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Herpes simplex viruses types 1 and 2 (HSV-1 andHSV-2) infect a large proportion of theworld’s population. Infection is life-long and
can cause periodic mucocutaneous symptoms, but it only rarely causes life-threatening disease among immunocompetent children
and adults. However, when HSV infection occurs during the neonatal period, viral replication is poorly controlled and a large pro-
portion of infants die or develop disability even with optimal antiviral therapy. Increasingly, specific differences are being elucidated
between the immune system of newborns and those of older children and adults, which predispose to severe infections and reflect
the transition from fetal to postnatal life. Studies in healthy individuals of different ages, individuals with primary or acquired
immunodeficiencies, and animal models have contributed to our understanding of the mechanisms that control HSV infection
and how these may be impaired during the neonatal period. This paper outlines our current understanding of innate and adaptive
immunity to HSV infection, immunologic differences in early infancy that may account for the manifestations of neonatal HSV
infection, and the potential of interventions to augment neonatal immune protection against HSV disease.

1. Introduction

Young infants are highly vulnerable to infections due to
changes that occur in the immune system during the tran-
sition from fetal to postnatal life [1–3]. Herpes simplex virus
(HSV) infection exemplifies this paradigm [4]. When HSV
infection occurs within the first several weeks of life, the
majority of infants will die without treatment. However, ac-
quisition of HSV after this period is typically mild or even
asymptomatic. In this paper, we explore what is known about
mechanisms bywhich immunologic control ofHSV infection
may be impaired in early infancy. Furthermore, we discuss
the implications of these findings for developing interven-
tions to better prevent and treat neonatal HSV infection and
suggest directions for future research.

2. Herpes Simplex Virology and Pathogenesis

The herpes simplex viruses (HSV-1 and HSV-2) are members
of the neurotropic 𝛼-herpesvirus subfamily of theHerpesviri-
dae family of viruses (reviewed in [5, 6]).This family includes
a variety of enveloped, icosahedral capsid-containing, linear
double-stranded DNA viruses with relatively large genomes,
many of which cause diverse diseases in humans. All mem-
bers of the family share the capacity to remain latent in the
infected host and are capable of periodic reactivation and
spread to new hosts.

Outside the newborn period, primary infection in im-
munocompetent individuals may cause gingivostomatitis,
pharyngitis, or ulcerative genital lesions [7], but infec-
tion is frequently subclinical [8, 9]. In most chronically
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infected individuals, reactivation of virus is either asymp-
tomatic or at most leads to bothersome mucosal lesions
[10].

Spread of HSV within the population generally results
from reactivation of virus from latently infected neurons
within sensory ganglia and anterograde axonal transport to
the innervated mucosa, with subsequent viral replication
in the epithelium and shedding [11]. The grouped vesicular
and/or ulcerative lesions typical ofHSVmayormaynot occur
during these episodes, and subclinical genital shedding of
HSV-2 is as common in those without any history of genital
lesions as it is in those with such a history [12]. Episodes
of asymptomatic genital shedding appear to decrease over
time, with reactivation occurring more than twice as often
in the first three months after primary first-episode HSV-2
genital infections than in subsequent three-month periods
[13]. However, short bursts of asymptomatic viral reactivation
occur surprisingly frequently for both oral and genital HSV,
with about half of genital mucosal reactivations lasting less
than 12 hours andmore than 70% of these episodes occurring
without symptoms [14].

3. Epidemiology and Clinical Manifestations of
Neonatal HSV Infection

HSV infections are common, with seroprevalences in Ameri-
can adults of about 60% for HSV-1 and 17% for HSV-2 [15].
HSV generally initiates infection at mucosal surfaces and
spreads along sensory neurons to establish latency within
ganglia (typically the trigeminal or sacral ganglia) [16]. Neo-
natal HSV infection (defined as occurring before 28 days
after birth) occurs in between 1 in 12,500 and 1 in 1,700 live
births in theUnited States, which in combinationwith its high
morbidity makes it a major public health concern (reviewed
in [4]). Less than half of neonatal HSV infections occur in the
setting of long-standing maternal infection, with a risk of
transmission of <1% even when virus is detectable in the
maternal genital tract at the time of delivery. In contrast,
when a woman acquires HSV late in pregnancy, the risk of
neonatal HSV is 25%–50%; this scenario accounts for about
50%–80% of all cases of neonatal HSV [4]. The difference
in transmission risk between women with established and
recent HSV infections suggests the importance of transpla-
cental maternal antibody [17–21], as discussed in greater
detail later, as well as the higher viral titers present during
primary maternal infection.

HSV-1 is commonly associated with oral mucosal infec-
tion and HSV-2 with genital infection. However, genital
infection with HSV-1 is increasing in prevalence, with recent
studies suggesting it surpasses HSV-2 as a cause of genital
infection in several different populations [22–29]. It has been
speculated that this observation is related to a recent trend
of acquiring oral HSV-1 infection later in life along with an
increase in oral sex in young adults; this results in a popu-
lation susceptible to genital HSV-1 infection at initiation of
sexual activity [30]. Importantly, several studies suggest that
both symptomatic and asymptomatic genital shedding of

HSV-1 is less frequent than that of HSV-2 [13, 31–33], which
may have implications for neonatal infection.

3.1. In Utero Infection. Intrauterine HSV infection is associ-
ated with hydrops fetalis and fetal death. Surviving infants
of in utero HSV infection have symptoms at birth similar to
other congenital infections, including microcephaly, hydra-
nencephaly, chorioretinitis, and rash, although the presenta-
tion is highly variable [18, 79]. Although it is highly morbid,
in uteroHSV infection accounts for <5% of all neonatal cases,
or approximately 1 per 250,000 deliveries [80, 81]. It is unclear
why fetal infection occurs so infrequently, for example, com-
pared to cytomegalovirus, but multiple factors may be
involved [82]. First, detection of HSV DNA in peripheral
blood, though relatively common during primary infection,
is rare during established disease, even with clinical reactiva-
tions [83]. Second, the maternal-placental interface appears
to have fairly effective mechanisms to block the spread of
HSV. Interestingly, even in cases with severe or disseminated
maternal HSV infection during pregnancy, the fetus is often
spared [84]. HSV DNA can be detected by PCR in a sur-
prising proportion of placentas (roughly 10%) [85, 86]. Im-
munohistochemical detection ofHSVantigen is less common
in placentas, but small foci of virus may be detected in the
maternal decidua adjacent to the placenta [86].

3.2. Intrapartum and Postpartum Infection. The majority
(roughly 85%) of neonatal HSV infections are acquired
during passage through the birth canal [19, 87]. Only approx-
imately 10% of neonatal HSV infections occur in the post-
partum period, generally through contact with virus shed by
caregivers, and these are typically caused by HSV-1. Infection
of the newborn is thought to occur through mucosal (eyes,
mouth) or cutaneous inoculation.

Neonatal HSV disease is classified into three clinical syn-
dromes: localized skin, eye, and mouth (SEM); central ner-
vous system (CNS) involvement with or without SEM; dis-
seminated disease, which involves spread to visceral organs.
Disseminated disease may or may not involve the CNS
and can lead to hepatitis, pneumonitis, disseminated intra-
vascular coagulation, shock, and multiple organ dysfunction
syndrome. SEM disease accounts for approximately 45% of
neonatal HSV cases, though these infants often progress to
CNS or disseminated disease in the absence of treatment.
CNS and disseminated disease represent approximately 30%
and 25% of cases, respectively. Either HSV-1 or HSV-2 can
cause SEM, CNS, or disseminated disease, although CNS
infection with HSV-2 has been associated with greater mor-
bidity [4, 88–90]. Newborns with severe HSV infection fre-
quently present without fever or skin lesions. Delayed diag-
nosis and initiation of therapy occur often and contribute
to poor outcomes [88]. Even with optimal treatment (60mg/
kg/day of intravenous acyclovir for 21 days), mortality is still
approximately 6% with CNS disease and >30% with dis-
seminated disease [4]. Furthermore, treatment has had little
effect on neurologic morbidity among survivors of CNS
disease [91]. Encouragingly, recent studies have shown that
suppressive oral antiviral therapy can improve long-term
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neurologic outcomes after CNS disease; however, abnormal
neurologic outcomes were still reported for 31% of newborns
with a history of HSV encephalitis who received suppressive
treatment [92]. Thus, additional strategies are needed to
better prevent and treat neonatal HSV infection.

4. Immune Control of HSV Infection

Despite intense study, our understanding of immunologic
control of primary and recurrent HSV infections in humans
remains incomplete. Virtually every aspect of immune
defense appears to be involved in control of HSV infec-
tion, from antimicrobial peptides (AMPs; reviewed in [93])
through the intrinsic antiviral responses of infected cells
(reviewed in [94]), innate immune effector cells and cyto-
kines [95, 96], adaptive cellular responses [97, 98], and
humoral responses [99]. In immunocompromised humans,
defects in multiple arms of the immune response have been
described as leading to severe HSV disease, including defi-
ciencies in AMPs [100, 101], various defects in signaling
(including signals mediated by TLR3 [102–107], STAT1 [108],
tyrosine kinase 2 [109], and NF-𝜅B [110]), other mutations
affecting lymphocyte function [111], and abnormalities in
numbers or function of NK cells [49, 50], plasmacytoid den-
dritic cells (pDCs) [112, 113], and T cells [97].

Studies in animalmodels ofHSV infection have shed light
on the interaction of innate and adaptive immunity in the res-
ponse to primary infection.The pattern recognition receptors
(PRRs) that have been reported to recognize HSV include
TLR2, TLR3, TLR9, the RIG-I-like receptors (RLRs) RIG-I
and melanoma differentiation-associated gene 5 (MDA5 or
interferon (IFN) induced with helicase C domain 1 (IFIH1)),
NOD-like receptors (NLRs), interferon-inducible protein 16
(IFI16), the helicase Ku70, DNA-dependent activator of IFN-
regulatory factors (ZBP1), and the helicases DEAH box 9,
DEAH box 36, and DDX60 (reviewed in [43, 44]). HSV is
capable of infecting monocyte-derived dendritic cells (DCs),
including Langerhans cells in the skin and vaginal mucosal
epithelia, inducing partial maturation but ultimately leading
to apoptosis [114]. Migratory submucosal or dermal DCs
phagocytose apoptotic debris, including HSV antigen, and
migrate to draining lymph nodes [115, 116]. These cells then
appear to either transfer antigen to resident DCs within the
lymph node for priming of effective CD8+ T cell responses
[117] or in some situationswill themselves contribute to prim-
ing of CD4+ and CD8+ responses [118].

T cell responses against HSV in humans are polyfunc-
tional [119] and directed against a wide array of viral epitopes
[120]. Infiltration of HSV-specific T cells into infected tissue
initially involves CD4+ T cells, which inmice are required for
subsequentCD8+ Tcell entry into themucosa [121]. LocalNK
cells likely contribute to control of HSV replication early in
infection and make some IFN-𝛾 in the infected tissue [51],
but IFN-𝛾 from infiltrating CD4+ T cells and production of
CXCR3-dependent chemokines (likely by epithelial cells) are
required for CD8+ T cells to efficiently enter the vaginal
mucosa [121]. The chemokine gradient required for proper

migration of T cells to the site of infection is coordinated in
part by regulatory T cells (Tregs) [75].

HSV-specific CD8+ T cells appear to be the central
effectors controlling latentHSV infection in neurons. Inmice,
activated HSV-specific CD8+ T cells are retained in latently
infected sensory ganglia, blocking viral reactivation through
IFN-𝛾 production without killing the neurons [122, 123]. A
reduction in these cells can be seen in conditions of stress,
leading to viral reactivation [124]. Recurrence of HSV lesions
in skin and mucosa after reactivation from latency also acti-
vates local NK cell responses and memory CD4+ T cells, fol-
lowed by infiltration of virus-specific CD8+ T cells, in a man-
ner similar to primary infection [125, 126]. Coordination of
cellular responses toHSV reactivation in the skin andmucosa
is also largely mediated by DCs, in conjunction with B cells
[127, 128]. Memory CD4+ T cells in mice are restimulated
to produce IFN-𝛾 by local MHC-II+ DCs and B cells [127].
Memory CD8+ T cell responses are also initiated by tissue-
resident DCs, without requiring DC migration to draining
lymph nodes [128]. In humans, infiltrating virus-specific
CD8+ T cells persist at the dermal-epidermal junction for
weeks after virus has been cleared, localizing to peripheral
nerve endings [56]. Evidence suggests that these cells may
be frequently exposed to viral antigen even in the absence of
lesions [129], consistent with observations of frequent short
bursts of asymptomatic HSV shedding at mucosal surfaces
[14]. Modeling studies based on human data suggest that the
local immune response is the critical determinant of genital
HSV-2 shedding episodes and the development of lesions
[57].

In the central nervous system, innate immune signaling
through the TLR3 pathway is clearly important in controlling
HSV replication during both primary infection and recur-
rence. Humans with specific defects affecting TLR3 signaling
have increased susceptibility to encephalitis, with mutations
described in UNC93B [103], TRAF3 [104], TRIF [105], and
TLR3 [106, 107]. Inmice, TLR2 signaling appears to be impor-
tant in controlling HSV replication in the brain [130]. Inter-
estingly, however, TLR2 has also been described as contribut-
ing to lethality of mice with HSV infection in the central
nervous system by dramatically increasing the inflammatory
response [131], in a manner regulated by the surface glyco-
protein CD200R1 [132]. This concept that CNS inflammation
can promote pathogenesis in HSV encephalitis is supported
by other murine studies [65–67, 133].

Given that the human immune system directs multiple
variedmechanisms at detection and control ofHSV infection,
it is not surprising that the virus allocates a significant pro-
portion of its genome to overcoming the anti-HSV immune
response. HSV modulation of immune responses essentially
begins from the time the virus encounters a susceptible cell.
Engagement of theHSV entry receptor known as herpes virus
entry mediator (HVEM) modifies expression of a number
of cellular genes, which may immediately alter the cell envi-
ronment to promote viral replication [134] or alter mucosal
chemokine and cytokine production [135]. These conse-
quences of the HSV-HVEM interaction are thought to be
due to transient NF-𝜅B activation, which at later times after
infection may promote viral gene expression in addition
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to modifying expression of cellular targets of NF-𝜅B [136].
Subsequently, the viral “virion host shutoff” protein (vhs),
which is delivered to the cell within the tegument of the viral
particle, promotes degradation of cellular mRNA, inhibiting
synthesis of a variety of inflammatory proteins including
cytokines and type I IFNs [137]. Additional proteins are ex-
pressed relatively early in infection to target different intrinsic
antiviral cellular responses, inhibiting various proinflamma-
tory and proapoptotic signaling proteins such as PKR and
IRF3, and inhibiting type I IFN signaling pathways by mech-
anisms such as repression of STAT1 activation [94]. Other
innate and adaptive immune responses are also targeted
by HSV proteins, including binding of complement by the
glycoprotein C (gC) [138, 139], binding of the Fc domain of
IgG by the gE/gI complex [140], and interference with TAP-
mediated peptide loading onto class I MHC by ICP47 [141–
143].

In addition to suppression of cellular production of anti-
viral proteins, recent work suggests that other cellular pro-
cesses intended to inhibit viral replication are targeted by
HSV. There has been increasing appreciation of the impor-
tance of autophagy in resistance toHSV infection [144], parti-
cularly in neurons. HSV needs to evade autophagy to cause
encephalitis [38], and the virus encodes at least two proteins
which target this process. HSV ICP34.5 protein binds and
inhibits the cellular autophagy protein Beclin-1 to promote
neurovirulence [39], and US11 directly binds and inhibits
the double-stranded RNA-dependent kinase PKR, which
functions in induction of the autophagic response [40].
Importantly, neurons, in contrast to mucosal cells, require
autophagic activity to limit HSV replication but do not
respond effectively to stimulation by type I IFN [145].

5. Aspects of HSV Immunity
Specific to Neonates

Human fetuses and newborn infants are more susceptible to
severe infection with a wide variety of different pathogens
compared to older children or adults. Fetal and neonatal im-
mune responses have long been recognized to have qualitative
differences that change during infancy, and we are beginning
to understand the mechanisms that underlie this process
(reviewed in [1–3]). The immunology of the young infant is
dynamic and complex; for example, some innate responses
become more “adult-like” within weeks, while others take
a year or more [3, 146–149]. Beyond several weeks of life,
acquiring HSV portends virtually none of the severe risks
of neonatal infection [150]. In comparison, the risk of pro-
gression from tuberculosis infection to active disease remains
elevated until approximately 4 years old [149, 151].

Fetal immunology likely represents an evolutionary strat-
egy that contributes to successful parturition through mater-
nofetal tolerance.The fetus and its mother are haploidentical,
and thus have the potential for alloreactive responses akin to
rejection. Inflammation is generally harmful to the develop-
ing fetus, resulting in a number of adverse outcomes includ-
ing intrauterine growth retardation, premature birth, and
spontaneous abortion (reviewed in [152]). The mechanisms

that underlie maternofetal tolerance remain incompletely
understood but include differential expression of class I HLA
molecules [153], alteredNKcell activity [154], increased num-
bers and suppressive activity of regulatory T cells (Tregs)
[155–159], myeloid-derived suppressor cells (MDSCs) [160],
high levels of adenosine [2] and progesterone [161, 162], and
differences in TLR responses [45, 46]. Some or all of these
mechanismsmay impact immune responses during postnatal
life and contribute to the vulnerability of neonates and young
infants to infection, as well as to vaccine responses that are
generally inferior to older children [1, 2, 46, 61]. Herewe focus
on those aspects of immune ontogeny with apparent impor-
tance for neonatal HSV infection (Table 1).

5.1. Skin Barrier Function. Differences in epithelial mechan-
ical integrity and production of AMPs may contribute to
increased HSV severity in neonates. The epidermis of the
fetus and newborn is thinner than that of an adult, predis-
posing to disruption by trauma [34]. Skin disruption likely
increases the risk of neonatal HSV infection, given the asso-
ciation between invasive monitoring (scalp electrodes) and
neonatal HSV infection [163]. Other aspects of skin also
develop during the neonatal period, including acidification
and production of sebum lipids, and might affect HSV infec-
tion or replication. Although in theory maternal- and fetal-
derived AMPs may help prevent HSV infection by blocking
entry and replication of virus on mucocutaneous epithelial
surfaces, there is no evidence that differences in newborn
AMP expression or activity contribute to HSV disease. AMPs
such as cathelicidin and lysozyme are abundant in amniotic
fluid, vernix caseosa, and newborn epithelia [164–167], and
levels of some AMPs appear to be elevated in neonates com-
pared to later in life [35–37]. Nevertheless, identifying and
augmenting barrier host defenses may have potential to
protect against HSV acquisition or reduce disease severity.

5.2. Autophagy. It is unclear if differences in autophagy in
neonatal central neurons relative to older children and adults
affect the severity of HSV infection. However, this would not
be surprising given rapid growth and development of the
brain during this period and the role of autophagy in neuro-
development [168, 169]. In addition, autophagy can be
induced by signaling through several TLRs associated with
control of HSV in the nervous system, including TLR2,
TLR3, and TLR9 [41, 42]. As discussed later, there are dif-
ferences between neonates and adults in the effects of TLR
signaling on conventional innate immune responses; similar
developmental differences may exist with respect to TLR
induction of autophagy.

5.3. Pattern Recognition Receptor Mediated Responses. TLR
responses change profoundlywith age (reviewed in [46]).The
expression and function of other PRRs (including RLRs,
NLRs, IFI16, etc.) during the neonatal period have not been
as well described but are also likely to change during early life
[170] and may be important in the pathogenesis of neonatal
HSV.The involvement of TLR signaling in protection (TLR3)
or pathologic inflammation (TLR2) duringHSVCNS disease
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Table 1: Immune defenses against HSV with relevance for neonates.

Immune defense Role in controlling HSV infection Immunologic differences in
newborns Comments

Integument

The skin and mucosa provide
mechanical and innate antiviral
impediments to HSV infection and
spread.

Neonates have thin, easily
disrupted skin, with differences
in pH and sebum production
[34].

Differences in neonatal epithelial anatomy or
function have not been formally shown to
contribute to susceptibility to HSV infection.
Levels of some AMPs appear to be increased
during the neonatal period [35–37].

Autophagy

HSV-mediated suppression of
autophagy is central to the
pathogenesis of CNS infection
[38–40].

Autophagy is mediated by
signaling through TLRs, which
have age-dependent responses
[41, 42].

Age-dependent differences in autophagy are
plausible but poorly understood.

PRR responses

PRR signaling in HSV-infected cells
induces type 1 IFN production that
limits initial spread of infection
through and attracts and primes
protective Th1-type responses
[43, 44].

Neonates have qualitatively
different monocyte and DC TLR
responses that result in reduced
type 1 IFN and IL-12 production,
resulting in weaker Th1-type
responses [45–48].

Age-dependent TLR3 responses to HSV are
likely important based on the association
between CNS HSV infections and defects in
TLR signaling. Age-dependent effects of other
TLR or PRR responses are unclear but may
also be important for the severity of HSV
infection in neonates.

NK cells

NK cells are important for control
of initial HSV infection prior to
development of specific T cell
responses [49–51].

Neonates appear to have
impaired NK cell killing of
HSV-infected cells [52–54].

Whether neonatal NK cells have any intrinsic
defects or kill less well as a result of impaired
activation, for example, decreased IL-12
production by DCs, is unclear [55].

T cell responses

CD8+ T cell responses appear
central to control of HSV
replication and prevention of
recurrence [56, 57].

Neonatal T cells respond
relatively poorly to HSV [58–60].

ImpairedTh1-type responses against HSV in
neonates may be due to differences in innate
responses by antigen-presenting cells,
intrinsic epigenetic factors (e.g.,
hypermethylation of the IFN-𝛾 promoter in
CD4+ cells), or perhaps active suppression by
suppressor cells [2, 61, 62].

Antibody
HSV neutralizing antibody or
ADCC may protect against
acquisition of infection [17–21].

Infants born to women with
established HSV infections
receive virus-specific
transplacental maternal antibody
[4].

Although infants of women with established
HSV infection are much less likely to become
infected compared to those who acquire
primary infection during pregnancy, no
definitive proof exists that antibody alone is
protective in humans. After infection,
antibody responses do not appear to
contribute significantly to control of HSV
replication.

suggests the possibility that developmental differences in TLR
responses may be involved in the susceptibility of neonates
to severe HSV infection. Compared to adults, conventional
DCs from cord blood produce significantly less IFN-𝛼 and
IL-12 upon stimulation with the TLR3 agonist poly(I:C) and
show lower expression of CD40 andCD80 [171]. Indeed, IFN-
𝛼 and IL-12p70 (and consequently IFN-𝛾) responses to most
TLR agonists, including PAM

3
CSK
4
(TLR2/6) and CpGA

(TLR9), appear to be relativelyweak in conventional and plas-
macytoid DCs as well as monocytes from cord blood, while
IL-1𝛽, IL-6, IL-23, and especially IL-10 responses are as high
or often much higher than in adult PBMC [45]. Experiments
using neonatal mice found improved control of HSV-1 infec-
tion by expanding the number of DCs with Flt-3 ligand
(Flt3-L) treatment, which resulted in increased production of
IFN-𝛼/𝛽 and IL-12 [71]. Consistent with these findings, IFN-
𝛼 production in cord blood or neonatal mononuclear cells
appears to be reduced in response to in vitro HSV-1 stimu-
lation [18, 172]. This pattern of a neonatal bias, toward Th2-

and Th17-type and away from Th1-type responses, is con-
sistent with impaired control of HSV infection (as well as
other intracellular pathogens), and perhaps with increased
pathologic inflammation [46]. Interestingly, the ontogeny of
individual TLR responses varies. Stimulation of monocytes
using TLR3 agonists leads to lower levels of IFN-𝛼 when
cells isolated from children age 1 or lower are compared with
those from adults; however, for TLR9 agonists, comparable
responses can be demonstrated within the first few weeks
of life [47, 146], that is, the same time period during which
infants are susceptible to severe HSV infection.

Themechanistic basis for differences in TLR responses in
neonates is not well understood [46], but preliminary evi-
dence suggests that both cell-cell interactions and soluble
blood factors may be involved [45, 173]. Decreased MyD88
expression in neonatal monocytes [174, 175] might explain
some of these effects given that this adaptor protein is utilized
by all TLRs, with the exception of TLR3. Of note, adult
MyD88-deficient mice do not control HSV after corneal
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inoculation and progress to fatal encephalitis [176]. However,
MyD88 expression was reported to be equal in purified
neonatal and adult pDCs, while reduced type 1 IFN produc-
tion in neonatal pDCs appeared to be due to impaired nuclear
translocation of IRF7 [177]. Decreased IFN-𝛽 production
may be due in part to alteredDNAbinding of CREB and IRF3
[178]. Developmental differences in nucleosome remodeling
and availability of cytokine promoter sites, for example, IL-
12p35 [179, 180], in neonatal monocytes and antigen-present-
ing cells may be responsible for some of observed cord blood
TLR responses, similar to what has been reported for IFN-𝛾
in T cells [181]. Increased levels of adenosine, which increases
intracellular cAMP [182], as well as other soluble factors [173]
in neonatal blood, also appear to be important for suppressing
Th1-polarizing responses.

5.4. Natural Killer Cells. Impaired killing of HSV-infected
cells by cord blood mononuclear cells has long been recog-
nized [52–54]. This could result from impaired activation by
cytokines such as type 1 IFNs and IL-12, the production of
which is reduced in neonates as mentioned earlier, or may
reflect intrinsic differences of neonatal NK cells. NK cells in
cord blood may differ with respect to the expression of cell
surfacemarkers compared to those from the peripheral blood
of adults (reviewed in [55]). For example, some studies have
found higher levels of the inhibitory receptor complex of
CD94/NKG2A and CD158b/j on cord blood NK cells [183,
184]. However, NK cell IFN-𝛾 production in response to
mitogen appears to be similar between cord blood and adult
peripheral blood [183, 185]. Several studies showed that rest-
ing cord bloodNK cells are less cytotoxic; however, these cells
may actually express higher levels of effector molecules such
as perforin and granzyme B [183, 186] and can be induced to
be highly cytotoxic using stimulation with various combina-
tions of IL-2, IL-12, IL-15, and IL-18 [183, 187–190]. Thus, any
impairment in neonatal NK function may represent extrinsic
factors, for example, deficient IL-12 production by DCs. The
extent to which any NK cell differences in cord blood are
relevant to neonatal HSV infection is unknown, but it merits
additional study given that NK cells likely play an important
role control of HSV infections in general [49, 50, 191, 192].

5.5. Adaptive TCell Responses. Early studies of neonatal T cell
responses to HSV suggested that newborns generate fewer
virus-specific cells, which have impaired proliferation to
stimulation with virus [58–60]. Furthermore, IFN-𝛾 pro-
duction in response to HSV antigen was significantly lower
among neonates and parturient women compared to nonpar-
turient adults, all with recent HSV acquisition [60]. In that
study, HSV-specific neonatal IFN-𝛾 responses lagged behind
those of nonparturient adults until 3–6 weeks after the onset
of symptoms. Numerous differences have been described
between general responses of neonatal T cells relative to those
of adults [2, 61, 62]. Fetal T cells appear to be derived from
a distinct lineage compared to adult T cells and are biased
toward tolerance [193]. Compared to those from adults,
neonatal CD4+ T lymphocytes are more apt to produce Th2-
thanTh1-type cytokines under the same conditions [194, 195].

Newborn CD4+ T cells may produce lower levels of IFN-𝛾
than adult näıve T cells due to hypermethylation at CpG and
non-CpG sites within the IFN-𝛾 promoter [181, 196]. Inter-
estingly, neonatal CD8+ T cells produce similar levels of IFN-
𝛾 and have a pattern of IFN-𝛾 promoter methylation com-
parable to that of näıve adult cells [196]. In addition, neonatal
cellular responses may be inhibited by the presence of sup-
pressive soluble factors or suppressor cell populations.

Substantial evidence suggests that regulatory T cells
(Tregs) play a critical role inmaternofetal tolerance [155–159].
Studies in mice suggest that Tregs may also differentially sup-
press neonatal CD8+ T cell responses to HSV compared
to adults [197]. Other suppressor cell populations may be
involved in neonatal immunity. MDSCs are heterogeneous
populations of immature granulocytes or monocytes that
suppress T cell responses and are important in tumor im-
munology (reviewed in [198–200]).MDSCs appear to prevent
inflammation in utero based on studies in mice [160].
Although they are present in peripheral blood in very small
numbers in healthy adults,MDSCs are found in high frequen-
cies in pregnant women and cord blood and wane during
infancy (Helen Horton, personal communication). MDSCs
have been reported to preferentially induce Th-2 responses
and impair NK and DC responses (reviewed in [201–203]),
all of which are characteristic of neonatal immune responses.
However, the extent to which Tregs, MDSC, or other sup-
pressor cells contribute to susceptibility to HSV or other in-
fections during postnatal life requires additional research.

5.6. Antibody. As discussed earlier, virus-specific antibody
might prevent HSV acquisition via neutralization or con-
tribute to control of infection through neutralization or
ADCC. A large number of observational studies suggest that,
though not completely protective, maternal anti-HSV anti-
body can reduce the risk of neonatal HSV acquisition [17–21].
This is also supported by studies in mouse models showing
protection against neonatal HSV infection by virus-specific
maternal antibodies [204–206]. High titers of antibody to
HSV among infected newborns at presentation have been
suggested to result in less severe disease in some studies [18,
207] but not others [208, 209]. Infants typically develop virus-
specific IgM within weeks of HSV infection; however, there
is no evidence that these responses contribute to control of
infection, recurrences, or outcome.This is consistent with the
apparent lack of association between humoral immunodefi-
ciencies and severe HSV infections.

6. Possible Interventions Targeting Host
Defenses to Prevent Neonatal HSV

6.1. Vaccination. Vaccination is considered the intervention
with the greatest potential for preventing neonatal HSV [4].
Since acquisition of primary infection during pregnancy
confers the highest risk for neonatal HSV disease [163, 210],
a prophylactic vaccine would ideally confer high levels of
protection against genital HSV in pregnant women. Despite
extensive efforts, there are currently no licensed vaccines to
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either prevent HSV acquisition or minimize transmission in
humans [63, 211]. Clinical trials of candidate prophylactic
vaccines against HSV-2 have demonstrated limited clinical
activity [212–214]; however, these studies have uncovered
important information about host immunity to HSV. Ran-
domized trials of a subunit vaccine comprised of the HSV-2
surface glycoproteins gB and gD revealed that serum neutral-
izing antibody levels did not correlate with protection from
HSV infection in humans [213], suggesting that additional
responses, perhaps mucosal or cellular responses, are also
needed to confer sterilizing immunity [215]. Even in the
absence of complete protection against HSV infection, a pro-
phylactic vaccine that modified the course of infection, by
limiting maternal viral reactivation and genital shedding,
could still reduce neonatal disease. Such a vaccine would
likely require induction of cellular immune responses to
HSV. Indeed, a prior study of therapeutic vaccination of
individuals with latent genital HSV-2 infection suggested that
recurrences might be diminished in some individuals in a
manner that did not correlate with antibody production,
supporting the concept that cellular immunity is critical to
protecting the mucosa from HSV replication [216]. From
this standpoint, recent studies elucidating the mechanism of
infiltration of HSV-specific CD8+ T-cells into genital mucosa
[121] may provide insight into novel vaccination strategies,
such as the “prime-pull” strategy suggested by Shin and
Iwasaki [217].

Alternative approaches to improve vaccine responses
have aimed to enhance immunogenicity. Among those show-
ing preclinical promise in animal models are novel delivery
systems such as liposomes [218], modified recombinant bac-
teria expressing HSV antigens [219], and incorporating the
use of novel adjuvants [220] or DNA vaccines [221, 222]. One
possible limitation of these approaches is their reliance on
a single or a limited set of viral antigens (typically gD, often
with 1-2 additional targets) to provide protection against a
virus with a genome that encodes more than 80 proteins.
Broader antiviral responses could be generated with atten-
uated or replication-defective viral vectors [215, 223, 224],
which in some instances have demonstrated protection in
animal models [225–228]. However, it is not clear whether
some of these alterations of the virus may remove important
targets of human immunity. Other modifications to the viral
genome, such as inserting a dominant-negative mutant gene
[229] or inserting costimulatory genes [230, 231], may carry
the risk of gene transfer to a wild-type virus through het-
erologous recombination [232]. Novel delivery systems or
adjuvants need to be produced in a cost-effective manner,
require careful evaluation for safety in humans, and may
promote unacceptable inflammatory responses [233].

6.2. Other Immunologic Strategies to Prevent HSV Infection.
Biological products based on immune proteins, such as
cationic AMPs, have been proposed as potential candidates to
protect against HSV infection [93, 234, 235].These molecules
might be formulated as microbicides, for example, to prevent

maternal acquisition of HSV, or transmission to the infant
during birth [64].

7. Possible Interventions to
Modulate the Immune Response to
Neonatal HSV Infection

Alternative approaches to modify host immunity for treat-
ment of neonatal HSV infection have been suggested
(Table 2). These strategies have hypothetical benefits that
merit study but should not be considered for clinical use until
safety and efficacy have been established.

7.1. Suppression of Local Inflammatory Response in the CNS.
As discussed earlier, data from animal models suggest that
deleterious inflammatory responses may play an important
role in the pathogenesis ofHSV encephalitis [65–67]. Numer-
ous cases of HSV encephalitis treatment using adjunctive
corticosteroids with good outcomes, mostly in adults, have
been reported [68–70]; however, given the risk of increased
viral replication and cytotoxic effects, this approach is contro-
versial [236, 237]. In order to develop targeted immunomod-
ulatory therapies for neonatal HSV infection, a better under-
standing is needed of the relative contributions and temporal
dynamics of the specific inflammatory pathways that mediate
control of viral replication and immune-mediated CNS dam-
age [238].

7.2. Targeting Autophagy. Development of novel antivirals
has been proposed to target HSV proteins that inhibit auto-
phagy [76], and early studies suggest that agents that induce
autophagy can inhibit HSV replication [77, 78].

7.3. Promotion of Th1-Type Responses. Strategies can also be
envisioned that promote Th1-type responses during the neo-
natal period through novel adjuvants like TLR agonists [47,
48], growth factors such as Flt3-L [71], or other agents that
target antigen-presenting cells. If suppressor cell populations
are confirmed to impair neonatal immune responses, inter-
ventions to oppose the effects of these cells might result in
Th1-type responses toHSVmore similar to those produced by
adults. In models of other diseases, such as HIV infection
andmelanoma, therapies have been proposed to reverse Treg
activity and enhance protective T cell responses, for example,
with recombinant IL-7 or blockade of negative costimulatory
receptors CTLA-4 and PD-1 [72, 73]. Similarly, studies in
solid tumor patients have shown that the suppressive activity
of MDSC can be reversed by 25-hydroxyvitamin D

3
, all-

trans-retinoic acid, and other therapies [74]. Any of these
immunomodulatory strategies might be expected to improve
neonatal responses not just to HSV, but also other neonatal
pathogens and vaccines, as well as to potentially prevent
atopic diseases [48]. It should be stressed again that any
benefit of these interventions for neonatal HSV infection is
currently entirely theoretical, and their use for any indication
requires extensive study to assure safety in newborns.
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Table 2: Potential interventions targeting host defenses against neonatal HSV infection.

Potential intervention Comments

Maternal vaccination
No effective HSV vaccine is yet available. Neonatal HSV infection could be prevented by a vaccine that
either conferred sterilizing immunity to women prior to pregnancy and/or by modifying infection in
women to reduce viral replication and shedding in the genital mucosa [63].

Antimicrobial peptides AMPs formulated as a vaginal microbicide might prevent HSV infection during pregnancy and/or reduce
intrapartum transmission [64].

Immunosuppressive
therapy for CNS infection

Some component of the immune response to HSV encephalitis may result in pathologic inflammation and
contribute to poor outcomes [65–67]. Despite case reports of good outcomes using adjunctive
corticosteroids in adults or neonates with HSV CNS infection [68–70], no controlled studies have been
performed and this or other immunosuppressive treatments cannot currently be recommended given the
risks of increased viral replication and cytotoxic effects.

Immunomodulation of
neonatal Th2/Th17 bias

Th1-type responses might be promoted during the neonatal period with novel adjuvants such as
imazoquinolines [47, 48], growth factors such as Flt3-L [71], or other agents that target antigen-presenting
cells. These strategies might conceivably be used therapeutically during infection or to prime all neonates
to respond to infection and vaccinations [48].

Inhibition of suppressor
cell function

Tregs, MDSCs, or other suppressor cell populations might contribute to impaired T cell responses during
early infancy. Modulation of these cells’ activity might improve immunity to HSV infection, such as what
has been proposed for HIV and cancer [72–74]. Inhibition of suppressor cell function during HSV
infection might also result in uncontrolled inflammation and worse outcomes [75].

Induction of autophagy
Novel antivirals have been proposed to target HSV virulence factors that inhibit autophagy [76], and early
studies suggest that agents that induce autophagy can inhibit HSV replication. Nelfinavir and
pentagalloylglucose both induce autophagy and inhibit HSV replication in vitro [77, 78].

8. Conclusions and Directions for
Future Research

An effective prophylactic HSV vaccine represents an ideal
way to prevent neonatalHSV infection. In the absence of such
a vaccine, early recognition and aggressive antiviral treatment
of neonatal HSV infection remain the mainstays of care.
The development of new interventions for neonatal HSV
discussed earlier requires a better understanding of the
mechanistic basis of immune control of HSV infection in
general and how neonatal responses to HSV are ineffective by
comparison. Specifically, more studies are required to under-
stand the basis of differential TLR and other pattern recogni-
tion receptor responses in early life and their effects onneona-
tal HSV infection. Differences in T cell responses to HSV
between neonates and older children or adults also merit
more study, as do the relative contributions of impaired prim-
ing, inherent differences in T cell signaling, and/or active
suppression on poor cellular control of HSV infection during
the newborn period.The role of Tregs,MDSC, and other sup-
pressor cell populations in immune control of HSV infection
is also of great interest. More complete knowledge of immune
ontogeny could lead to interventions that might be routinely
given to all newborns to improve immune responses not
just to HSV, but to a wide range of other infectious patho-
gens and vaccines as well.

Just as important as understanding the immunology of
how neonates differ from older children and adults, however,
is to determine what benefits if any there are during early
postnatal life that come from the apparent persistence of in
utero tolerance. If immune response patterns in early infancy
simply represent a transition between fetal and adult-type
immune responses that requires time but serves no function,

it may be safe and advantageous to expedite this process. It
is possible, however, that the ontogeny of immune system
during early postnatal life is evolutionarily adaptive. It has
been hypothesized that without relative tolerance imme-
diately postpartum, rapid colonization of newborns with
myriad microorganisms and non-self-antigens might lead to
overwhelming inflammation [2]. Other possibilities, which
are not mutually exclusive, include the possibility that rel-
ative neonatal tolerance protects against autoimmunity and
allergies [170, 239]. Neonatal HSV infection represents both
an important clinical problem and a fascinating example of
age-dependent immunity. Through a greater understanding
of the dynamic interplay between the virus and host, there
are opportunities to rationally develop safe and effective
therapies to prevent or treat neonatal HSV infection.
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