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Abstract: There is a consensus that epigenetic alterations play a key role in cancer initiation and its
biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling
patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the devel-
opment of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and
translational challenges, combinatorial therapies employing agents targeting epigenetic modifica-
tions with conventional approaches have shown encouraging results. However, for rare neoplasia
such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options
are still limited. LMS has high chromosomal instability and molecular derangements, while ESS
can present a specific gene fusion signature. Although they are the most frequent types of “pure”
uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently
develop resistance to current treatment options. The challenges involving the management of these
tumors arise from the fact that the molecular mechanisms governing their progression have not been
entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies,
we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant
epigenetic studies, published between 2009 and 2022.

Keywords: uterine leiomyosarcoma; endometrial stromal sarcoma; epigenetics mechanisms; ncRNA;
DNA methylation; histones modifications

1. Introduction

The body of the uterus is composed of a mucosa muscular interface derived from
the Müllerian embryonic ducts and constituted of internal endometrium and external
myometrium (MM) tissue layers [1–4]. The internal endometrium is composed of luminal
epithelium, glandular epithelium, and endometrial stroma whereas the MM consists mainly
of smooth muscle cells [2–4]. Cellular and molecular alterations in the endometrial stroma
and smooth muscle cell layers can lead to uterine sarcoma (US) development [4–6].

US accounts for 3–9% of all uterine malignancies and shows high rates of recurrence
and metastasis [7,8], occupying the second place among all gynecological tumors [7,9]. The
American Cancer Society (ACS) registered a total of 66,570 new cases of uterine tumors
with about 12,940 related deaths in 2021 [10] and estimates 65,950 new cases for 2022
(Figure 1) [11].

“Pure” sarcomas are composed exclusively of mesenchymal cells and include the
leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), which are morpholog-
ically classified mainly based on the tumor cells phenotype [12]. LMS arises from the
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smooth muscle compartment, while ESS arises from the stroma supporting the endometrial
glands [8]. LMS and ESS are the most frequent uterine mesenchymal tumors in adult
age [13].

Figure 1. The estimated incidence of gynecological tumors for 2022 according to the ACS.

For LMS and ESS, the disease stage is the single most important prognostic factor [14].
The International Federation of Gynecology and Obstetrics (FIGO) classification and staging
system has been specifically designed for these tumors [15]. In 2018, the ACS published
the latest revision of the definitions and clinical staging of LMS and ESS (Table 1), based
on the FIGO system and the American Joint Committee on Cancer (AJCC) TNM staging
system [14,16–18].

It is well known that several molecular events may lead to tumor development. Among
these, epigenetic mechanisms such as DNA methylation, post-translational modifications
(PTMs), and non-coding RNA (ncRNA) regulation (e.g., microRNAs) can significantly
affect the expression of relevant genes, leading to dramatic cell changes [19–21]. Epigenetic
alterations are characterized by reversibility and susceptibility to external factors and are
the main regulatory events governing the development and progression of uterine sarco-
mas [19,20,22]. Here, we reviewed and summarized the scientific and clinical reports from
the past twelve years regarding epigenetic events and their role in the pathophysiology of
the ESS and LMS. The most relevant articles written in English were meticulously reviewed
and included in this review, and no restrictions for geographic location were applied.
Articles without tumor type description or any identification as “uterine” were excluded.

1.1. LMS Etiology, Prognosis, and Treatment

LMS arises from the myometrium (MM) and often does not reach the endometrial
cavity surface [9,23]. Its incidence is 0.36 per 100,000 women a year, affecting mainly
women of ≥40 years of age, and representing approximately 70% of all US [24–29]. LMS
is a very heterogeneous tumor and represents the most common sarcoma of the uterine
body [14,17,25,26,30–32]. Its pathogenesis is poorly understood, but several studies focus-
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ing on tumor clonality indicate that many of these tumors are de novo entities [33–38].
Even though it is an extremely rare event [37], some authors defend the hypothesis
that LMSs could arise from the malignant transformation of a pre-existing leiomyoma
(LM) [15,30,35,39,40]. However, most of the patients do not exhibit predisposing factors
such as prior radiation therapy to the pelvis (10–25%), tamoxifen use (1–2%), genetic syn-
dromes (e.g., retinoblastoma and Li–Fraumeni syndrome), postmenopausal status, and
ethnicity (African American) [41].

Table 1. Staging of LMS and ESS (FIGO 1 and AJCC 2).

Stage Features Description

I
T1

Tumor limited to the uterus (T1).N0
M0

IA
T1a

Tumor restricted to the uterus (less than 5 cm) (T1a).N0
M0

IB
T1b

Tumor restricted to the uterus (more than 5 cm) (T1b).N0
M0

II
T2

Tumor growing outside the uterus but is restricted to the pelvis (T2).N0
M0

IIIA
T3a

Tumor growing in a single tissue located in the abdomen (T3a).N0
M0

IIIB
T3b

Involvement of other extrauterine pelvic tissues, 2 or more sites (T3b).N0
M0

IIIC
T1–T3 Tumor invades abdominal tissues (does not protrude from the abdomen) but does not

grow into the bladder or rectum (T1 to T3). The cancer has spread to nearby lymph
nodes (N1).

N1
M0

IVA
T4 Tumor spread to the rectum or urinary bladder (T4). It might or might not have spread

to nearby lymph nodes (Any N).Any N
M0

IVB
Any T Tumor spread to distant sites (lungs, bones, or liver) (M1). It may or may not have

grown into tissues in the pelvis and/or abdomen (any T) and it might or might not have
spread to lymph nodes (Any N).

Any N
M1

1 FIGO: International Federation of Gynecology and Obstetrics classification (2009). 2 AJCC: American Joint
Committee on Cancer TNM staging system (2018).

Clinically, LMS is associated with a poor prognosis even when diagnosed in the
early stages, consequently leading to a significant increase in uterine cancer-associated
deaths [13,17,26,28,29]. The recurrence rate of LMS reaches 53–75%, even at the initial stages
of the disease, with locoregional or distant recurrence in the first two years after diagno-
sis [7,14,26,28,42–46]. The overall survival expectancy of LMS is 2.6 years, and the survival
at 2, 5, and 10 years are approximately 57%, 24%, and 12%, respectively [26,28,42,44]. The
survival rates for patients with LMS decrease as the disease progresses; thus, for localized
disease (i.e., restricted to the uterus) the estimated survival rates are 64%, for regional
disease (afflicting nearby and adjacent tissues, i.e., lymph nodes) the survival rates are
36%, and for disseminated disease [44,47–50] or metastatic disease (i.e., lungs and liver) the
survival is 14% [51].

LMS-related symptoms are associated with vaginal bleeding in 56% of the cases, in-
creased pelvic mass in 54% of the cases, and/or pelvic pain in 22% of the cases [14,15,17,37,39].
Typically, 75% of the patients present a large tumor mass with an average diameter of
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10 cm at the time of diagnosis [14,17]. Although LMSs occur primarily in postmenopausal
women [52], both progesterone receptor (PR) and estrogen receptor (ER) are found to be
expressed in 40% and 70% of the cases, respectively [43,52–56]. A recent review has sug-
gested that hormonal therapy applied to LMS expressing ER/PR is effective and presents
favorable tolerance and reliability [57].

There are preoperative methods that allow the differential diagnosis of benign and
malignant uterine disease. Magnetic resonance imaging (MRI) remains the optimal imaging
modality to characterize pelvic masses originating from the uterus, but distinguishing LMS
from LM remains a challenge [17].

LMS histopathological analysis is characterized by the presence of spindle cells, with
ruptured nuclei, perinuclear vacuolization, and eosinophilic cytoplasm arranged in inter-
secting fascicles within the analyzed sample. Meeting the Stanford criteria, LMS should
be deemed intrinsically as a high-grade tumor [58]. Cell atypia can vary from moderate
to severe, while nuclear atypia is always severe, large areas of tumor cell necrosis with
variable mitotic index and atypical mitosis are often observed [15,24,37,59,60]. There are
two uncommon subtypes of uterine LMS: myxoid and epithelioid LMS. These present
mild or focal nuclear pleomorphism and lower mitotic degree, compared to typical LMS.
Diagnostic mistakes between these types of LMS and other smooth muscle tumors are often
common [61,62].

Immunohistochemical co-expression of Desmin, h-Caldesmon, smooth muscle actin
(SMA), and HDAC8 can assist with LMS diagnosis [39,40,56,63–65]. Several other potential
biomarkers such as PDGFRA, WT1, GNRHR, BCL2, ESR, PGR, and LAMP2 have also
been evaluated to distinguish LMS from other tumors, mainly from LM [63]. The cell
proliferative index (determined by Ki-67 protein expression), the protein expression levels
of the tumor suppressors p16 and p53, and the expression of several isoforms of the CD44
(hyaluronan receptor) are, however, routinely used [8,65]. Additionally, some patients
show high amounts of lactate dehydrogenase (LDH) [12] and/or CA125 levels [13], but
these markers are quite unspecific [17].

Most recently, gene expression profile analysis has enabled the classification of LMS
into two subtypes according to their molecular signature. The subtype I recapitulated the
low-grade LMS and was enriched for LMOD1, SLMAP, MYLK, and MYH11, all of them
smooth muscle-specific markers. Subtype II of LMS included tumors with worse prognosis
and expressed genes associated with cell cycle, proliferation, and tumorigenesis (CDK6,
BMP1, MAPK13, PDGFRL, and HOXA1) [66,67].

The gold standard treatment for LMS is still the tumor surgical excision. Total
hysterectomy and bilateral salpingo-oophorectomy are recommended for early-stage tu-
mors [17,32,46–48,56,58,68]. Adjuvant chemo and radiotherapies are indicated to avoid
recurrences, or for early-stage disease, but their effectiveness is still unclear [17,44,49,69]
and they do not offer a significant advantage to improve overall survival [22,43,49,55,70,71].
Recently, new chemotherapies, targeted therapies (pazopanib), and immunotherapies
(nivolumab or pembrolizumab) seem to be promising new approaches to treat drug-
resistant LMS [41].

1.2. ESS Etiology, Prognosis, and Treatment

ESS is the second most common type of US [72] and arises from the uterine stroma.
It is composed of endometrial stromal cells reminiscent of proliferative phase en-
dometrium [7,13,15,73]. It is predominantly intramural, showing both a myometrial
invasion and myometrial lymphovascular space permeation [7]. ESS pathogenesis is
unknown, but tamoxifen exposure and some medical conditions (e.g., polycystic ovary
syndrome) may contribute to its development [73,74]. Although a rare tumor, representing
less than 1% of all uterine tumors, ESS accounts for up to 25% of all uterine sarcomas [58].
Symptoms related to ESS development and progression include abnormal uterine bleeding
(about 90% of patients), uterine enlargement (70% of cases), pelvic pain, and dysmenorrhea.
In 25% of the cases, however, the patients can be asymptomatic [73,75].
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The most recent World Health Organization (WHO) classification (2020) for ESS is
based on both cytogenetic and molecular analyses (i.e., gene fusion or alterations [76])
where the tumors are divided into benign endometrial stromal nodules (ESN), low-grade
endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-
ESS), and undifferentiated uterine sarcomas (UUS) (Table 2) [76–78]. Morphologically,
ESN is differentiable from LG-ESS only for the absence of lymphovascular invasion and
myometrial infiltration. LG-ESS is usually positive for CD10, ER, and PR and can express
actin, keratins, and calretinin [79], which differ from the HG–ESS tumors carrying the
YWAE-NUTM2 fusion that do not express these markers. HG-ESS shows high expression
of Cyclin-D1, c-KIT, and BCOR, and when ZC3H7B-BCOR fusion is present, CD10 and
variable staining for ER and PR are also observed. Finally, UUS exhibits myometrial
invasion, severe nuclear pleomorphism, high mitotic activity and/or necrosis, and loss
of differentiation. This tumor, however, does not show a specific immunohistochemical
profile, instead showing a diffused and atypical staining for CD10 as well as heterogeneous
patterns of ER and PR staining [14,80].

HG-ESS and UUS can be difficult to diagnostically differentiate from LMS since the
latter can mimic both ESS and UUS. In this case, the immunohistochemical markers and
morphological features can be useful, but not accurate. Tumor location can also provide
important information because LMS is exclusively related to MM, while UUS may also involve
the endometrium. Furthermore, ESS is also diagnosed only post-surgery, but unlike LMS,
they present an indolent course with relapses occurring up to 20 years after diagnosis [81].

Overall, patients with ESS have a better life expectancy than other sarcomas. Their
five-year survival rates are higher than 80%. For disease stages I and II the five-year
survival is approximately 90% whereas for stages III and IV (i.e., advanced disease) the
survival rate for the same interval of time is significantly reduced, according to the FIGO
stage system [75,82].

Treatment protocols are defined based on the grade and stage of the tumor at the
time of diagnosis. Total hysterectomy with bilateral salpingo-oophorectomy remains the
standard treatment for ESS, and lymphadenectomy does not appear to improve overall
survival rates [83]. Adjuvant radiotherapy and hormone therapy are not well-established
therapeutic options yet, even though some studies have shown that hormonal agents can
be an alternative to the management of LG-ESS [82,84]. In contrast, HG-ESS is generally
detected in advanced stages with no effective adjuvant therapy available. In this case,
immunotherapy with adoptive T cells transfer, targeting tumor fusion proteins, can be
useful. Such an approach has been proved to be efficient in inhibiting tumor recurrences in
other cancer types, thus inducing long-term memory cells and the persistent presence of
these cells in the patient’s blood [85].

Table 2. Molecular features of endometrial stromal tumors (ESTs).

Category EST Fusion/Gene Alteration [72,86–101]

Endometrial Stromal Nodule (ESN) JAZF1-SUZ12 1 [86,87]
MEAF6-PHF1 [86,87]

Low-Grade Endometrial Stromal Sarcoma
(LG-ESS)

JAZF1-SUZ12 1 [88]
JAZF1-PHF1 [88]

MEAF6-PHF1 [88]
EPC1-PHF1 [89]

MBTD1-EZHIP [89]
JAZF1-BCORL1 [89]

MAGED2-PLAG1 [90]
MEAF6-SUZ12 [91]

EPC2-PHF1 [92]
BRD8-PHF1 [72]
EPC1-BCOR [72]
EPC1-SUZ12 [72]



Biomedicines 2022, 10, 2567 6 of 24

Table 2. Cont.

Category EST Fusion/Gene Alteration [72,86–101]

High-Grade Endometrial Stromal Sarcoma
(HG-ESS)

YWHAE-NUTM2A/B 1 [93]
BCOR-rearrangement [94]

ZC3H7B-BCOR [72,95]
EPC1-BCOR [96]
EPC1-SUZ12 [96]
BCOR-ITD [72]
LPP-BCOR [72]

BRD8-PHF1 [97]

Undifferentiated Uterine Sarcoma (UUS)

JAZF1-SUZ12 [97]
YWHAE-NUTM2 [97]
ZC3H7B-BCOR [97]

YWHAE-rearrangement [97]
HMGA-RAD51B [98]

SMARCA4-deficient [99]

NTRK-Rearranged Uterine Sarcomas (HG-ESS)

RBPMS-NTRK3 [100,101]
TPR-NTRK1 [100,101]

LMNA-NTRK1 [100,101]
TPM3-NTRK1 [100,101]
EML4-NTRK3 [100,101]
STRN-NTRK3 [100,101]

1 Most common alterations.

2. Genetics and Epigenetics Mechanisms in LMS and ESS

Genetic changes are related to alterations in the DNA sequences, whereas epigenetic
modifications involve specific regulatory events apart from DNA codification [102–108].
Epigenetic events play an important role in several normal cellular processes, including
embryonic development, genetic imprinting, and X-chromosome inactivation. When
altered, epigenetic mechanisms may lead to several diseases, including cancer initiation
and progression [106]. Epigenetic dysregulation affects gene functions by altering the gene
expression mainly by (1) DNA methylation, (2) PTMs, and (3) RNA-mediated gene silencing
by ncRNA (e.g., microRNA) (Figure 2) [102,109]. The main clinical and scientific interest in
epigenetic events resides in the fact that they are reversible mechanisms [110,111].

2.1. DNA Methylation

DNA methylation is the most studied and understood epigenetic event described to
date. Found in more than 70% of the human genome, DNA methylation is crucial for cellular
differentiation and normal development [112]. It consists of the addition of a methyl radical
(CH3) to the 5-carbon on cytosine residues (5mC) in CpG dinucleotides [103,104,108–114].
DNA methyltransferases (DNMTs)—enzymes responsible for DNA methylation—are
known to act in cancer cells by either hypomethylation or hypermethylation of specific
CpG regions in the DNA [114].

Global DNA hypomethylation or loss of methylation has been associated with genomic
instability as well as aneuploidy, loss of imprinting, reactivation of transposable elements,
and endogenous retrovirus (ERVs) [108,113,115]. In cancer, hypomethylation is commonly
followed by hypermethylation of localized CpG islands at the promoter and regulatory
regions of target genes, which remain unmethylated in normal cells [109,115,116]. Hyper-
methylation of regulatory regions leads to transcriptional silencing by directly blocking the
transcription factors binding to the promoter region, or by the binding of proteins with a
high affinity for methylated DNA that compete with the transcription factors binding sites
(Figure 3) [108,117].

DNMTs are commonly found overexpressed in tumors, constituting an attractive
target for specific therapy. The FDA has approved “epidrugs” such as 5-azacitidine
(5-Aza), 5-aza-2-deoxycytidine (DAC), and the second-generation of the demethylation
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agent guadecitabine [116,118]. In LMS, Fischer et al. (2018) assessed the therapeutic poten-
tial of nucleoside analogs 5-Aza, DAC, and guadecitabine, using both in vitro and in vivo
experiments. Their results show guadecitabine as a more effective inhibitor of both cell
survival and colony formation in vitro. Additionally, animals who received this treatment
showed a decrease in the tumor burden and increased survival [116].

Figure 2. Graphical representation of epigenetic events potentially involved in the initiation and
development of the tumors, including uterine LMS and ESS. The biogenesis of miRNAs starts in
the nucleus and ends in the cytoplasm. This process includes the participation of several enzymes
and protein complexes that regulate the production of mature molecules capable of regulating gene
expression, both through induction of mRNA degradation and translational repression. Likewise,
dynamic alterations of histone modifications, including acetylation, methylation, and phosphoryla-
tion, modify gene expression, thus affecting DNA replication and repair, chromatin compaction, and
cell cycle control. In addition, histone modification readers such as BRDs can recognize modified
histones, therefore altering gene expression and responding to different signals. Dysregulation in the
epigenetic machinery leads to malignant transformation of cells culminating in the development of
cancer. Created with BioRender.com.

Our group recently assessed the impact of DNMT inhibition on the Hedgehog (HH)
signaling pathway with 5′-Aza-dc, in uterine LMS cells. We observed a reduction in
the GLI1 mRNA, and SMO and GLI1 protein in response to the treatment. Moreover,
GLI1 and GLI2 nuclear translocation were also decreased while nuclear translocation of
GLI3 was increased. Our data showed that DNMT inhibitor, alone or in combination
with pharmacological treatment, was able to block the HH pathway and showed a high
inhibitory effect on the LMS malignant cells phenotype [119].

MGMT silencing due to its promoter hypermethylation has been commonly observed
in several malignancies, including uterine sarcomas [120,121]. The methylation of the
MGMT promoter region, which contributes to genome instability and sensitizes the cells

BioRender.com
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to alkylating agents (such as Temozolomide (TMZ)), has been correlated with improved
prognosis and as a potential factor of response to TMZ-based therapy prediction [121].

Figure 3. Schematic representation of the DNA methylation process in LMS and ESS during cancer
development and progression. Methyl groups are added to the DNA molecule and change its activity.
Promoter hypermethylation has been shown to silence tumor suppressor genes in cancer cells, leading
to either dysregulation of cell growth or inducing resistance to cancer therapies. Hypomethylation
promotes genomic instability causing missegregation of chromosomes during cell division. Created
with BioRender.com.

Global DNA methylation studies have also found methylation patterns or signatures
that have been associated with different cancer hallmarks [122]. Braný et al. in 2019
observed differences in the methylation levels between MM and LM samples in the KLF4
and DLEC1 genes. Higher levels of methylation were found in LM compared to LMS cases,
suggesting that methylation of KLF4 and DLEC1 are potential biomarkers to distinguish
LM from LMS [123].

Hasan et al. (2021) identified differentially methylated and differentially expressed
genes associated with LMS. Among the 77 hypermethylated genes, chromatin-modifying
enzymes, including KAT6A, KMT2A and EZH2, and chromatin/DNA binding proteins
such as CTNNB1, PBX3, SATB1, MEIS and COMMD1-BMI1 were observed. The find-
ings indicate the possible involvement of chromatin modulation in regulating the DNA
methylation of these genes [124].

A higher DNA damage response and hypomethylation of estrogen receptor 1 (ESR1)
target genes were both observed when comparing uterine to extra uterine LMS [13].

Gene silencing through methylation can occur as frequently as mutations or deletions,
leading to aberrant silencing of tumor suppressor genes [125]. In an LMS experimental
model, the lack of BRCA1 function was associated with tumor initiation and develop-
ment. This protein expression was next investigated in human samples, and a loss of
29% was associated with promoter methylation [126]. Methylation in the CDKN2A gene,
using uterine LMS samples with a rhabdomyosarcomatous component, has also been de-
scribed [127]. The authors identified both methylated and unmethylated alleles, originating
mainly from the smooth muscle component. Moreover, the loss of heterozygosity in the

BioRender.com
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rhabdomyosarcomatous component has been described exclusively in the cells expressing
p16 and p14 [127].

Hierarchical clustering based on the hypermethylation of ALX1, CBLN1, CORIN,
DUSP6, FOXP1, GATA2, IGLON5, NPTX2, NTRK2, STEAP4, PART1, and PRL allowed
differentiation among several uterine tumors with up to 70% accuracy [128,129]. Clusters
of distinct DNA methylation patterns have also been useful in distinguishing tumor types
regardless of the number of CpG sites. Thus, LM and LMS were separated into two different
clusters each, while ESS samples (LG- and HG-ESS) were grouped into two subtypes with
specific profiles. The HG-ESS cluster included YWHAE and BCOR-rearranged tumors,
distinct from LG-ESS and LMS [128,129]. Although LMS and HG-ESS are morphologically
similar, the results show that the DNA methylation profile may be useful to discriminate
against these closely related tumors [128].

DNA methylation plays a key role in gene expression regulation, inducing functional
changes in key genes that regulate endometrial homeostasis [113]. Li et al. (2017) showed
that the KLF4 promoter was hypermethylated in the ESS. They also found PCDHGC5 was
highly methylated in the ESS samples when compared to endometrioid and endometrial
serous carcinoma. sFRPs 1-5 are tumor suppressors that downregulate Wnt/β-catenin
signaling [130–133]. Their consistent promoter hypermethylation and subsequent gene
expression suppression were described in ESN, LG-ESS, and UUS.

Although the true role of DNA methylation patterns in the LMS and ESS initiation and
progression is not completely understood, DNA methylation in normal endometrial stromal
cells has been useful to identify signatures that indicate changes during decidualization or
cell transformations [134–137]. Further studies to determine the precise methylation profile
in pure mesenchymal tumors are certainly necessary to enable the characterization and
differentiation of these tumors as well as to establish new therapeutic options.

2.2. Chromatin Remodeling

The chromatin is composed of DNA molecules tightly coiled around proteins called
histones. This structure condensation degree is directly associated with greater or lesser
RNA synthesis, with greater condensation (higher chromatin closing) being the state of
more transcriptional repression [138]. The basic unit of chromatin, called nucleosome, is
constituted by two copies of each core histone (H2A, H2B, H3, and H4) enveloped by
DNA molecules [139]. Chromatin regulation occurs through PTMs of core histones and
can involve phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, and
GlcNAcylation [139].

Currently, the two most studied and best understood mechanisms of chromatin regula-
tion are histones acetylation and methylation. Such events are regulated by very specialized
proteins called writers, erasers, and readers—which respectively add, remove, or recognize
these PTMs [110–112,140–142]. Included in the writers’ group are histone acetyltransferases
(HATs), DNA methyltransferases (DNMTs), histone lysine methyltransferases (HKMTs),
and histone methyltransferases (HMTs). The erasers’ group includes histone deacetylase
(HDACs) and histone demethylases (HDMs), ten eleven translocations (TETs), and histone
lysine demethylases (HKDMs). In the reader’s group are methyl-CpG-binding domains
(MBDs) and bromodomains [143].

Histone modifications affect the chromatin structure providing binding sites for several
transcriptional factors. Its modification has a direct influence on gene expression, DNA
replication and repair, chromatin compaction, and cell cycle control. Thus, loss of regulation
of the histone modifications can lead to cancer pathogenesis and several developmental
defects (Figure 4) [143].

The lysine residues of histones H3 and H4 are targeted for methylation by site-specific
enzymes, culminating in activation or repression of the gene expression. [144]. This molecu-
lar mechanism is uniquely able to originate three methylation levels: me1 (mono), me2 (di),
and me3 (trimethylation). Lysine methylations may lead to both transcriptional activation
and repression, depending on the lysine residue’s location [143].
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Figure 4. Chromatin remodeling process in LMS and ESS. Chromatin remodeling is an important
mechanism of gene expression regulation. In the histone acetylation induced by HATs, the condensed
chromatin is transformed into a more relaxed structure (euchromatin) that is associated with greater
levels of gene transcription, while histone hypoacetylation induced by HDAC activity is associated
with more condensed chromatin (heterochromatin), inducing gene silencing. Altered expression
and mutations of genes that encode HDACs have been linked to tumor development. Created with
BioRender.com.

In endometrial stromal cells, the transition from a proliferative to a decidual phenotype
occurs due to the loss of the EZH2-dependent methyltransferase activity, which is part of
the chromatin remodeling process [145]. The decidualization process in those cells down-
regulates EZH2, resulting in lower levels of H3K27me3 at the promoter region of PRL and
IGFBP1 (two decidual marker genes). The H3K27me3 loss, associated with acetylation
enrichment in the same lysine residue, indicates the transition from a transcriptionally
repressive chromatin form to a permissive one [145].

Little is known about the specific underlying mechanism of histone acetylation or
methylation associated with the “pure” sarcoma pathobiology. A unique study available
in the literature describes the fatty acid synthase (FASN)-enhanced expression inducing
cell proliferation, migration, and invasion, in transfected cells of uterine LMS. It has been
observed that FASN promotes H3K9me3 and H3K27ac by alteration in the HDAC, HDM,
HMT, and HAT trimethylation activity. Thus, in the uterine LMS cells, the epigenome repro-
gramming by chromatin remodeling seems to induce a higher malignant phenotype [146].

The polycomb group (PcG) proteins are well-characterized transcriptional repressors
that are essential for the regulation of physiological processes in several organisms. PcG
proteins are known to form two distinct complexes with defined enzymatic activities:
polycomb repressive complex 1 (PRC1), a histone ubiquitin ligase related to chromatin
compaction; and PRC2, an HMT that mediates both H3K27me3 and target genes repres-
sion [147–150]. In several cancer types, the expression and function of PcG proteins are
often found dysregulated [148,151–153], and their targeted deletions generally induce lethal
phenotypes [153].

PRC1 catalytic core has two related E3 ubiquitin ligases, the RING1 (RING1A) or
RNF2 (RING1B) that catalyze ubiquitination and BMI1 (polycomb ring finger oncogene),
and one of six PCGF orthologues. The latter constitutes a PRC1 variant containing
BCOR and KDM2B [154–157]. Translocations or chromosomal rearrangements, involv-
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ing fusion proteins have also been implicated in PRCs mechanisms. Fusions such as
KDM2B-CREBBP [158], ZC3H7-BCOR [79,155,156,159,160], JAZF1-BCORL1 [79,91,161],
EPC1-BCOR [72,95], LPP-BCOR [72] and BCOR internal tandem duplications (BCOR-ITD) are
frequently found in ESS, and have recently been also found in LMS samples [80,160,162,163].
Additionally, gene fusion such as MBTD1-CXorf67 [79,91,151,164], MBTD1-EZHIP [90] and
MBTD1-PHF1 in ESS are found as products of PRC1-associated protein [152].

PRC2 has in its core subunits the EZH2 (or its homolog EZH1), EED, SUZ12, and
RbAp46 (or 48). EZH1 and EZH2 are responsible for the H3K27me3 generation. EED binds
to H3K27me3, enhancing the EZH2 catalytic activity, while SUZ12 is essential for the PRC2
activity, and bAp46/48 acts as a chaperone. H3K27 trimethylation leads to the suppression
of several relevant genes, including tumor suppressors [165].

There are two well-characterized PcG proteins, the BMI1 and EZH2, which are required
for the regulation of the PRC activity but are also known to display oncogenic functions in
several cancers. BMI1 was the first identified PcG protein that was described as a proto-
oncogene, and although there are no specific studies regarding the BMI1 role in uterine
LMS [157,166]. Gao et al. (2021) have described one CD133 cell subpopulation that was
derived from SK-UT-1 (uterine LMS cells) with enhanced levels of this protein. The authors
found BMI1, among other CSCs-related (cancers stem cell) markers, up regulated in the
CD133+ cells when compared to the negative cell population [167].

Zhang et al. (2018) investigated both gene and protein expressions of the four PRC2
subunits (EZH2, SUZ12, EED, and RbAp46) in extra-uterine and uterine LMS samples. The
authors observed 91% of sensitivity and 100% of specificity for EZH2 positive staining
in well-differentiated LMS, suggesting this expression is a specific marker for this tumor.
Furthermore, the increased expression of EZH2 was inversely correlated with SUZ12 and
EED expressions, leading to PRC2 suppression and H3K27me3 decrease [168].

Chromosomal rearrangements in genes belonging to the PRC2 complex, or in pro-
teins that interact with them, have previously been described in the ESS [131]. JAZF1-
SUZ12 (previously named JAZF1-JJAZ1) has been frequently reported as the most com-
mon feature of ESS [131,164,169–172]. Additionally, several other modifications such as
EPC1-PHF1 [158,172,173], MEAF6-PHF1 [87,161,162,170], EPC1-ZUZ12 [72,95], MEAF6-
SUZ12 [91,174], BRD8-PHF1 [169], JAZF1-PHF1 [88,158] and YWHAE-NUTM2A/B (previ-
ously known as FAM22A/B) [79,132,175] have also been reported. Panagopoulos et al. in
2012 observed that the rearrangement of genes involved in acetylation and methylation
can be associated with ESS pathogenesis. LG-ESS harboring the EPC1-PHF1 fusion gene
has decreased levels of H3K27me3 and a concomitant increase of H3K36me3 [176]. PHF1
acts in cell proliferation through the modulation of histone H3 methylation [171].

EZH2 can interact with HDAC1 and HDAC2, through the EED protein, suggesting
that the transcriptional repression by the PRC2 complex may be mediated by HDACs [177].
These enzymes act in the acetylation control of transcription factors [178], and their classifi-
cation (Class I, IIa, IIb, III, and IV) is based on their activity, structural similarity, subcellular
localization, and expression patterns [179]. In LMS patients, strong expression of HDACs
1, 2, 3, 4, 6, and 8 were associated with unfavorable prognosis, while HDACs 5, 7, or 9
weak expressions, together with p53 expression, were associated with favorable disease-
free survival (DFS). HDACs 5, 7, and 9 were associated with better survival outcomes,
whereas HDAC5 expression was an independent predictor for DFS in epithelioid subtype
tumors [180]. In vitro analysis using SK-UT-1, SK-LMS-1, MES-SA, and DMR cell lines
demonstrated that HDAC9 (Class IIa) transcription is under MEF2D direct control, and
this axis sustains cell proliferation and survival through FAS repression [177].

In ESS, it has been observed that high expression of HDACs 1, 4, 6, 7, and 8 is associated
with lower DFS [181] whereas, in UUS, distant tumor recurrence was associated with a
strong expression of HDAC6 [140,182].

The increased HDAC activity often observed in cancers justifies the number of cur-
rent studies investigating HDAC inhibitors as novel therapeutic agents [183,184]. These
studies have shown promising results for metastatic LMS [140,180,181,185]. In this context,
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mocetinostat acts by turning on tumor suppressor genes, restoring their normal function,
and reducing tumor growth [140,180]. Its use as mono- or combinatorial therapy has been
evaluated in metastatic extra-uterine and uterine LMS with resistance to gemcitabine and
found to induce regression of tumors with acquired chemoresistance. Romidepsin, LBH589,
belinostat, SAHA, and valproate (other HDAC inhibitors) have shown good results alone
or in combination with decitabine [180,186].

Combinatorial therapy using SAHA, LY294002 (PI3K inhibitor), and rapamycin (mTOR
inhibitor) were tested in ESS cell culture [186]. The results show that SAHA combined with
either LY294002 or rapamycin, or both, reduce specifically phospho-p70S6K and 4E-BP1
levels, inhibiting the tumor cell proliferation [186,187]. A strong reduction of mTOR and
phospho-mTOR levels has been reported after treatment with either SAHA or rapamycin,
by targeting phospho-S6rp, in ESS cells [188]. Fröhlich et al. (2014) showed the benefit of
SAHA treatment associated with TRAIL/Apo-2L in two US cell lines [189].

Another study assessed the effects of combined therapy with valproic acid (VPA, a
weak histone deacetylase inhibitor), bevacizumab (mAb against VEGF), gemcitabine, and
docetaxel, for extra- and intrauterine unresectable or metastatic soft tissue sarcomas [184].
This study found partial response in one case of carcinosarcoma, two extrauterine LMSs,
two undifferentiated pleomorphic sarcomas, and one uterine LMS patient. This pharmaco-
logical combination was well tolerated and overall safe, showing that the combination of
traditional medication and “epidrugs” may truly represent a new treatment strategy for
sarcoma [184].

New therapeutic strategies to specifically treat US, such as regional hyperthermia,
combined with chemotherapy, radiotherapy, and/or immunotherapy have emerged in the
last few years. Pazopanib (a multitargeted tyrosine kinase inhibitor with antiangiogenic
effects) combined with hyperthermia has demonstrated synergistic effects mainly for LMS
growth inhibition, in vitro and in vivo [185]. This approach induces HAT1 downregulation
by suppressing Clock which, in turn, is responsible for H3 and H4 acetylation [190].

Histone phosphorylation, which takes place predominantly but not exclusively on
serine, threonine, and tyrosine residues at the histone tails [142], has gained considerable
attention, especially regarding the histone H3, due to its close association with mitotic
chromosome condensation in mammalian cells [191]. A preliminary study evaluating the
mitotic index, based on H3 phosphorylation in LMS, found Phospho Histone H3 (PHH3)
positive staining to be a promising mitosis-specific marker for this tumor [192].

Bromodomain-containing proteins (BRDs), as the “readers” of lysine acetylation are
responsible for transducing regulatory signals carried by acetylated lysine residues into
various biological phenotypes [193]. BRDs can exert a wide variety of functions via multiple
gene regulatory mechanisms [194] and the deregulation of BRDs is involved in many
diseases, including cancer [195–197]. BRD9 is a newly identified subunit of the noncanonical
barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain
family IV [198]. Studies have demonstrated that BRD9 plays an oncogenic role in multiple
cancer types, by regulating tumor cell growth. Furthermore, the connection of BRD9
with the PI3K pathway [199], microRNAs [200], and STAT5 [201] is implicated in cancer
progression. It has been shown that BRD9 is aberrantly overexpressed in uterine LMS
tissues, compared to adjacent myometrium. [202]. In addition, BRD9 expression was
upregulated in uterine LMS cell lines compared to benign LM and myometrium cell lines.
Notably, targeting the BRD9 with a specific chemical inhibitor (TP-472) can suppress the
LMS cell growth, concomitantly sculpting the transcriptome of uterine LMS cells, altering
the important pathways, reprogramming the oncogenic epigenome, and inducing the
miRNA-mediated gene regulation. These studies reveal that BRD9 constitutes a specific
vulnerability in malignant LMS and that targeting non-bromodomain and extra-terminal
BRDs in uterine LMS may provide a promising and novel strategy for treating patients
with this aggressive uterine cancer [202].

In summary, histone modifications are frequently found in US, thus representing
potential targets for new therapeutic strategies development. Several studies have demon-
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strated that HDAC inhibitors could modulate several signaling pathways, activating, or
inhibiting numerous cascades that lead to an antitumor response. Moreover, combination
with chemo- or targeted- therapies is likely to strengthen the activity of HDAC inhibitors.
However, it is still necessary to further elucidate how the histone modifications are regu-
lated, as well as to understand the mechanism of action of their available inhibitors in LMS
and ESS. This information will enable more efficient clinical trials, which could lead to an
improvement in patients’ response to treatment and overall survival [140].

2.3. Non-Coding RNA (ncRNAs)

ncRNA is known to regulate gene expression both at transcriptional and post-transcriptional
levels. ncRNAs play an important role in epigenetic processes, including modulation of het-
erochromatin, histone modification, DNA methylation, and gene silencing (Figure 5) [108].
These molecules can be divided into housekeeping and regulatory ncRNAs [110,203]. Reg-
ulatory ncRNAs are classified according to their size in small non-coding RNAs (sncRNAs),
with approximately 19-200 nucleotides (nt), and long non-coding RNAs (lncRNAs), with
more than 200 nt [105,108,113,204,205]. The sncRNAs have a wide range of structural
and functional roles in gene expression regulation, RNA splicing, and chromatin struc-
ture [206,207]. sncRNAs includes four different categories: (1) small interfering RNA
(siRNA), (2) microRNA (miRNA), (3) PIWI-interfering RNA (piRNA, with approximately
19-31 nt), and (4) small nucleolar RNA (snoRNA, with 60-300 nt) [111,203]. miRNA and
piRNA are probably the most studied sncRNAs categories to date, and their functions
are well established in the literature [206]. Due to miRNAs’ broad roles, mainly at the
post-transcriptional level, dysfunctions in their regulation have been associated with the
development of several diseases, including cancer [205,206,208].

Figure 5. Graphical representation of the ncRNAs dysregulation in LMS and ESS. ncRNAs have been
identified as oncogenic drivers or tumor suppressors in cancer. LncRNAs often affect the expression
of their target genes by interacting with miRNAs, which are the main post-transcriptional regulation
factors. Some lncRNAs act like sponges, thereby preventing miRNAs from binding to their target
mRNAs. As lncRNAs work as decoys for miRNAs, oncogene mRNA translation is allowed, starting
the LMS and ESS carcinogenesis. Created with BioRender.com.
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To understand the complex biology of sarcomas, numerous correlative and functional
studies aiming to integrate gene expression patterns and miRNAs have been carried
out [209]. As mentioned above, the differential diagnosis of LMS is still a challenge,
and studies focusing on new biomarkers to help distinguish uterine LMS from LM are
extremely important [210–213]. Yokoi et al. (2019) demonstrate the feasibility of circulating
serum miRNAs detection as a preoperative clinical assay to detect US. They identified two
miRNA signatures (miR-1246 and miR-191-5p) in uterine LMS (95% confidence interval
of 0.91–1.00) [214]. Dvorská et al. (2019), and later, Wei et al. (2020) reviewed how liquid
biopsies could increase the overall understanding of uterine LMS behavior and how its
molecular profile could contribute to more accurate discrimination from LM [210,211].

Comparing LMS, LM, and MM, Anderson et al. (2014) found 37 miRNAs differentially
expressed in uterine LMS. The lack of miR-10b in LMS samples was critical for tumor
growth and metastasis. Indeed, rescuing miR-10b expression in the cell lines resulted in
prominent inhibition of cell proliferation, migration, and invasion, and increased apoptosis.
Similarly, stable miR-10b expression significantly reduced the number and size of tumor
implants in vivo by reducing cell proliferation and increasing apoptosis [212].

Later, Schiavon et al. (2019) found that dysregulation of miR-148a-3p, 27b-3p, 124-3p,
183-5p, and 135b-5p expression was associated with tumor relapse, increased metastasis,
and poor survival rates in uterine LMS patients [213]. De Almeida et al. (2017) evaluated
the miRNAs expression profile in cell lines of MM, LM, and LMS. Thirteen molecules
presented differential expression profiles in LM and LMS, compared to normal tissue
(MM). Additionally, the authors observed that miR-1-3p, miR-130b-3p, miR-140-5p, miR-202,
miR-205, and miR-7-5p presented similar expression patterns between the cell lines and
16 patients’ samples [215].

Zhang et al. (2014) demonstrated that miRNAs were significantly dysregulated among
different types of uterine smooth muscle tumors (USMTs), including ordinary LM, mitoti-
cally active leiomyoma (MALM), cellular leiomyoma (CLM), atypical leiomyoma (ALM),
uterine smooth muscle tumor of uncertain malignant potential (STUMP), and LMS sam-
ples. The miRNA expression profile showed that ALM and LMS shared similar signatures
(including miR-34a-5p, miR-10b-5p, miR-21-5p, miR-490-3p, miR-26a-5p and miR-650). Un-
supervised analysis divided the tumors into three clusters: LMS/ALM, LM/STUMP, and
CLM/MM [216]. miR-200c was found to be significantly downregulated in LM, compared
to MM [217], acting directly in ZEB1/2, VEGFA, FBLNS, and TIMP2 regulation. Next, the
authors observed a significant reduction of miR-200c in the SK-LMS-1 cells, compared to
isolated LM cells, indicating this miRNA is an important marker for LM progression and
malignance risk [4,218].

To date, the differential expression (i.e., up- or down-regulation) of several miRNAs
has been directly correlated with US patients’ prognosis. In 2018, Dos Anjos et al. analyzed
the expression profile of 84 cancer-related miRNAs and associated their signatures with pa-
tients’ clinical and pathological data. In LMS, specifically, the authors found an association
between miRNA dysregulation and lower cancer-specific survival (CSS) and aggressive
tumor phenotype. In ESS samples, alterations in miRNA regulation were related to both
lower CSS and metastasis [219].

Shi et al. (2009) found a significant inverse correlation between endogenous HMGA2
levels and let-7 expression in uterine LMS. Their study revealed that the ectopic expression
of let-7a inhibits LMS proliferation by HMGA2 repression, suggesting that the let-7 loss of
expression can represent a worse prognostic factor [220]. Zavadil et al. (2010) identified the
way in which let-7s is responsible for the direct regulation of PPP1R12B, STARD13, TRIB1,
BTG2, HMGA2, and ITGB3 genes (involved in the cell proliferation and extracellular matrix
regulation) in LM samples. [221]. De Almeida et al. (2019), found that decreased expression
of let-7 family members was directly correlated with worse prognosis, affecting both the
overall survival (OS) and the DFS rates of the LMS patients [22].

Dysregulation of some miRNAs has also been correlated with acquired chemoresis-
tance in uterine neoplasm. For instance, the loss of miR-34a expression and its release from
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LMS cells via exosomes contribute indirectly to the tumor doxorubicin chemoresistance.
This mechanism seems to be mediated by MELK overexpression and the recruitment of M2
macrophages [216].

Although less studied than other ncRNAs, lncRNAs are known to interact with
either DNA, RNA, or proteins, and play a significant regulatory function in several
cellular processes [208]. lncRNAs are responsible for regulating transcription on three
different levels: pre-transcriptional (chromatin remodeling), transcriptional, and post-
transcriptional [203,222]. Some similarities can be found between lncRNAs and mRNAs,
including size, transcription by RNA pol-II, 5′-capping, RNA splicing, and poly(A) tail
(approximately 60% of all lncRNAs) [223]. LncRNAs can be stratified into five categories:
(1) intergenic (present between two protein-coding genes), (2) intronic (between the introns
of a protein-coding gene), (3) overlapping (a coding gene is located on the intron of a
lncRNA), (4) antisense (the lncRNA is transcribed from the opposite strand of a protein-
coding gene), and (5) processed lncRNAs (lacks an open reading frame ORF) [208,224].
lncRNA can be expressed in distinguished cell regions and their functions are directly
related to their sub-cellular location. However, these epigenetic regulators may suffer
molecular alterations that affect their expression and, consequently, their physiological
function. Accumulated evidence shows that several differentially expressed lncRNAs are
related to cancer development, progression, and metastasis [204,222].

Unfortunately, in uterine LMS and ESS, the molecular role of lncRNAs and their
regulation remains unclear. Yet, Guo et al. (2014) performed a microarray-based genome-
wide analysis of lncRNAs, including 35 LM and MM-matched samples. The authors
showed, for the first time, the differential expression profile of the lncRNAs between these
tissues. The expression pattern obtained was associated with the downregulation of the
cytokine–cytokine receptor interaction pathway in large LM, and the upregulation of the
fatty acid metabolism pathway in small LM. This study, although preliminary, sheds light
on future studies that will attempt to elucidate the role of lncRNAs specifically in uterine
mesenchymal tumors [225].

3. Conclusions

Uterine pure sarcomas constitute the most frequently diagnosed group of malignant
neoplasms in the uterine body. LMS and ESS are distinct tumors with a variety of features
similar to other uterine neoplasms. The high heterogeneity, morphological and molecular
variations pose challenges to subtypes differentiation and diagnosis. The origin of these
tumors remains unclear, as well as the molecular mechanisms that drive their clinical
and biological behavior. However, genetic, and epigenetic mechanisms have been shown
to directly and indirectly influence the USMT malignant transformation, but the high
complexity of this group of tumors still represents a barrier to diagnosis and disease
management. In this review, we provided insights into the most recent studies regarding
epigenetic events in LMS and ESS, and their potential as novel biomarkers or for developing
new therapeutic modalities to treat these tumors.
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