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Abstract

Multiple challenges remain in Data-Independent Acquisition (DIA) data analysis, like confidently 

identifying peptides, defining integration boundaries, removing interferences, and controlling false 

discovery rates. In practice, a visual inspection of the signals is still required, which is impractical 

with large datasets. We developed Avant-garde as a tool to refine DIA (and PRM) data. Avant-
garde uses a novel data-driven scoring strategy; signals are refined by learning from the data itself, 

using all measurements in all samples to achieve the best optimization. We evaluated Avant-
garde’s performance with benchmarking DIA datasets. We showed that it can determine the 

quantitative suitability of a peptide peak, and reaches the same levels of selectivity, accuracy, and 

reproducibility as manual validation. Avant-garde is complementary to existing DIA analysis 

engines and aims to establish a strong foundation for subsequent analysis of quantitative MS data.

Editorial summary:

A computational tool, Avant-garde, automates refinement of data-independent acquisition mass 

spectrometry-based quantitative proteomics data.
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Introduction

Data-Independent Acquisition (DIA) combines the protein-wide coverage of Data-

Dependent Acquisition (DDA) with the reproducibility, sensitivity, and accuracy of targeted 

methods1–4. In DIA, MS instrumentation co-isolates and fragments multiple peptides, either 

in sequential isolation windows traversing an m/z range, or all at once1–9. DIA has the 

potential to comprehensively analyze all peptides in a sample that are above the instrument’s 

limit of detection.

DIA data are quantified with a chromatogram-based approach. For each peptide, several 

transitions (precursor/fragment ion pairs) are monitored over time, producing a set of 

chromatographic peak traces. Peak area is integrated and used as a proxy for analyte 

abundance. Ideally, all transitions of a given analyte should have: 1) the same elution peak 

shape, 2) relative areas mirroring the relative intensities found in their reference spectrum 

from a library, 3) a low mass error, and 4) consistency across all LCMS experiments being 

compared. However, due to the complexity of DIA data, it is difficult to obtain signals that 

correspond to this archetype, and data analysis remains challenging.

Several tools have been developed to analyze DIA data10. Each one can produce a different 

set of detectable peptides and quantitative results, even with standardized samples and data 

sets11. This variability is introduced by differences at all stages of data analysis (i.e. raw data 

processing, protein database search, peak detection, transition selection, chromatogram 

extraction, peak integration, and statistical analysis), each of which can affect detection and 

quantification.

Most tools focus on statistical validation of peptide detection (using target/decoy 

approaches12,13) but do not address the quantitative suitability of the signals extracted. 

Targeted analyses of DIA data begin with DDA spectral libraries, which may be built from a 

single, fractionated “master sample”. Transition selection from spectral libraries may not be 

suitable for quantification as these practices mask the complexity found in real DIA data and 

do not anticipate interferences present in real biological samples. In practice, further 

curation by visual inspection of the signals by an expert in the field is required for rigorous 

quantitation to remove transitions subject to interference, and manually corrects peak 

integration boundaries. However, time-consuming manual curation is impractical with large 

datasets, and produces subjective user-dependent results. Curation is thus often omitted and 

the output of these tools is used at face-value for downstream analysis.

Another problem for DIA approaches is missing values, that can have a biological origin 

(e.g. peptides truly not present), a technical origin (e.g., peptide loss during sample 

processing), or a computational origin, (e.g., failure to assign the correct signal to the 

respective peptide, improper retention time prediction of chromatographic peak boundaries 

in real samples). Non-curated data can also produce missing data as a peptide subject to 

interference might fail to be identified in a subset of samples (e.g. indistinguishable from a 

decoy peptide), even though the peptide is present. However, if another set of interference-

free transitions had been used, this peptide might be detected in all samples, subsequently 

providing accurate and reproducible quantification.
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The issues discussed above motivated us to create a tool for automated targeted MS data 

curation. Here we present Avant-garde (AvG), a modular tool meant to polish the results of 

DIA and PRM analysis tools. Building upon earlier work on DIA and PRM data 

optimization14, AvG refines DIA signals to reach the highest possible levels of sensitivity, 

selectivity, and accuracy. AvG refines peak detection, adjusts peak boundaries, removes 

transitions subject to interference, eliminates noise, and estimates the FDR of analytes for 

quantitative suitability, which we define as the proper attribution of a high-quality 

abundance signal (e.g., MS intensity) to a peptide believed to be present in a biological 

sample. Unlike other tools where MS runs are scored independently from each other, AvG 

uses an ensemble data-driven scoring strategy. DIA signals are refined by learning from the 

data itself, using all measurements in all samples together to achieve the best optimization.

Results

Principle of Avant-garde:

AvG is a tool designed for automated data curation, meant to complement common DIA 

analysis tools such as mProphet12, OpenSWATH13, DIA-Umpire15, EncyclopeDIA16, and 

Specter17. To ease use and adoption of AvG, we have chosen Skyline18 to extract 

chromatogram data as a vendor-independent and user-friendly tool. It enables data 

visualization and provides a common framework to refine results from different upstream 

tools. Skyline requires only the peptide sequences and peak integration boundaries 

determined by these tools. Avant-garde can be used on any type of data that produces 

fragment-ion chromatograms at the MS2 level, including PRM and DIA data.

AvG uses extracted ion chromatogram data and employs three independent modules for 

refinement (Fig. 1). First, a transition refinement module improves the choice of transitions 

to eliminate interferences and reduce noise. Second, a peak refinement module adjusts 

integration boundaries without the need for spiked-in retention time peptides. A third 

module scores peaks using a number of intuitive metrics and estimates the false discovery 

rate (FDR) for quantitative suitability. The refinement results and scoring metrics are then 

imported back into Skyline.

Like other tools, AvG assigns and quantifies peptides using composite scores (built from 

subscores) as the basis for quality filtering of results and estimation of the FDR. Each 

module of AvG produces its own composite score: the “AvG fitness score” for transition 

selection, the “AvG chromatographic score” for peak integration boundaries, and the “AvG 
score” for the final scoring of peaks and FDR estimation. However, its composite scores are 

calculated as the product rather than the sum of its subscores. This approach avoids allowing 

any single subscore to push the composite score over an arbitrary “significance” threshold 

employed to control the FDR. Uniquely, AvG calculates its module scores in an ensemble-

driven manner, curating transitions and peak boundaries while considering data from all 
samples in a set.

The scoring strategy is designed to produce very conservative results. AvG penalizes 

peptides with any single metric that indicates poor quality. This scoring mechanism imposes 

strong penalties on transitions subject to interference. A high final AvG score ensures that 
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minimal interference is present and that the signals are suitable for quantification. A detailed 

explanation on the automated refinement of the transition selection and peak boundary 

definition is given in the Supplementary Note.

AvG ensures high accuracy and precision

The precision and accuracy of AvG were evaluated using a dilution series of 95 synthetic 

phosphopeptides that were spiked into a HEK293T digest. A typical AvG performance on 

the spiked-in synthetic peptide S[+80]LTAHSLLPLAEK is shown in Fig. 2A. Skyline’s 

initial extraction of signals from this peptide is incorrect in some runs, due to misassignment 

of peak boundaries. These aberrant signals cause departure from the expected linear 

relationship between concentration and peak area (r2 = 0.44, Fig. 2A, top). After curation by 

AvG, the expected linear relationship is recovered (r2 = 0.99, Fig. 2A, bottom) as AvG 

automatically corrected the peak boundaries.

There was marked improvement for aggregate measurements of all 95 synthetic peptides 

after application of AvG (as compared to initial, unoptimized Skyline extractions) in several 

figures of merit (Fig. 2B). The precision, measured by the CVs of triplicates, improved from 

43.2% to 5.6%. The correlation coefficient between peptide concentration and peak area 

improved from r2=0.85 to r2=0.99. Improvements in the fraction of measurements with less 

than 20% absolute error (for our definition of accuracy, see Online Methods) were also 

evident. Finally, the relative quantification accuracy was also evaluated. We calculated the 

ratios between the mean area of each calibration point to the mean area of the fourth 

calibration point (P4 in Fig. 2C). The distribution of measured ratios after AvG refinement is 

clearly much tighter and closer to the expected values.

AvG results are concordant with expert manual curation

To further evaluate the performance of the automated data curation, we applied AvG to a 

reduced-representation phosphoproteomics dataset obtained for our LINCS project19. This 

dataset, acquired in DIA mode, had previously been manually curated by an expert in our 

laboratory, which we consider the gold-standard against which other approaches were 

compared. We curated data across 96 samples for 95 phosphopeptides for which 

isotopically-labeled heavy peptide counterparts were present. For the “unoptimized” 

analysis, the 5 most intense transitions from the spectral library were chosen and the peak 

boundaries were defined by Skyline. For the optimized version, all possible b- and y-ions 

above b4 and y4 were extracted and subjected to further curation by AvG. AvG was run in 

two modes: 1) “open” curation, where no subscore or composite score filters were applied, 

and 2) “filtered” curation, where subscore filters were introduced.

The comparison of light-to-heavy ratios between the manually curated and unoptimized 

analyses (Fig. 3A) had many points deviating from the ideal x=y line. After “open” curation 

by AvG (Fig. 3B), many fewer points deviated from this line. The disagreements that 

remained could be explained by peptides where AvG chose different transitions than the 

manual curator, producing discrepant light-to-heavy ratios. These differences were enhanced 

if either the light or the heavy peptide had low intensity. In that case, any small change in the 

signal would have a large impact on the ratio. The results of filtered curation correlated even 
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better with manual curation (r=0.99, Fig. 3C). Signals creating discrepancies in the open 

curation analysis were filtered out showing that they were derived from low-quality data.

Analysis of 190 precursors and 18240 individual measurements was theoretically possible 

(95 peptides x 2 isotopic label states x 96 samples). AvG improved the data completeness 

over unoptimized analysis and even manual curation (19% and 12%, respectively, at the 

measurement level, Fig. 3D). Overall, the data curation by AvG enabled the quantification of 

92% of all peptides with data completeness of 79%. AvG performed its curation of this 

dataset in < 1 hr of unsupervised time, while typically it takes a manual curator > 10 hours 

of “hands-on” work.

Evaluation of AvG with LFQBench

We asked whether AvG could further improve quantification when applied to a DIA 

benchmarking dataset, LFQBench11, as compared to the many tools with which it has 

already been analyzed. This dataset was collected on a time-of-flight mass spectrometer, 

resulting in different data characteristics (resolution, mass accuracy, baseline noise level) 

than the Orbitrap-class data on which AvG was developed.

The example shown in Fig. 4 compares the Skyline analysis to the AvG curation of the 

LFQBench HYE110 dataset, acquired with a SWATH method with 64 variable m/z 

windows11. The first dataset corresponds to the Skyline analysis using its implementation of 

mProphet for peak picking, FDR estimation (filtered using a q-value<0.01) and data 

validation. The two samples are each mixtures of three complex proteomes - E. coli, human 

and yeast - formulated as shown in Fig. 4A. Three expected ratios are possible when 

comparing sample A to B (0.1, 1 and 10 for the E. coli, human and yeast peptides 

respectively). The results extracted using Skyline show that some ratio data points deviate 

from the expected values (Fig. 4B). Indeed, the mean and median percent errors were 171% 

and 26.3% for E. coli and 42.7% and 28.6% for yeast (Fig. 4E and Supp. Table 1). These 

deviations also affected the precision of the measurement, calculated for triplicate values 

(mean and median CV of 14.0% and 8.0% for E. coli, 11.3% and 7.0% for human and 13.9 

and 7.9%for yeast peptides respectively, Fig. 4F and Supp. Table 1).

After curating and filtering the data with AvG, the ratio distributions were closer to the 

expected values (Fig. 4C). AvG produced very conservative results. The total number of 

reported peptides with high-quality and properly attributed signals after curation was lower 

than initially reported by the upstream tools. Indeed using Skyline and mProphet (with a q-

value cutoff of 0.01) and following the metrics established in the LFQBench paper11, 34,494 

peptides could be identified, of which 19,534 provided valid quantified ratios. After AvG, 

20% fewer peptides and ratios could be identified (Fig. 4D and Supp. Table 1). However, the 

median A/B ratio for each proteome improved and was 0.11 ± 0.016 for E. coli, 1.03 ± 0.09 

for human, and 10.87 ± 1.92 for yeast peptides. The precision improved (mean and median 

CV of 6.8 and 5.6 for E. coli, 6.4 and 5.5% for human, and 6.8 and 5.7 % for yeast peptides 

respectively; Fig. 4F), as did the accuracy (mean and median percent error 68.5% and 16.5% 

for E. coli and 26.1% and 19.2% for yeast respectively; Fig. 4E and Supp. Table 1). The 

mProphet results yielded similar results in terms of accuracy and precision as AvG when 

applying a much more stringent q-value cutoff value of 0.0001. However the difference in 
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the order of magnitude in the threshold required to obtain the same levels of signal quality 

could be explained because the current implementation of mProphet in Skyline and the FDR 

estimation in AvG does not yet consider different context-dependent error rate estimation 

strategies that could correct a potential miscalibration of the q-values calculation20.

To demonstrate that AvG can improve results generated with multiple upstream DIA tools, 

we have also examined the results of the LFQBench dataset analyzed with OpenSWATH and 

the TRIC retention time alignment tool21. We have found the use of Avant-garde improves 

the accuracy of the quantification (Fig. S1). AvG identified 25% fewer peptides and ratios 

and the reproducibility of the measurements was in this case very slightly improved after the 

curation (mean CV of 6.8%, 6.4%, and 6.8% for E. coli, human and yeast peptides 

respectively, Fig. S1F). However, the most important change was observed for the accuracy 

of the quantification. The median percent error decreased from 24.8% to 18.8% and38.1% to 

16.4% for yeast and E. coli respectively after curation with Avant-garde (Fig. S1D).

To further evaluate AvG, we created a complex benchmarking set of 4 samples consisting of 

a mixture of three complex proteomes. The total amount of protein and the proportion of the 

human proteome was kept constant in all samples, while the proportion of E. coli and yeast 

varied (Fig. S2). Six pairwise combinations of the samples are possible, resulting in 12 

“ground truth” ratios ranging from 1.2-fold to 10-fold, plus a constant 1:1 ratio of human 

peptides for all possible comparisons. This experimental design enabled the estimation of 

reproducibility across many MS runs having different sample compositions, with some 

compositions more prone to interferences than others.

The resulting dataset has a large peptide abundance dynamic range and emulates ratios close 

to typical thresholds of biological significance for the evaluation of DIA analysis tools11,22. 

After data refinement with AvG the quantification accuracy and precision improved. The 

results of this evaluation can be found in the Supplementary Note.

Performance of AvG under conditions emulating real biological data

Detection of changes in protein levels between two sample classes (e.g., diseased vs. 

healthy, treated vs. control) is a major paradigm for quantitative proteomics. To evaluate 

whether AvG curation would help achieve this goal, we simulated biological data to create a 

realistic scenario in which most peptides in the data set were “unchanged,” while a small 

minority were up- or down-regulated. This was practically achieved by downsampling the 

benchmarking data (Supplementary Note) to include 90% human analytes (3000 peptides, 

unchanged), 5% E. coli peptides (positive fold-changes), and 5% yeast peptides (negative 

fold-changes). The analytes were chosen at random from the larger pool of peptides, 

allowing us to bootstrap the analysis by selecting different subsets.

We calculated ratios of peptides between the different sample compositions before and after 

AvG curation, and compared them to the expected ratios (Fig. S2). Significance (p) values 

were assigned to the ratios using a moderated t-test and corrected for multiple hypothesis 

testing23. Peptides were classified as differentially expressed if their adjusted p-value was 

lower than 0.05 and their absolute fold change was > 2σ of the fold changes for the 

(unchanged) human peptides present in the downsampled data, and considered “accurate” if 

Jacome et al. Page 6

Nat Methods. Author manuscript; available in PMC 2021 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their observed ratio was 80-120% of expected. Knowledge of the species-of-origin for each 

peptide allowed us to classify results as true- or false-positive.

AvG improved the ability to detect changes in protein expression. As an example, we 

compared sample A to B before and after AvG curation (Fig. 5A). The improved accuracy 

and precision obtained after AvG resulted in a much higher number of true positive hits 

(blue and red full disks) and lower number of false positives hits (green full disks not within 

the grey area). Additionally, the number of accurate measurements (observations between 

the dashed lines) increased after curation.

To quantify the improvement in performance, we calculated the recall, % of “accurate” 

measurements, and false positive rates for detection of differentially expressed peptides 

across the range of fold-changes using 1000 bootstrap iterations as described in Supp. 

Methods. The results are illustrated in Fig. 5B, with the shaded areas indicating 

improvement in figures-of-merit achieved after AvG curation. AvG increased the recall and 

led to a higher number of correct calls of significance for differentially expressed peptides 

(Fig. 5B, left). After curation, a recall higher than 92% was achieved for any absolute fold 

change above 2.0. In comparison, the mProphet data had a lower recall by 2 to 12% in the 

same range. In addition, we observed an improvement in the percentage of true positive hits 

that were classified as being accurate, with a median improvement of 13% (Fig. 5B, middle). 

Furthermore, the false positive rate decreased by a median value of 7.9%. Additionally, we 

verified that the similar results to AvG can be obtained by filtering mProphet results using a 

stringent q-value cutoff of 0.0001 (Fig. S3 and Supp. Table 2).

Discussion

Data curation is an extremely important but often overlooked step in transition-based 

quantitative proteomics. We have demonstrated that AvG can curate DIA data in an 

automated manner. AvG tailors the choice of transitions to each dataset to minimize noise 

and increase the reliability of quantification. A key feature of AvG is that each peptide is 

reassessed with an independent global scoring module after curation to control a dataset-

level FDR for quantitative suitability, not just detection. Quantitative suitability is an 

important new concept for DIA. It is a shorthand for the correct attribution of abundance 

signals to peptides thought to be present in a dataset, and illustrates why AvG is 

complementary to and not competitive with other DIA analysis tools. AvG takes the position 

that a peptide has been properly “identified” in the data set by some other search strategy 

(i.e., it “exists” in the samples that were analyzed). By scoring the signals after the data 

curation and peak boundaries refinement, the AvG score becomes a measurable and 

quantitative metric of the quality of the signals. Counterintuitively, the number of detected 

peptides may go down after AvG, but the quality of quantitation for those peptides will be 

higher. We have empirically demonstrated that the AvG score tends to be low for “decoy” 

analytes, and data curated with AvG consistently produces FDRs < 1.0% at the thresholds 

we have defined.

Other software tools for DIA analysis typically simply extract the 5-10 most intense 

transitions from the spectral library. This approach does not guarantee interference-free 
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transitions for analyzing complex biological samples, where curation is paramount. An 

alternative approach is to select the transitions that are predicted to be unique to their 

precursor ion using tools like SRMCollider24. However, interferences are difficult to predict 

due to run-to-run chromatographic variability and changes in sample composition. These 

tools do not consider retention time or fragment ion intensities, hindering accurate curation. 

A priori prediction of interference, reliant on protein databases and other user choices, does 

not anticipate real-world LCMS data artifacts. Another a priori approach to curation, 

SWATHProphet25, uses spectral libraries embedded with retention time information to 

anticipate quantitative interferences. In this case, library completeness (again traceable to 

experimental and user decisions) governs the success of the approach. In contrast, AvG uses 

an a posteriori approach to curate data that explicitly considers LCMS artifacts and utilizes 

prior knowledge but is not limited by it. AvG starts from a larger initial number of 

transitions (5-25 transitions) and optimizes the choice to find the most suitable set of 

transitions for quantification(at least 4 transitions) (Fig. S4). SWATHProphet, based on the 

mProphet discriminant score, also implements an approach for a posteriori flagging of poor 

transitions. Its application requires iterative cycles of optimization and data re-extraction, 

and again relies on spectral libraries as the primary source of interference detection. Further, 

it focuses on improving quantitation for peptides that already have a high mProphet score, 

rather than potentially improving scores of borderline peptides. This approach is apt to 

produce false negatives and will fail to rescue suitable data signals. Other tools, such as 

MSstats26 and mapDIA27, also calculate a correlation of transitions to detect interfered 

transitions during the post-acquisition analysis of the data. These tools do a single-pass 

refinement of transitions as a data post-processing step, rather than an active iterative 

optimization to achieve the best signals. MSstats26,28 also has an automated statistical 

approach to detect features that contain few missing values and having intensities that are 

consistent with the majority of the corresponding protein intensity profiles across the MS 

runs. This approach flags outlier features not meeting these criteria for further investigation, 

curation or removal. This work illustrates the necessity of performing a transition refinement 

step in DIA data curation in order to obtain high accuracy and sensitivity28. AvG focuses on 

flagging and automatically curating the “cleanest” transitions that are the best suited for 

quantification, and can improve signal quality for marginal cases. It does not require iterative 

cycles and is not bound to any specific DIA or PRM workflow, it also includes a peak 

boundary refinement algorithm and is fully implemented as an external tool in Skyline.

The objective of quantitative proteomics is to identify differentially expressed proteins or 

peptides. Therefore, it is important to evaluate new methods with scenarios that mimic 

conditions found in real biological milieux. For us, that meant creating a dataset where the 

majority of peptide analytes were unchanged between two sample classes, while a minority 

were changing with a known ratio (Supplementary Note). We evaluate AvG in ranges of 

borderline biological significance (1.5 - 2.0-fold) as well as extreme significance (>5-fold) 

to truly assess method performance. We were pleased to find that AvG could enable 

discrimination of low fold changes with fairly high sensitivity and accuracy, and that, across 

the board, it can add value to the work done by other DIA analysis tools by improving 

quantitative suitability of the data. To us, this means that it can help produce more accurate 

Jacome et al. Page 8

Nat Methods. Author manuscript; available in PMC 2021 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and reproducible quantification results, providing more granularity in the elucidation of the 

complex dynamics of proteomes.

AvG’s ensemble-driven scoring strategy is designed to produce very conservative results by 

penalizing poor-quality signals. Its combined score is a weighted product of run-specific and 

dataset-wide subscores that intuitively map to common LCMS data quality metrics. AvG 

penalizes sets of transitions for peptides with any single poorly-scoring metric, making it 

very sensitive to interferences. However, its evolutionary optimization approach ultimately 

selects sets of transitions that produce the lowest levels of noise and the highest level of 

parsimony for signals across the entire dataset. Application of AvG improves selectivity, 

accuracy, and reproducibility of quantitative DIA proteomics data. The resulting curated data 

is comparable to the current gold-standard of expert human curation but obtainable in a 

fraction of the time. Similar results as AvG can be obtained with mProphet-based tools using 

a very stringent FDR control (q-value<0.0001; Figure 5, Fig. S3 and Supp. Table 2). Most 

MS practitioners have come to expect a degree of statistical rigor in interpreting their data 

sets. The field has almost universally adopted a standard of FDR (or q-value) < 1%. 

However, there may be competing motivations for how this important statistical parameter is 

determined. Our analysis here suggests that the q-value reported by one tool is two orders of 

magnitude overly optimistic compared to another. This illustrates the need for careful 

inspection of actual results and tools, like AvG, that can be used to facilitate that process. 

AvG is meant to complement these tools to improve the quantification results. For very large 

datasets and to optimize the analysis time, Skyline can be used as a first pass for the analysis 

and AvG can be used to curate a subset of targets of interest (statistically changing between 

conditions for example). AvG’s compatibility with a variety of acquisition modes (DIA or 

PRM), data sources (e.g. Orbitrap and TOF), upstream DIA identification tools (e.g. 

EncyclopeDIA, Specter, mProphet, etc.), and Skyline integration should make it attractive 

for broad utilization in the field.

Online Methods:

HEK293T cell digest

HEK293T cells were cultured in DMEM (Gibco; 11995) supplemented with 10% heat-

inactivated FBS (Sigma; F4135). Once cells reached ~95% confluence they were harvested 

by scraping. Cells were pelleted at 1,000g for 2 min. The supernatant was then removed, and 

the cell pellet was frozen in liquid nitrogen. HEK293T cells were lysed by 5 min of 

exposure on ice to a lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, 2 μg/mL aprotinin (Sigma; A6103), 10 μg/mL leupeptin (Roche; 11017101001), 1 

mM PMSF (Sigma; 78830)). The sample was centrifuged for 10 min at 20,000g. The protein 

concentration of HEK293T proteins was determined by BCA assay to be 4.3 μg/μl. 10 mg of 

protein was reduced (5 mM dithiothreitol, 45 min) and alkylated (10 mM iodoacetamide, 45 

min). A Tris-HCl solution (50 mM, pH 8) was used to dilute the samples by a factor of 4 to 

reach a concentration of 2 M urea. A two-step digestion protocol was used to digest the 

lysate: Lys-C was used in a 1:50 enzyme-to-substrate ratio (Wako Chemicals; 129-02541) 

for 2 h at 30 °C, then the lysate was digested overnight at room temperature with trypsin in a 

1:50 enzyme-to-substrate ratio (Promega; V511X) on a shaker. Formic acid (FA; 0.5% final 
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concentration) was added to stop the digestion. The sample was split into four aliquots and 

loaded onto four 100-mg-capacity C18 Sep-Pak cartridges (Waters) for desalting. The four 

aliquots were eluted with 50% acetonitrile (ACN)/0.1% FA, pooled together, and vacuum-

concentrated to dryness.

E. coli Digest

DH5α E. coli were grown in Luria broth at 37 °C overnight. Cells were pelleted by 

centrifugation, washed once with cold PBS, flash-frozen in liquid nitrogen, and stored at 

−80 °C until processing. For generation of the E. coli lysate digest, the cell pellet was 

thawed on ice. Lysozyme (Sigma) was added to the thawed pellet, and the mixture was 

placed on ice with periodic vortexing until viscous. The cells were resuspended in 8 M urea, 

50 mM ammonium bicarbonate plus protease inhibitors (Roche), and the solution was 

sonicated with a probe sonicator for 2 min, 3 s on, 2 s off, until no longer viscous. After 

centrifugation at 15,000g for 30 min at 4 °C, protein concentration was measured by 

Bradford assay (Bio-Rad). Disulfide bridges were reduced (10 mM TCEP (tris(2-

carboxyethyl)phosphine), Thermo) and alkylated (10 mM iodoacetamide, Thermo; 30 min; 

room temperature; in the dark). The lysate was diluted to 1.5 M urea with ammonium 

bicarbonate (50 mM) and digested overnight with a trypsin-to-substrate ratio of 1:100. The 

digest was desalted on C18 Sep-Pak cartridges (Waters). After vacuum centrifugation, dried 

peptides were resuspended to 1 mg/mL in 30% ACN/0.1% FA and stored at −80 °C.

Extended benchmarking DIA dataset

Mass spec-compatible Yeast digest was purchased from Promega. The E. coli, yeast and 

HEK293T digest were resuspended to 1 mg/mL in 30% ACN/0.1% FA. Four samples, with 

sample composition described in Fig. S2, were generated for the benchmarking dataset. A 

fifth sample that had the same quantity of protein of each proteome was also generated to 

obtain the spectral library. To generate the samples, the volume of each proteome digest 

corresponding to the desired protein quantity were mixed together, vacuum-concentrated to 

dryness, and resuspended to 500 ng/ul in 5% ACN/0.1%TFA. The 4 samples for the DIA 

benchmarking dataset were analyzed in DIA mode in 4 replicates. In total 16 runs were 

analyzed.

Calibration curve in HEK293T cell digest

The HEK293T digest was resuspended using 0.1% TFA, and a mixture containing 95 

synthetic peptides at known individual concentrations was spiked into it to generate a five-

point calibration curve. Each point was designed to contain 1 μg of HEK293T digest and 

6.75, 13.5, 27, 54, or 108 ng of total amount of peptide on the column. The solution of heavy 

peptides used for this experiment was a mixture of 95 peptides that were combined in 

different concentrations in order to get a concentration-balanced mixture. Since not all these 

peptides have the same response factor, we have adjusted the concentration of each peptide 

to ensure its detection. The 5 samples were analyzed in DIA mode in triplicates. In total 15 

runs were analyzed.

We generated a spectral library by first searching the DDA runs with Spectrum Mill v. 

B.06.01.201 using a FASTA containing the 95 synthetic peptide sequences and the UniProt 
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human protein sequences (version dated 17 October 2014). Results were auto-validated to a 

false discovery rate of 1%, exported as a PepXML search result file, and loaded into Skyline 

to generate a spectral library in blib format.

The data analysis was performed using Skyline. Eleven unmodified peptides from the 

HEK293T background were chosen as standards to calibrate the retention times. The 

transition selection and peak boundaries was performed by AvG. The coefficients of 

variation were calculated on the triplicate measurement of the area of each analyte. The 

percent error was obtained by calculating the concentrations of each calibration point with 

the linear regression equation found for each peptide. The percent error was calculated as the 

absolute value of the difference between the measured and the expected concentration over 

the expected concentration.

P100 dataset:

The P100 samples were prepared exactly as described in Abelin et al. 201619. In short, cells 

were cultivated, perturbed with 32 drugs each with 3 biological replicates. Cells were lysed 

for 30 min at 4 °C in lysis urea buffer (8 m urea; 75 mm NaCl, 50 mm Tris HCl pH 8.0, 1 

mm EDTA, 2 μg/ml aprotinin (Sigma), 10 μg/ml leupeptin (Roche), 1 mm PMSF (Sigma), 

10 mm NaF, Phosphatase Inhibitor Mixture 2 (1:100, Sigma), Phosphatase Inhibitor Mixture 

3 (1:100, Sigma). Lysates were centrifuged at 15,000 × g for 15 min. Protein concentrations 

were measured (660 protein assay, Pierce). Reduction, Alkylation and digestion were 

performed on a Bravo robotic liquid handling platform (Agilent). Five hundred micrograms 

of protein were used for reduction in 100 mm DTT, alkylation in 200 mm IAA, dilution to 2 

m urea in 50 mm Tris (pH 8.0), and digestion with 0.5 μg/μl (1:50) sequencing-grade 

modified trypsin (Promega) in 400μl volumes per sample at 37 °C overnight. Digestion was 

stopped by bringing the samples to a final concentration of 0.5% TFA. Acidified samples 

were loaded onto a 25 mg capacity C18 SepPak in a 96-well plate format (Waters) for 

desalting. Samples were eluted using 50% ACN/0.1% trifluoroacetic acid and vacuum 

concentrated to dryness. Then the samples were phospho-enriched on an AssayMAP Bravo 

robotic system (Agilent). The desalted samples were reconstituted in 80% ACN/0.1% TFA. 

Prior to sample loading the Agilent AssayMAP Fe-(III)-NTA cartridges were washed with 

water, stripped with 100 mm EDTA, and loaded with 100 mm FeCl3. Fe-(III)-NTA 

cartridges were primed with 1:1:1 ACN/methanol/0.01% acetic acid. Samples were loaded 

at 20 μl/min and flow-throughs were re-loaded onto cartridges eight additional times. 

Cartridges were washed with 80% ACN/0.1% TFA, and peptides were eluted with 500 mm 

K2HPO4 (pH7) at 5 μl/min. Eluates were vacuum concentrated to dryness, and subsequently 

desalted using AssayMAP RP-S cartridges according to the manufacturer’s instructions. The 

96 samples were analyzed in DIA mode.

For the data analysis we focused on the 95 phosphopeptides that constitute the P100 assay2, 

which had isotopically labelled heavy peptide counterparts spiked into the sample. The 

dataset was analyzed using Skyline. For the manual validation: 3 to 5 transitions per peptide 

were extracted. The transitions were the ones chosen for the P100 assay. The data were 

visually inspected, interfered transitions were removed, and peak boundaries manually 

corrected by an expert in the field. For the unoptimized dataset: the 5 most intense 
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transitions from the spectral library were chosen and the peak boundaries were defined by 

Skyline. For the optimized version, all possible transitions (b,y above b4 and y4) were 

extracted and the transition selection and peak boundaries were performed by AvG.

Evaluation of AvG using the LFQBench dataset

The LFQBench data11 was downloaded from ProteomeXchange (dataset PXD002952). We 

focused on the HYE110 dataset analyzed with 64 variable isolation width windows on an 

AB Sciex Triple-TOF 6600. The raw WIFF files were imported into Skyline Daily 

(v.4.1.1.18118). We used the spectral library provided by the study’s authors 

(ecolihumanyeast_concat_mayu_IRR_cons_openswath_64w_var_curated.csv) that consisted 

of precursors with only 6 annotated fragment ions in CSV format compatible with 

OpenSWATH. To reproduce the results published in the LFQBench paper, we first extracted 

the signals of all peptides present in the reports present in the same ProteomeXchange 

dataset, for Skyline we used the file called 

“Skyline_HYE110_TTOF6600_64var_160305_fix1603.tsv, for OpenSWATH+TRIC we 

used the report called “E1603141345_feature_alignment.tsv”. We applied the Skyline 

default parameters for the signal extraction (30000 resolving power for MS/MS, 

chromatograms were extracted 5 minutes around the predicted RT, all 6 six ions were 

extracted for each precursor). The integration boundaries were changed to match the values 

listed in the reports. Only features having a q-value lower than 0.01 were integrated. 

Features having a q-value>0.01 were not integrated and thus were missing values. For 

Avant-garde, decoy peptides were added to the skyline files and all features were integrated. 

For peptides having a q-value <0.01, the peak boundaries were changed to the values 

reported in the LFQBench reports. After running Avant-garde, the FDR was controlled using 

Percolator 3.0 at a false discovery rate lower than 1%. Percolator features included the PSS 

score, the SLS score, the mass error score, the MPRA score and the AvG score. The peak 

boundaries and the selected transitions were imported back into the corresponding Skyline 

files. Following the metrics established in the LFQBench paper, an “identified peptide” is 

defined as a peptide observed in at least one MS run, a “valid quantifiable ratio” is defined 

as a peptide that is observed at least once in at least two conditions.

Evaluation of AvG using our extended benchmarking DIA dataset

To build the spectral library a sample constituted of an equal protein amount of the three 

proteomes was analyzed. This sample was analyzed using gas phase fractionation using 12 

MS runs29. Each injection was analyzed with narrow-window DIA where the instrument 

cycles through 25 2-m/z DIA windows and focuses only on 50 m/z at the MS1 level per MS 

run. Twelve injections are necessary to systematically and comprehensively monitor the 400 

to 900 m/z range with narrow windows. The data were searched with SpectrumMill against a 

merged database of the human, E. coli and yeast database. The search was done with large 

tolerance at the MS1 level (1 m/z) and small tolerance at the MS2 level 10ppm. The search 

results were validated using Percolator 3.0 at a false discovery rate lower than 1%. The list 

of validated spectra was imported into Spectrum Mill, a PepXML search result file was 

generated and loaded into Skyline to generate a spectral library in blib format.
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Eighteen thousand peptides (6,000 of each proteome) were randomly chosen from the 

spectral library and extracted using Skyline. A subset of 15 unmodified human peptides 

whose retention times were distributed across the chromatographic gradient were chosen as 

retention time standard peptides.

For the unoptimized dataset the chromatograms were extracted using Skyline and validated 

using Skyline’s implementation of mProphet. Raw files were converted to MzML and 

demultiplexed using MSConvert. Skyline was set with the following parameters: Precursor 

charges:2, 3, 4; Ion charges:1,2; Ion types:y,b; Ion match tolerance 0.05 m/z; Product mass 

analyzer: Centroided; MS/MS mass accuracy: 20ppm: chromatograms were extracted 5 

minutes around the predicted RT. The 10 most intense transitions from the spectral library 

were extracted and a mProphet model was trained using the corresponding 18 thousand 

decoy peptides. Only the peaks with a q-value lower than 0.01 were reintegrated.

For the optimized dataset the chromatograms were extracted using Skyline. The 10 most 

intense transitions for each peptide were extracted and the peak boundaries were determined 

by Skyline, which was using our 15 RT standard peptides for retention time prediction. The 

data was refined a posteriori by AvG to select at least 4 transitions per peptide and correct 

the peak boundaries. The data was scored and filtered to less than 1% FDR (spectral library 

similarity >0.7, mass error score>0.7, peak shape similarity score >0.85, MPRA score> 0.9 

and AvG Score>0.1). An “identified peptide” is defined as a peptide observed in at least one 

MS run, a “valid quantifiable ratio” is defined as a peptide that is observed at least once in at 

least two conditions.

In order to simulate “real life” biological samples, we downsampled the dataset by randomly 

selecting a 3,000 human peptides, and then randomly selecting a lower number of peptides 

for yeast and E. coli that represented 5% percent of the total number of human peptides. For 

each downsampled dataset, a two-tailed two-sample moderated t-test from the limma R-

package were calculated for the quadruplicate log2 transformed areas23. The p-values were 

adjusted for multiple hypothesis testing using the Benjamini-Hochberg method. The 

peptides were classified as significantly differentially expressed (positive hits) if their 

adjusted p-value was lower than 0.05 and their absolute fold change was higher than 2 times 

the standard deviation of the fold changes for the human peptides. Peptides were classified 

as not differentially expressed (negative hits) if either the adjusted p-value was lower than 

0.05 or the absolute fold change was lower than 2 times the standard deviation of the fold 

change for the human peptides. Peptides were classified as accurate if their observed ratio 

was in the 80-120% range of the expected value. The recall for the detection for 

differentially expressed peptides was estimated here by the number of true positive hits over 

the total number of differentially expressed peptides, i.e. yeast and E. coli peptides (Recall= 

TP/(Total number of yeast and E. coli peptides in the downsampled dataset)). The false 

positive rate (FPR) was determined by calculating the number of false positive hits over the 

total number of proteins found to be differentially expressed (FP/(TP + FP)). The process 

described above (downsampling, statistical testing and performance evaluation) was iterated 

a thousand times to reduce the effect of outlier in the evaluation of the performances of the 

unoptimized and the optimized dataset by AvG.
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LC-MS method

Overlap DIA method on Q-Exactive HF+ (used for P100 dataset and calibration 
curve spiked in HEK 293T digest): The P100 dataset and the calibration curve spiked 

in HEK 293T digest were analyzed with an Orbitrap Q-Exactive HF Plus (Thermo Fisher 

Scientific) mass spectrometer coupled to a nanoflow Proxeon EASY-nLC 1000 UHPLC 

system (Thermo Fisher Scientific). The mass spectrometer was used in positive mode and 

was equipped with a nanoflow ionization source (James A. Hill Instrument Services, 

Arlington, MA); the spray voltage was set at 2.00 kV. The LC system, the column, and the 

electrospray voltage source (platinum wire) were connected via a stainless steel cross (360 

μm; IDEX Health & Science; UH-906x). The column was heated to 50 °C. A volume of 3 μl 

was injected onto an in-house packed 20 cm × 75 μm diameter C18 silica picofrit capillary 

column (1.9-μm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10-μm 

tip opening, New Objective, PF360-75-10-N-5). The mobile phase had a flow rate of 250 

nL/min and consisted of 3% ACN/0.1% FA (solvent A) and 90% ACN/0.1% FA (solvent B). 

The column was conditioned before each sample injection. Peptides were separated using 

the following LC gradient: 0–3% B in 3 min, 5–40% B in 50 min, 40–90% B in 1 min, stay 

at 90% B for 5.5 min, and 90–50% B in 30 s. DDA and DIA data were acquired on the same 

instrument. For the MS1 scans, the resolution was set at 60,000 at 200 m/z and the automatic 

gain control (AGC) target was 3 × 106 with a maximum inject fill time of 20 ms. For DDA, 

MS2 scans on the top 12 peaks doubly charged and above were acquired at a resolution of 

15,000, AGC target of 5 × 104 with maximum inject fill time of 50 ms. Isolation widths 

were set to 1.5 m/z with a 0.3 m/z offset. The normalized collision energy (NCE) was set to 

27 and dynamic exclusion was set to 10 s. For DIA, an overlap DIA method was used with 

56 × 22 m/z isolation windows covering the 400–1,000 m/z range. In this method, the 

isolation windows in two consecutive cycles have an offset of 11 m/z. The default charge 

state was 4, the resolution was 30,000 at 200 m/z, the AGC target was 1 × 106, the 

maximum inject fill time was 50 ms, the loop count was 27 and the NCE was set to 27.

Overlap DIA and narrow-window DIA method on Q-Exactive HFX (used for the 
extended benchmarking DIA dataset): The extended benchmarking DIA dataset was 

analyzed with an Orbitrap Q-Exactive HFX (Thermo Fisher Scientific) mass spectrometer 

coupled to a nanoflow Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher 

Scientific). The mass spectrometer was used in positive mode and was equipped with a 

nanoflow ionization source (James A. Hill Instrument Services, Arlington, MA); the spray 

voltage was set at 2.00 kV. The LC system, the column, and the electrospray voltage source 

(platinum wire) were connected via a stainless steel cross (360 μm; IDEX Health & Science; 

UH-906x). The column was heated to 50 °C. A volume equivalent to 500ng of protein on 

column was injected onto an in-house packed 20 cm × 75 μm diameter C18 silica picofrit 

capillary column (1.9-μm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 

10-μm tip opening, New Objective, PF360-75-10-N-5). The mobile phase had a flow rate of 

200 nL/min and consisted of 3% ACN/0.1% FA (solvent A) and 90% ACN/0.1% FA 

(solvent B). The column was conditioned before each sample injection. Peptides were 

separated using the following LC gradient: 2–6% B in 1 min, 6–30% B in 74.5 min, 30–60% 

B in 7.5min, 60–90% B in 1 min, stay at 90% B for 5 min, and 90–50% B in 2min.
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For the MS1 scans, the resolution was set at 60,000 at 200 m/z and the automatic gain 

control (AGC) target was 3 × 106 with a maximum inject fill time of 20 ms.

For DIA, an overlap DIA method was used with 68× 18 m/z isolation windows covering the 

400–1,000 m/z range. In this method, the isolation windows in two consecutive cycles have 

an offset of 9 m/z. The default charge state was 4, the resolution was 15,000 at 200 m/z, the 

AGC target was 1 × 106, the maximum inject fill time was 18ms, the loop count was 34 and 

the collision energy was fixed for each window using the following equation: CE=0.0459 

m/z - 6x10−5. The m/z value corresponded to the center of each DIA window.

For narrow-window DIA, we used 12 different instrument methods. Each one used 25× 2 

m/z non-overlapped isolation windows covering 50 m/z range. Together the 12 MS runs 

covered the 400-1000 m/z range. The default charge state was 4, the resolution was 15,000 

at 200 m/z, the AGC target was 1 × 106, the maximum inject fill time was 25ms, the loop 

count was 25 and the collision energy was fixed for each window using the equation 

described in the paragraph above.

Data analysis setup

For each dataset, the corresponding spectral library and the list of peptides of interest were 

loaded into Skyline. The spectral library is used to select the most intense transitions per 

peptide, ideally selecting a large number (8-15 transitions per peptide) to allow AvG to 

optimize the transition selection a posteriori based on the signals of the whole dataset. The 

raw data was then imported into Skyline. A report containing the chromatograms, mass 

errors, spectral library information and total areas was generated. This report is the input to 

AvG, and the outputs are a file containing the chosen transitions for each peptide, a file 

containing the peak boundaries for each peptide in each MS acquisition and a report 

containing the subscores and AvG score of all peptides in all MS acquisition. These reports 

were uploaded into Skyline to adjust the peak boundaries and define the transitions to be 

used for the quantification. A complete tutorial for the use of AvG and a demonstration 

dataset are provided in Avant-garde’s GitHub page (https://github.com/SebVaca/

Avant_garde).

Computational parallelization and benchmarking

AvG can be parallelized as the analysis of each analyte is completely independent from the 

others. Avant-Garde is designed to determine the number of available cores in the computer 

(N) and run using N-1 cores. Each core will analyze one analyte at the time, so in order to 

increase the performance of AvG it is recommended to increase the number of cores 

available.

For example, the calibration curve dataset (96 peptides in 15 runs) took 6 minutes to run. 

The P100 dataset (96 peptides in 96 runs) ran in 20 minutes, on a system with similar 

configuration as the following: Windows 7, Intel Core i7-3770 CPU @ 3.40Ghz, 8-core, 

memory (RAM) 24Gb, 64-bit operating system.
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The LFQBench and the Benchmarking datasets in 1-2 hours using the Broad Institute’s 

dynamic parallel computing platform (Univa Grid Engine, Linux RedHat6, Memory (Ram) 

4Gb per core).

Calculation of AvG subscores

Peak shape similarity (PSS) score: For a given peptide and a given subset of 

transitions, the similarity score shows the resemblance of the peak shape of a given 

transition to all the others transitions in the subset. This score is calculated by first 

normalizing each transition to the maximum intensity value within the integration 

boundaries. By doing this, the peak shape comparison is not dependent on the intensity of 

each transition but only on its shape. A mean peak shape profile is then created by 

calculating the mean of the normalized intensities for all transitions at each time point. The 

mean was chosen in order to better reflect the presence of interferences would be reflected 

and avoid smoothing them away. This will amplify the difference of peak shapes when a 

interference is present.

The similarity is determined by calculating the mean of all the dot products, calculated for 

each transition, of the normalized intensities of each transition and the mean profile.

To make sure that the similarity score is not influenced by just a single highly-scored 

transition, a second mean is calculated after removing the transition with the highest dot 

product value. This penalizes even further the set of transitions where an interference is 

present, ensuring that only the set of transitions that have similar peak shapes obtain a high 

score. The mean of these two dot product values corresponds to the peak shape similarity 

score.

For a given peptide using a given set of transitions in a given MS run:

n = total number of transitions in tℎe set
ui = vector of tℎe intensities of a transition i in elution time order
v = vector of tℎe intensities of tℎe mean peak sℎape profile in elution time order
k = Index of tℎe transition for wℎicℎ tℎe normalized dot product is tℎe ℎigℎest
K = set of all indices from1to n except k

Peak Sℎape Similarity score =
∑i = 1

n ui · v
ui · v

n ×
∑iϵK

ui · v
ui · v

n − 1

Mass error score:

The mass error score is a mean of the mass error measured at each chromatographic point 

between the integration boundaries weighted by the intensity. The user defines a tolerance 

threshold in ppm below which the score is equal to 1 and a cut-off threshold above which the 

score is equal to 0 (Fig. S5A). The mass error score is defined as follows:

For a given peptide using a given set of transitions in a given MS run:
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mmeasured = absolute value of tℎe mass error measured at a given cℎromatograpℎic point in ppm
mtol = mass error tolerance in ppm
mcutoff = mass error cutoff in ppm
mass error score = 1 ifmmeasured ≤ mtol

mass error score =
mcutoff

mcutoff − mtol
+

mmeasured
mtol − mcutoff

ifmtol < mmeasured ≤ mcutoff
mass error score = 0 ifmmeasured > mcutoff

Mean profile of relative areas (MPRA) score

For a given peptide and a given subset of transitions, the area under the curve of each 

transition is normalized to the sum of the areas of all transitions. A mean profile is obtained 

by calculating the mean for each transition of all normalized areas across all runs. The mean 

profile is then normalized. For each peptide in each run, the MPRA is the dot product 

between the vector containing the normalized areas for each transition and the mean profile 

calculated previously. This score reflects how similar to each other are the relative peak 

areas across the entire dataset. The objective of the MPRA is to detect interferences. By 

optimizing it we can maximize the similarity between the data used to quantify a peptide. By 

doing this the resulting choice of transitions will be tailored to the dataset to be analyzed, 

producing the lowest number of interferences in the entire dataset, and providing the 

solution where the remaining noise has the least impact on the quantification.

For a given peptide using a given set of transitions in a given MS run:

n = total number of transitions in tℎe set
r = total number of MS runs in tℎe dataset
ai

j = area under tℎe curve between tℎe integration boundaries for transition i in run j

bi
j = normalized area for transition i in run j

bi
j =

ai
j

∑i = 1
n ai

j

ci = mean area for transition i across all MS runs in tℎe dataset

ci =
∑j = 1

r ai
j

r

ci′ = normalized mean area for transition i across all MS runs in tℎe dataset

ci′ =
ci

∑i = 1
n ci
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uj = vector of all bi
j for MS run j

v = vector of allci′

MPRAj = MPRA score for MS run j
MPRAj = uj · v

MPRA = MPRA score for tℎe entire dataset

MPRA =
∑j = 1

r MPRAj

r

Spectral library similarity (SLS) score

For a given peptide and a given subset of transitions, the spectral library similarity is 

calculated based on the dot product between the intensity of each transition in the spectral 

library and the areas integrated from the DIA signals. Then the dot product value undergoes 

a transformation (Fig. S5B). The aim of this transformation is 1) to set a cut-off value 

defined by the user under which the SLS score will be low. 2) To examine how similar the 

measured DIA signals are to the signals present in the spectral library. However, due to 

instrumental variations over time, changes in instrumental calibration and the use of 

different acquisition methods (DDA and DIA) the fragmentation patterns observed in the 

spectral library and the ones obtained when analyzing the samples in DIA might not be 

exactly the same. In order to be more tolerant to these small changes, another threshold is 

determined above which the spectral library similarity score will be equal to 1.,e.g. two sets 

of transitions that have a high dot product will both obtain a spectral library similarity score 

equal to one. This ensures that both sets of transitions are scored equally instead of biasing 

one of the two with the dot product that does not take into account the variation of the 

fragmentation patterns.

Intensity and intensity product chromatographic-scores

For a given peptide and a given run, the intensity chromatographic score is equal to the sum 

of the intensities of all transitions at a given time point normalized by the maximum value of 

the summed intensity across the entire chromatogram. To calculate the intensity product 

chromatographic score, first 1 is added to the areas of each transition to avoid missing values 

or values equal to zero. For each time point the areas are multiplied together, log2 

transformed, and normalized by the maximum value across the entire chromatogram.

Potential peak score

In order to define a signal as a potential peptide chromatographic peak, at least 3 transitions 

should have an intensity higher than the level of noise for at least N number of consecutive 

points. N is defined by the user and needs to be adapted for each instrument. The level of 

noise was estimated in the following way: for a given peptide, the level of noise was set as 

the median of the all the lowest intensity values among all transition at each time point, plus 
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2 times the standard deviation of these values. This parameter is necessary when analyzing 

data from Q-TOF instruments as the background noise is higher in these datasets. For 

Overlap DIA Orbitrap data the noise if very low and the level of noise was set to zero. If the 

criteria described here is met the Potential peak score is equal to 1, and 0 if not.

Score combination:

Avant-garde is very conservative and uses a novel ensemble-driven scoring strategy. The 

combined score from Avant-garde is not calculated by adding subscores like other tools. We 

avoided adding subscores because it can lead to a high number of false positives due to the 

fact that the combined score can be mainly influenced by one single very good-scoring 

subscore. Avant-garde changes the way peak groups are scored. The main idea behind 

Avant-garde is to reduce noise to the minimum, thus obtaining very high-quality signals. We 

manage this by penalizing peptides having any low-scoring metric. All Avant-garde scores 

have values between 0 and 1. To combine them each metric is weighted by an exponent and 

multiplied together. This means that if a peptide does not score well with any given metric 

the combined score will be severely penalized. Three different combinations are used in 

AvG for different purposes. The combined scores are called “AvG chromatographic score” 

for the refinement of peak integration boundaries, “AvG fitness score” for the refinement of 

the transition selection and “AvG score” for the scoring of peaks.

For transition refinement:

For each step (or generation) the genetic algorithm selects a population of randomly chosen 

subset of transitions, scores each one with a fitness function and selects the best-scoring 

solutions as the starting point for the next generation.

The fitness function used by the genetic algorithm was defined as follows:

If a randomly selected set of transitions has a number of transitions below a minimal number 

defined by the user then Fitness Score =0.

If for a randomly selected set of transitions at least n transitions are not among the top N 

most intense transitions in the spectral library then Fitness Score =0. Where n and N are 

user-defined values.

Otherwise:

AV G Fitness Score = 1 − α − β × MPRA + PSS + α × IntensityScore + β × MassErrorScore + 0.05
× SLS

Where α and β are user-defined values (default to 0.05).

For the fitness function, more weight is given to the PSS and the MPRA score, given that 

they are the most sensitive metrics to detect interferences. This enables to confidently 

identify interferences and remove them in the entire dataset. The intensity, mass errors and 

library score have a smaller weight on the fitness score. They are used to decide between 

possible solutions with similar peak shape similarity and MPRA scores. When two solutions 
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are possible the fitness function is designed to choose the one providing the highest 

intensity, lower mass deviations and matching the best the spectral library.

Often interferences can overshadow the signal from the analyte of interest, especially for low 

abundant peptides. Reducing the influence of interferences with high intensity on the fitness 

score by giving a small weight to the intensity score is extremely important. Additionally, 

the algorithm ensures that at least n transitions are among the N most intense fragments in 

the spectral library (n and N are user-defined values) guaranteeing that the solution will have 

intense signals and ensures that the transition selection step will not have a negative impact 

on the sensitivity of the quantification.

For peak boundaries refinement: In order to refine a peptide identification and its peak 

boundaries, Avant-garde uses chromatographic scores that are combined to form the AvG 
chromatographic score. The maximum value of the AvG chromatographic score corresponds 

to the peaks’ retention time. The boundaries correspond to the retention time where the 

intensity score is at 4% of the maximum value of the summed intensities of all transitions in 

the subset.

In order to robustly combine the subscores and estimate the trend of the scores without being 

too susceptible to rapid changes and isolated anomalies, the scores were first transformed 

using a moving median. A moving median is a function which replaces each data value with 

the median of neighboring values. The combined score, termed AvG chromatographic score, 

is calculated in the following way for each time point:

AV G cℎormatograpℎic score = moving . average SLS3 × MPRA3 × intensity . Product . Score3 ×
moving . average MassErrorScore × PotentialPeak

1. For peak scoring and FDR calculation:

After the transition refinement and peak boundaries refinement steps, each peak group is 

scored in order to filter the data and control the FDR. The data being scored here are the 

chromatogram traces between the new integration boundaries. For each peptide in each run, 

the AvG score is calculated as:

AV G score = PSS9.5 × SLS4.5 × MassErrorScore2.5 × MPRA0.5

The exponents were found using the HEK293T dataset where one thousand peptides and 

their corresponding decoys were extracted and the data was curated by AvG. We then 

determined the set of exponents (multiples of 0.5 between 1 and 10) that increased the 

separation between target and decoy peptides. These exponents were empirically determined 

and fixed to this value so we can compare different datasets to each other. The intensity 

score was not included in the score at this stage in order to avoid penalizing low-abundant 

peptides and give a strong influence to high-intensity interfered transitions.
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AvG score and FDR estimation

In order to define the AvG score that is used to estimate the FDR we used two datasets that 

were acquired on two different instruments. The first one was acquired on a Q-Exactive HF 

(Thermo Fisher Scientific) plus instrument. For this dataset, one thousand peptides, and their 

corresponding shuffled-sequence decoy peptides, from the HEK293T digest data were 

randomly selected in 15 MS runs (Fig. S6 and S7). The second dataset was acquired on a Q-

TOF instrument (Triple-TOF 6600, Sciex). We used a subset of the LFQBench data that 

contained 4000 targets and their corresponding 4000 decoy peptides in 6 runs (Fig. S8 and 

S9).

Avant-garde was used to curate the data and score each peptide in each of the 15 MS runs.

The AvG score was defined as:

AvG score = PSSa1 × SLSa2 × MassErrorScorea3 × MPRAa4

An optimization algorithm was used to find the optimal values of the exponents (a1 to a4) of 

each subscore that enabled obtaining the largest number of validated measurements. This 

algorithm chose a random set of 4 numbers that corresponded to the exponents in the 

equation. The random values were a multiple of 0.5 between 1 and 10. The set of exponents 

that provided the largest number of validated measurements at an FDR of 1% over 1000 

iterations were chosen.

The coefficients found to calculate the AvG score were the following:

AvG score = PSS9.5 × SLS4.5 × MassErrorScore2.5 × MPRA0.5

The results obtained by this heuristic approach were compared to the results obtained with a 

standard linear discriminant analysis classifier. To obtain comparable results we used the 

logarithmic transformation of the equation above:

K = a1 × log10 PSS + a2 × log10 SLS + a3 × log10 MassErrorScore + a4 × log10 MPRA

The LDA was used to define the set of coefficients (a1 to a4) that enabled obtaining the best 

separation between targets and decoys. To obtain an equivalent result as the AvG score, the 

LDA score was then defined as:

LDA score = 10K

However, using the LDA score to reach an FDR of 1 % produced a lower number of 

validated measurements than the one found using the AvG score. This was expected as the 

AvG score was designed to optimize the number of validated measurements for an FDR 

below 1%. The LDA is affected by very low scoring decoy signals that are most likely 

background noise. In order to improve the results of the LDA, we performed a second round 

of analysis on a subset of the data. We removed all measurements having a LDA score lower 

Jacome et al. Page 21

Nat Methods. Author manuscript; available in PMC 2021 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than the 25% percentile of the LDA score for decoy peptides. By removing the lower scoring 

signals, the 2nd round LDA was better at separating target and decoy signals. This is due to 

the fact that, in the second round, the characteristics of the decoy population is more similar 

to the target signals as the background noise was removed (Fig. S10). The LDA coefficients 

were determined using the reduced dataset but the FDR was determined using the complete 

dataset. In these two datasets, the AvG score shows similar performance as two rounds of 

linear discriminant analysis.

In this manuscript, we decided to use the AvG score in all the results presented here. This 

was done to obtain scores that can be compared from dataset to dataset. Additionally, AvG 

does not produce any output for signals that have a lower number of transitions than the 

minimal number allowed or that do not have any potential peak. The latter is often the case 

for decoy peptides. For data acquired in centroid mode, the background noise level is 

drastically reduced and consequently the number of reported decoys is lower than for data 

acquired in profile mode. Only signals that have the characteristics of a peptide signal obtain 

an AvG score. Hence this can produce datasets with a very small population of decoys 

having an AvG score. In this case it is not possible to perform an LDA classification on these 

datasets. This does not mean that the decoys were ignored. It means that the quality of the 

decoy is so low that they do not obtain an AvG score. By fixing the exponents used to 

calculate the AvG score, we were able to estimate the FDR in all datasets without the need to 

perform an LDA for each one.

In this manuscript the data acquired on a Q-Exactive series instrument using an overlapped 

DIA method was filtered using the AvG score and using the following thresholds: SLS >0.7, 

mass error score>0.7, PSS >0.85, MPRA > 0.9, AvG score >0.1. This guaranteed that all the 

reported signals had at least a minimal level of signal quality. We then calculated the FDR to 

verify that it was below 1%. For Q-TOF stepwise DIA data, the data was filtered using the 

following thresholds: SLS >0.7, mass error score>0.7, PSS >0.85, MPRA > 0.9, AvG score 

>0.61.

Statistical analysis

All statistical analyses were carried out using R statistical software30 (v.3.4.3). DIA data 

analysis was done using Skyline (v.4.2).

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Data availability:

The original mass spectra have been deposited in the public proteomics repository MassIVE 

and are accessible at ftp://MSV000085540@massive.ucsd.edu.

Code availability:

Avant-garde is an open-source software tool available as an R package and as an Skyline 

External tool at https://github.com/SebVaca/Avant_garde. Avant-garde can be directly 
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downloaded from the tool Store interface within Skyline or from the Skyline tool Store at 

https://skyline.ms/tool-AvG.url.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Avant-garde’s role in data analysis and modular scheme.
Top: AvG is employed downstream of independent DIA identification engines, and depends 

on Skyline to extract chromatogram data of detected peptides. The output of AvG (suitable 

transitions, chromatographic boundaries, and scoring metrics) is reimported to Skyline to 

produce curated quantitative data. Bottom: AvG is composed of three modules. Module 1 

curates transitions to reduce noise and remove interference using a genetic algorithm, 

assigning a final quality metric to the selected set (AvG fitness score). Module 2 refines peak 

integration boundaries. AvG calculates chromatographic subscores at each time point in the 

raw data, and combines them as a weighted product (AvG chromatographic score). The 

maximum value of this score corresponds to the most likely retention time of the analyte. 

Module 3 scores peaks (AvG score), filters the data and estimates the FDR for quantitative 

suitability.
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Figure 2: AvG improves quantitative figures-of-merit in a calibration curve.
95 synthetic phosphopeptides were spiked into a HEK293T whole cell digest to create a 5-

point calibration curve (5 samples were analyzed in triplicate). (A) Calibration curve before 

(top) and after (bottom) curation by AvG for peptide S[+80]LTAHSLLPLAEK. For this 

peptide, the calibration curve spans a range of 1.7 to 27.3 fmol injected on column (n=5, 

analyzed in triplicate). The r-squared value corresponds to the coefficient of determination. 

(B) Figures-of-merit summarising the results for all synthetic peptides, pre- and post-

optimization (n=5, analyzed in triplicate): % CV of triplicates, r2 values of linear fits, and 

absolute percent error of measurements relative to the known concentration. Dashed lines 

indicate 20% thresholds. The box plot elements are: center line, median; box limits, upper 

and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (C) Expected vs. 

observed ratiometric quantification, pre- and post-optimization (n=5, analyzed in triplicate). 

P1 to P5 represent the points of the calibration curve in increasing order of concentration. 

The ratios between the mean area of each calibration point to the mean area of the fourth 

calibration point (P4) are shown here. The dashed lines represent the expected ratios (0.125, 

0.25, 0.5 and 2) and the boxplots show the distribution of the measured ratios. The boxplot 

elements are the same as described for panel B.
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Figure 3: Avant-garde equals the performances obtained by expert visual inspection and manual 
validation.
95 phosphopeptides, and their isotopically labeled heavy peptide counterparts, were 

analyzed in a cohort of 96 phospho-enriched samples (n=96, 32 drug perturbations in 

triplicate). The dataset was initially analyzed using Skyline and manually curated by an 

expert. The scatter plots compare results of light-to-heavy ratios of the (A) unoptimized 

dataset, (B) the AvG “open” curation dataset, and (C) the AvG filtered curation dataset to the 

manually curated dataset. (D) Data completeness measured after filtering the data for 

quantitative suitability at the measurement and at the analyte level.
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Figure 4: Evaluation of AvG with LFQBench data.
(A) The composition of the LFQBench samples by species proteome (n=2, analyzed in 

triplicate). (B,C) Results of the relative quantification and distribution of the experimental 

ratios obtained by Skyline using its implementation of mProphet for the pick peaking(B) and 

the AvG-curated dataset (C).Each dot represents a ratio calculated for a given peptide in a 

given run. The dashed lines represent the expected ratios. (D) The number of detected 

peptides and valid quantifiable ratios are shown for both datasets. The percent relative error 

(E) and the coefficient of variation (F) for each proteome for the Skyline (top) and AvG 

curated (bottom) dataset are shown. The horizontal full and dashed lines demarcate the 10% 

and 20 % threshold. The box plot elements are: center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range; points, outliers.
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Figure 5: Detection of differentially expressed peptides in unoptimized and curated data.
(A) An example of a pairwise comparison (sample A vs. B, n=2 analyzed in quadruplicate), 

with volcano plots of unoptimized, Skyline+mProphet filtered with a q-value cutoff of 0.01 

(left),and AvG curated (right) data. Each point represents an E. coli (red), Yeast (blue) or 

Human (green) peptide. The shaded regions demarcate ranges where detection of differential 

expression is not statistically viable (two-tailed two-sample moderated t-test, p-values were 

adjusted for multiple hypothesis testing using the Benjamini-Hochberg method). The dashed 

lines represent accuracy boundaries of +/− 20%. (B) Bootstrap (n=1000) analysis of 

downsampled datasets for recall (sensitivity), accuracy, and false positive rate. Shaded 

regions indicate improvement in area under the curve after AvG curation. Error bars connote 

the standard deviation across bootstrap iterations and the center point represents the median 

value for each metric.
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