 900).

RESULTS AND DISCUSSION

Optimization of B Doping Amount
The bare TiO2 and B doping TiO2 were investigated by XRD
analysis, and the results are shown in Figure 1. It can be seen
that the samples show similar XRD characteristics. However, it
is notable that there is a new peak at∼25.5◦, which is attributable
to rutile TiO2 (Wang et al., 2015; Warkhade et al., 2017), appears
in the spectra of B doping TiO2, but is not the case in the
spectrum of bare TiO2. This phenomenon indicates that under
the experimental conditions of this study, the doping of B, no

FIGURE 3 | (A) Photocurrent response, (B) EIS, and (C) PL spectrum of bare TiO2 and B doping TiO2.
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FIGURE 4 | (a) SEM and (b) TEM imagines of 6B-TiO2; (c–f) the elemental mapping of 6B-TiO2.

matter how much the doping amount is, can induce the pure
anatase TiO2 to transform to mixed crystal phases of anatase and
rutile (Cui et al., 2017). These results indicate that B has been
successfully doped into the crystal lattice of TiO2.

All the samples, including the bare TiO2 and the B doping
TiO2, were used to degrade rhodamine B under visible light
irradiation. As shown in Figure 2, the degradation ability first

increases with the B doping amount, and when the B doping
amount reaches 6%, the degradation ability decreases with
the rise of B doping amount. This phenomenon indicates
that 6% of the B mass ratio is the optimal value. Thereafter,
6B-TiO2 was determined as the optimal sample, and 6%
was determined as the optimal feeding amount of B in
the preparation.
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FIGURE 5 | (A) Uv-vis DRS and (B) Tauc plot of bare TiO2 and 6B-TiO2.

Characterization of B Doping TiO2 Samples
In order to investigate the mechanism of the enhanced
photocatalytic performance of 6B-TiO2, the samples of bare TiO2

and B doping TiO2 were investigated by photocurrent response,
EIS and PL spectrum, and the results are shown in Figure 3. It can
be seen in Figure 3A that 6B-TiO2 shows highest photocurrent
response, indicating that more electrons can be generated in 6B-
TiO2 by visible light irradiation (Hu et al., 2019; Murali et al.,
2019;Wang et al., 2019). In the EIS analysis (Figure 3B), 6B-TiO2

exhibits a semicircle of the EIS Nyquist plot with the smallest
radius, indicating the smallest interfacial charge transference
impedance as compared to those of bare TiO2 and other B
doping TiO2 (Dai et al., 2015; Zou et al., 2016; Manwar et al.,
2019). As shown in Figure 3C, 6B-TiO2 indicates the lowest
photoluminescence intensity, which suggests that 6B-TiO2 has
the lowest recombination rate of electron-hole pairs (Cai et al.,
2019; Huang et al., 2019; Yuan et al., 2019). It can be found from
the above analysis, that the most electrons can be generated by
visible light in 6B-TiO2, and the charge carriers can transfer in
6B-TiO2 with the lowest impedance and recombination rate. All
of these characteristic can favor the subsequent photocatalytic
reaction, so there is no doubt that 6B-TiO2 exhibits the best
photocatalytic performance as compared to bare TiO2 and other
B doping TiO2.

The morphology of 6B-TiO2 was investigated by SEM
and TEM. As shown in Figures 4a,b, 6B-TiO2 exhibits nano
spheral morphology with a litter aggregation. Elemental mapping
indicates that elements of B, O, and Ti homogeneously distribute
on the surface of 6B-TiO2, confirming the successful doping of B
(Figures 4c–f).

The bare TiO2 and 6B-TiO2 were investigated by DRS, and
the results are shown in Figure 5A. It can be seen that the light
adsorption edge of bare TiO2 is about 383 nm, indicating no
visible light adsorption activity. As B was doped to form 6B-TiO2,
the light adsorption edge significantly red shift to about 411 nm,
which indicates that 6B-TiO2 can adsorb visible light. The band
gap energies of the two samples were calculated by Tauc plot
according to the DRS results by Jiang et al. (2018b), Kato et al.
(2019), Khan et al. (2019), and are shown in Figure 5B. As one

FIGURE 6 | Photocatalytic degradation of rhodamine B over 6B-TiO2 in the

presence of different scavengers.

can see, bare TiO2 has a wide band gap of 3.35 eV, which is too
high to be excited by visible light. However, after B doping, the
band gap was narrowed to 2.85 eV, and can be excited to produce
electrons by visible light. The results clearly show that B doping
significantly narrows the band gap of TiO2, and broadens the
light adsorption edge to a visible light range.

Investigation of the Active Species in the
Photocatalytic Degradation
In order to study the photocatalytic mechanism, the potential
active species in the photocatalytic degradation course were
investigated. There are usually four active species involved in the
photocatalytic degradation course. They are ·O−

2 ,
·OH, e−, and

h+. 0.05 mmol different scavengers were added, respectively, in
the photocatalytic degradation system, and other conditions were
the same as described in “2.3 Photocatalytic degradation.” The
scavengers are i-propanol (·OH scavenger), triethanolamine (h+
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FIGURE 7 | The reusability of 6B-TiO2.

scavenger), 1, 4-Benzoquinone (·O−

2 ), andAgNO3 (e
− scavenger)

(Asmus et al., 1967; Zhang et al., 2013; Huyen et al., 2018).
It can be seen in Figure 6 that h+ and ·O−

2 play the most
important roles in the degradation of rhodamine B, because
the addition of the scavengers for these two active species can
dramatically decrease the degradation capacity. One can also find
that ·OH takes part in the degradation, because the addition
of i-propanol can impress the degradation too. h+, ·O−

2 and
·OH are three highly oxidative species. The results indicate
that their high oxidative activities may be used to degrade
rhodamine B in this photocatalysis course. It is notable that the
addition of AgNO3 can promote the degradation. The reason
is that AgNO3 can consume e− as an e− scavenger, which
depress the recombination of e−-h+ pairs, and enhance the
photocatalytic ability.

Investigation of Reusability
In order to evaluate of the reusability of 6B-TiO2, the used 6B-
TiO2 was collected and washed wth DI water. After being dried,
it was used in the photocatalytic degradation of rhodamine B

again, and the experimental conditions are the same as descried
in “2.3 Photocatalytic degradation” with little modification of
sampling time. As one can see in Figure 7, 6B-TiO2 can be

continuously used to effectively degrade rhodamine B at least in
five cycles.

CONCLUSION

B doping TiO2 were successfully prepared in this study, and
6B-TiO2 was determined as the optimal B doping amount. 6B-
TiO2 shows the best photocurrent response ability, fastest charge
transference speed and lowest recombination rate of e−-h+ pairs,
which significantly enhances its photocatalytic performance. B
doping significantly narrows the band gap of TiO2, and therefore
broaden the light adsorption edge to visible light range. h+ and
·O−

2 are the most important active species in the photocatalytic
degradation, and ·OH is also involved in the degradation. 6B-
TiO2 shows high reusability, which can be effectively used in at
least five degradation cycles. 6B-TiO2 is a potential photocatalyst
with visible light responsible ability, which can be used to
effectively treat dye pollution.
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