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Recent studies combining neuroimaging with machine learning methods successfully
infer an individual’s brain age, and its discrepancy with the chronological age is used
to identify age-related diseases. However, which brain networks play decisive roles in
brain age prediction and the underlying biological basis of brain age remain unknown.
To answer these questions, we estimated an individual’s brain age in the Southwest
University Adult Lifespan Dataset (N = 492) from the gray matter volumes (GMV) derived
from T1-weighted MRI scans by means of Gaussian process regression. Computational
lesion analysis was performed to determine the importance of each brain network in
brain age prediction. Then, we identified brain age-related genes by using prior brain-
wide gene expression data, followed by gene enrichment analysis using Metascape.
As a result, the prediction model successfully inferred an individual’s brain age and
the computational lesion prediction results identified the central executive network as
a vital network in brain age prediction (Steiger’s Z = 2.114, p = 0.035). In addition,
the brain age-related genes were enriched in Gene Ontology (GO) processes/Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways grouped into numbers of
clusters, such as regulation of iron transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling (e.g., dopaminergic
synapse), behavior (e.g., memory and associative learning), neurotransmitter secretion,
and dendrite development. In all, these results reveal that the GMV of the central
executive network played a vital role in predicting brain age and bridged the gap
between transcriptome and neuroimaging promoting an integrative understanding of
the pathophysiology of brain age.
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INTRODUCTION

Normal brain aging is accompanied by a decline of brain region volumes (Anderton, 2002) and
cognition such as conceptual reasoning, executive function, and memory (Harada et al., 2013;
Kirova et al., 2015). As the brain ages, many age-related diseases emerge, such as Alzheimer’s disease
(AD) (Amaducci and Tesco, 1994; Ferri et al., 2005). As the fifth leading cause of death in people
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over the age of 65 years (Kirova et al., 2015), AD burdens
the society heavily. The risk of developing AD increases
exponentially with age (Plassman et al., 2007). Thus, revealing the
mechanism of the normal brain age is the key to understanding
age-related diseases (Raji et al., 2009). Recent studies combining
neuroimaging and machine learning methods predict brain age
successfully and found that the chronological age is not exactly
equal to brain age in both normal and pathological subjects such
as patients with schizophrenia, mild cognitive impairments, and
depression (Gaser et al., 2013; Habes and Janowitz, 2016; Hajek
et al., 2019; Han et al., 2021; He et al., 2020). This discordance
between brain age and chronological age helps explain individual
differences in brain aging (Jylhävä et al., 2017). However, the
underlying biological basis of brain age is not well elaborated.

Extensive efforts have been made to identify reliable indictors
of biological age (Wagner et al., 2016). In recent years, the
brain age method identifying normal aging pattern has turned
out to be an informative biomarker of healthy brain aging
at the individual level (Cole and Franke, 2017; Franke et al.,
2010). For example, Vishnu et al. accurately predicted MRI-
derived brain age, helping to identify various brain diseases
(Bashyam et al., 2020). Using this framework, studies have
uncovered accelerated brain aging in several neurological diseases
using the brain-predicted age difference (brain-PAD) scores,
defined as the discordance between the predicted brain age
and the chronological age (Gaser et al., 2013; Habes and
Janowitz, 2016; Hajek et al., 2019; Han et al., 2021; He
et al., 2020). The brain age method outperforms other state-
of-the-art biomarkers, with accuracy rates reaching 81% in
identifying mild cognitive impairments (Gaser et al., 2013).
Despite these remarkable findings, these studies have failed to
elucidate the underlying biological basis of brain age, limiting
our understanding of the biological mechanism of brain age and
its application.

It is widely accepted that genetic factors play important roles
in normal brain aging (Lin et al., 2020). For example, the
expressions of genes playing roles in synaptic functional and
neuronal plasticity in the frontal cortex are reduced with aging
(Sikora et al., 2021). However, the relation between genetic factors
and brain age derived from neuroimaging remains unknown.
Advances in comprehensive brain-wide gene expression atlases
make possible linking the spatial variations in gene expressions to
macroscopic neuroimaging phenotypes (Fornito et al., 2019; Zhu
et al., 2021). For example, Reardon et al. found that the genetic
spatial expression is tied with cortical scaling gradients (Reardon
and Seidlitz, 2018). Resting-state intrinsic brain synchronization
is also supported by related gene expression (Richiardi et al.,
2015). Combing neuroimaging and gene transcripts provides
insights into how disease-related aberrance at the microscale
architecture drives macroscale brain abnormalities in mental
disorders such as depression and schizophrenia (Romero-Garcia
et al., 2020; Li and Seidlitz, 2021). The details of the underlying
transcriptional mechanisms of brain age remain unknown.

The aims of the current study were twofold. Firstly, we
investigated the importance of brain networks in brain age
prediction. The Southwest University Adult Lifespan Dataset
(N = 492) was used in the current study. For each subject, the gray

matter volumes (GMV) quantified by voxel-based morphometry
(VBM) of brain regions were treated as features to predict an
individual’s brain age. In the prediction model, Gaussian process
regression (GPR) was chosen for its superior performance
compared to existing methods (Han et al., 2021). The importance
of a distinct brain network was determined by computational
lesion analysis (Feng et al., 2018). Secondly, genetic annotation of
the brain networks playing decisive roles in brain age prediction
was generated by employing the Brain Annotation Toolbox
(BAT) (Liu et al., 2019) followed by functional enrichment
analysis to infer the ontological pathways of the brain age-
related genes.

MATERIALS AND METHODS

Sample
The dataset used in the current study come from the Southwest
University Adult Lifespan Dataset (SALD). This dataset was
obtained from healthy participants (N = 492, 308 females and 187
males; age range, 19–80 years). The exclusion criteria included
MRI-related exclusion criteria, current psychiatric/neurological
disorders, and use of psychiatric drugs in the past 3 months prior
to scanning, among others. More description on the subjects and
data acquisition parameters can be found in Wei et al. (2018). The
data are available for research purposes through the International
Neuroimaging Data-Sharing Initiative.1

Data Acquisition
High-resolution T1-weighted anatomical images of the
participants were acquired using a magnetization-prepared rapid
gradient echo (MPRAGE) sequence (repetition time = 1,900 ms,
echo time = 2.52 ms, inversion time = 900 ms, flip angle = 90◦,
resolution matrix = 256 × 256, slices = 176, thickness = 1.0 mm,
and voxel size = 1 mm3

× 1 mm3
× 1 mm3).

Voxel-Based Morphometry Analysis
We followed the standard pipeline of the CAT12 toolbox2 to
calculate the VBM. The main steps included bias field correction,
segmentation [gray and white matter and cerebrospinal fluid,
adjustment for partial volume effects, normalization into the
Montreal Neurological Institute (MNI) space, resampled to
1.5 mm × 1.5 mm × 1.5 mm], and non-linear modulation
(Ashburner, 2009). Finally, the gray matter (GM) maps
were smoothed using 6 mm full width at half maximum
(FWHM) Gaussian kernel. The total intracranial volume
(TIV) of each participant was also calculated to explore its
association with brain age.

Prediction Model
GPR was used to infer an individual’s brain age from the
mean GMV of 246 brain regions (Fan et al., 2016) due to its
superior performance (Han et al., 2021). The GPR method used
in this study was implemented in the Gaussian Processes for

1http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
2http://dbm.neuro.uni-jena.de/cat12/
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Machine Learning (GPML) toolbox.3 As done in previous study
(Marquand et al., 2016; Rasmussen and Williams, 2005), the
parameters were optimized using a conjugate gradient optimizer
(included in the GPML toolbox).

Model Validation
A 10-fold cross-validation was used to evaluate the performance
of the prediction model (Sone et al., 2019; Ziegel, 2010).
This procedure was repeated 100 times to obtain more
stable results. To evaluate the performance of the prediction
model, we calculated (1) the mean absolute error (MAE)
between the estimated brain age (output of the prediction
model) and the chronological age and (2) the correlation
between the chronological age and the estimated brain age
across 100 repetitions. The mean brain-PAD score of each
subject was calculated (brain-PAD score: predicted age - the
chronological age).

To explore whether there was gender difference in the
brain-PAD score, the brain-PAD scores of male subjects were
compared with those of female subjects using a two-sample
t-test controlling for age and age2. The correlation between
the TIV and brain-PAD was also calculated to investigate its
effect on brain age.

Computational Lesion Prediction
As done in a previous study, lesion prediction analysis was
performed to examine the importance of the brain networks
defined in the 17 networks of Yeo et al. (2011). Specifically, the
regions belonging to one specific network were excluded and
the GMV of the rest of the networks were treated as features to
predict brain age (Feng et al., 2018). Afterward, the importance
of an individual network was determined by comparing the
performance of a “lesioned” model with that of a model with all
regions using Steiger’s Z (Feng et al., 2018; Ren et al., 2021). Here,
we used the opposite value of the Z value. A higher Z meant
a lower of performance of the “lesioned” model, thus declaring
the more important role of the “lesioned” network in brain age
prediction. The correlation between the chronological age and
the mean GMV of each network was also calculated.

Genetic Annotation Using BAT
Then, we performed a genetic annotation analysis for the brain
age-related networks to identify the gene expression profile for
this network using BAT4 (Hawrylycz et al., 2012). The gene
profiles used in BAT (see text footnote 4) come from the
Allen Human Brain Atlas (AHBA)5 obtained from six adult
human brains (Hawrylycz et al., 2012). The number of anatomic
samples obtained for each brain varied from 363 to 946. Details
on the processing expression data were included in Liu et al.
(2019). Here, we just provide a brief description. Processing
the raw expression data followed the pipeline provided by the
AHBA. The probe with the highest average expression was
picked to represent that gene. In sum, 3,695 unique anatomic

3www.gaussianprocess.org/gpml/code/
4http://123.56.224.61/softwares
5http://human.brain-map.org/

samples with 20,738 gene expression profiles were obtained.
Expressions were normalized by extracting the median of the
gene’s expression across all samples of the individual, then divided
by the median. For each AHBA tissue sample, a 6-mm sphere
region of interest (ROI) in the MNI volume space centered
on its MNI centroid coordinate. Finally, 3,695 ROIs with their
corresponding normalized gene expression profiles were used in
the following analysis (Hawrylycz et al., 2012).

For each background AHBA sample, that with more than
50% of voxels that were also present in the given background
mask was mapped to one of the given clusters. The gene
expression profile of each cluster was defined as the average
gene expression of all the samples mapped to the given
cluster. Permutation analysis was adopted to identify the
differentially expressed genes in the given cluster. Lastly, for
each gene, the name and the corresponding p-value were
obtained. In the current study, brain age-related genes were
identified if their p < 0.05 [family-wise error (FWE) corrected]
(Hawrylycz et al., 2012).

Enrichment Pathways Associated With
Brain Age-Related Genes
Thereafter, we aligned the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways with the genes obtained in the previous step
using Metascape. Metascape provided automated meta-
analysis tools to understand either common or unique
pathways in 40 independent knowledge bases (Zhou et al.,
2019). The gene list was input into the Metascape website
and the results corrected by the false discovery rate (FDR;
p < 0.05).

RESULTS

Demographic Information
Demographic information of the dataset used in the current study
is included in Table 1.

Performance of the Prediction Model
The correlation between the chronological age and the estimated
brain age reached R = 0.889 (Figure 1). Consistent with the
findings of a previous study, the performance of the prediction
model was better that that in Han et al. (2021) because the sample
size used in the current study was larger (Franke et al., 2010).
There was no significant difference between male and female
subjects (p > 0.05). The correlation between TIV and brain-PAD
was also not significant (p > 0.05).

TABLE 1 | Demographic information of the dataset.

Subjects

Age (years), mean ± SD, (range), y 45.10 ± 17.43, (19–80)

Gender, male: female 186: 306
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FIGURE 1 | Performance of the prediction model.

Computational Lesion Prediction
The results of computational lesion prediction revealed that
the performance of the prediction model significantly degraded
(Steiger’s Z = 2.114, p = 0.035) only if the central executive
network, including the bilateral middle temporal gyrus, right
middle frontal gyrus, the bilateral dorsolateral frontal gyrus, and
the right inferior parietal lobule, was excluded (Supplementary
Figure 1). The mean GMV of the 17 networks were all negatively
correlated with the chronological age, suggesting that the GMV
decreases in normal aging (Supplementary Figure 2).

Enrichment Pathways
BAT identified 2,927 genes associated with brain age-related
networks. Then, we aligned the GO biological processes and
KEGG pathways using Metascape. The results reported in
this study were corrected for FDR (p < 0.05) and discrete
enrichment clusters were discarded. The GO processes and
KEGG pathways were clustered into a number of groups such as
regulation of iron transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling
(e.g., dopaminergic synapse), behavior (e.g., memory and
associative learning), neurotransmitter secretion, and dendrite

development. The top 20 enrichment terms were included in
Figure 2 and the enrichment networks were drawn in Figure 3.

DISCUSSION

In this study, we investigated the importance of brain networks
contributing to brain age prediction and the underlying
molecular mechanisms of brain age. As a result, the central
executive network turned out to be a vital network in predicting
brain age due to the performance of the prediction model being
significantly degraded (Steiger’s Z = 2.114, p = 0.035) when it
was excluded from the model. The genes associated with the
central executive network were ontologically enriched in clusters
such as regulation of ion transmembrane transport, synaptic
signaling, synapse organization, retrograde endocannabinoid
signaling (e.g., dopaminergic synapse), behavior (e.g., memory
and associative learning), and so on. In all, these results reveal that
the GMV of the central executive network played a vital role in
predicting brain age and bridged the gap between transcriptome
and neuroimaging promoting an integrative understanding of the
pathophysiology of brain age.

Our results hinted that the GMV of the central executive
network is a potential biomarker of brain age. Normal brain
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FIGURE 2 | Top 20 significant Gene Ontology (GO) biological processes/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The count meant the
number of genes involved in the given term.

aging is associated with GM volume loss (Allen et al., 2005;
Walhovd et al., 2005), including in the parietal lobe, temporal
cortex, and especially in the frontal lobe (Matsuda, 2013;
Van Petten et al., 2004). Along with losses of GMV, normal aging
is characterized by a gradual decline in cognitive processes
such as executive function, episodic memory, working memory,
and processing speed (Lee et al., 2016). Consistent with these
studies, our results presented that the GMV of all networks
correlated with brain age significantly. In addition, we found
that only when the central executive network was excluded did
the performance of the prediction model significantly degrade
(Steiger’s Z = 2.114, p = 0.035). These results hinted that the
central executive network could be a potential biomarker of brain
age. The reason might be that the effect of brain aging on the
central executive network was more consistent across different
populations than regions like the amygdala, hippocampus, and
thalamus (Matsuda, 2013). Individuals exhibiting age-related
decline tended to show impairments of executive functions first,
suggesting that this network might be particularly vulnerable
during normal aging (Sorel and Pennequin, 2008). In addition,
a linear volume reduction of the central executive network
with increasing age even occurred during the earlier stages of
adulthood (Terribilli et al., 2011). As a supplement to these
studies, our results revealed that the GMV of the central executive
network played a decisive role in predicting brain age.

We further investigated the transcriptional signatures of the
brain age-related networks. Although brain age was employed

in abnormal aging trajectories in various diseases (Gaser
et al., 2013; Habes and Janowitz, 2016; Hajek et al., 2019;
Han et al., 2021; He et al., 2020), studies investigating the
underlying biological foundation of brain age are scarce. To
the best of our knowledge, only one study linked polygenic
risk score and accelerated brain aging in AD (Habes and
Janowitz, 2016). For the first time, we found that brain age-
related genes were enriched in GO processes/KEGG pathways
clustered into a number of groups such as regulation of
iron/calcium transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling
(e.g., dopaminergic synapse), behavior (e.g., memory and
associative learning), neurotransmitter secretion, and dendrite
development. Calcium-dependent signals were key triggers of
the molecular mechanisms underlying learning and memory;
dysregulation of its homeostasis in the aging brain was
hypothesized to underlie aging-related cognitive decline (Oliveira
and Bading, 2011). In the brain, iron was involved in many
fundamental biological processes, including neurotransmitter
synthesis and metabolism; its homoeostasis played an important
role in maintaining normal function (Ward et al., 2014). Normal
brain aging is accompanied by selective accumulation of iron.
Greater accumulation of iron was observed in neurodegenerative
diseases associated with oxidative stress and cellular damage
(Zecca et al., 2004). In addition, both the density and
morphology of dendritic trees mainly possessed by pyramidal
neurons underwent progressive regression in the neocortex
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FIGURE 3 | Metascape enrichment network visualization.

(Dickstein et al., 2013) without neuronal death (Morrison and
Hof, 1997). Consistent with the notion that no single mechanism
explains the aging process (Kyng et al., 2003), we identified a
number of GO processes/KEGG pathways underlying brain age.

Several limitations should be considered when understanding
our results. Firstly, factors such as educational level could also

affect the GMV. For example, greater GMV in the superior
temporal gyrus, insula, and anterior cingulate cortex were found
in more educated individuals (Arenaza-Urquijo et al., 2013).
As this information was not included in the dataset used in
the current study, future studies might explore its effect on
brain age. Secondly, the gene expression data and neuroimaging
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data did not come from the same subjects. Considering the
high degree of conservation in overall gene expression across
human populations (Stranger et al., 2007; Zhu et al., 2021), the
expressions of brain age-related genes could be believable.

CONCLUSION

As a supplement to previous studies exploring brain age, our
results reveal a decisive role of the GMV of the central executive
network in brain age prediction. In addition, the present
study investigated the underlying transcriptional profiling of
the central executive network. As a result, we found that
brain age-related genes were enriched in GO processes/KEGG
pathways clustered into a number of aging-related mechanisms
such as regulation of iron/calcium transmembrane transport
and dendrite development. In all, these results reveal that the
GMV of the central executive network played a vital role in
predicting brain age and bridged the gap between transcriptome
and neuroimaging promoting an integrative understanding of the
pathophysiology of brain age.
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