
Research Article
Optimization of Bioactive Ingredient Extraction from
Chinese Herbal Medicine Glycyrrhiza glabra: A Comparative
Study of Three Optimization Models

Li Yu ,1 Weifeng Jin ,2 Xiaohong Li,2 and Yuyan Zhang1

1College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
2College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China

Correspondence should be addressed to Weifeng Jin; jin weifeng@126.com

Received 29 November 2017; Revised 27 February 2018; Accepted 12 March 2018; Published 15 May 2018

Academic Editor: Kesara Na-Bangchang

Copyright © 2018 Li Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The ultraviolet spectrophotometric method is often used for determining the content of glycyrrhizic acid from Chinese
herbal medicine Glycyrrhiza glabra. Based on the traditional single variable approach, four extraction parameters of ammonia
concentration, ethanol concentration, circumfluence time, and liquid-solid ratio are adopted as the independent extraction
variables. In the present work, central composite design of four factors and five levels is applied to design the extraction experiments.
Subsequently, the prediction models of response surface methodology, artificial neural networks, and genetic algorithm-artificial
neural networks are developed to analyze the obtained experimental data, while the genetic algorithm is utilized to find the optimal
extraction parameters for the above well-established models. It is found that the optimization of extraction technology is presented
as ammonia concentration 0.595%, ethanol concentration 58.45%, return time 2.5 h, and liquid-solid ratio 11.065 : 1. Under these
conditions, the model predictive value is 381.24mg, the experimental average value is 376.46mg, and the expectation discrepancy
is 4.78mg. For the first time, a comparative study of these three approaches is conducted for the evaluation and optimization of the
effects of the extraction independent variables. Furthermore, it is demonstrated that the combinationalmethod of genetic algorithm
and artificial neural networks provides a more reliable and more accurate strategy for design and optimization of glycyrrhizic acid
extraction from Glycyrrhiza glabra.

1. Introduction

Glycyrrhiza glabra or G. glabra, one of the most widely used
traditional Chinese medicines in China, has the effect of
invigorating spleen and replenishing qi and clearing away
heat and toxic substances to treat diseases like weakness of
spleen and stomach, cough and phlegm, and so on [1]. Owing
to its anti-inflammatory, antispasmodic, antiallergic, antide-
pressive, antiviral, antifungal, and antioxidant activities, it has
drawnmore andmore attentions [2–5]. Particularly, the long-
term clinical practice has demonstrated that it exhibits the
functions of alleviating pain, tonifying spleen and stomach
[6], eliminating phlegm [7], and relieving coughing [8], etc.
Meanwhile, it is also a highly nutritional plant, which is
widely used as an important sweetening and flavouring agent
in food products, such as candies, chewing gum, toothpaste,

and beverages [9, 10]. Recently, the in-depth studies have
uncovered that there existmore than 400 isolated compounds
and active ingredients from this herb [11].

Among these constituents, glycyrrhizic acid has been
reported to be the main biologically active ingredient in
Glycyrrhiza glabra, as it is thought to be responsible for the
hepatic protective and antiulcer effects of Glycyrrhiza glabra
[12, 13]. Meanwhile, this active substance has been widely
studied for their pharmacologic effects and medical benefits
in animal models and human studies [14, 15]. For example,
a considerable interest has been attained to the glycyrrhizic
acid for its critical pharmacological activities, including anti-
inflammatory, antioxidative, and antitumor activities [16].
Henceforth, it is necessary to develop an accurate, precise,
and reliable prediction method for analysis of glycyrrhizic
acid from Glycyrrhiza glabra.
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Based on the application of industrial extraction tech-
nologies, the extraction process has been greatly improved,
and the corresponding cost has been reduced [17]. However,
the analysis and interpretations of the optimum extraction
conditions seem to be empirical, and the research of some
parameters is still under serious investigations. To address
these problems, the traditional single variable approach, in
which the level of each parameter is varied individually, while
those of the others hold constant, spends too much time and
requires a large number of experiments [18]. Accordingly,
the advanced multivariable methodologies for the analysis of
optimal extraction process are highly demanded [19], with
the purpose of obtaining high-quality active substance of
glycyrrhizic acid. For example, the central composite design
(CCD), firstly presented by Box and Wilson [20], is a typical
one.This design consists of the following parts: a full factorial
or fractional factorial design, an additional design, and a
central point.

Various prediction models and methods have been pro-
posed for the analysis of extraction process. These methods
can be roughly grouped into two categories. The first class
is based on the experimental analysis and is mostly relied
on assumption for model simplification. Such an extraction
process model is evaluated statistically [20, 21]. For example,
response surface methodology (RSM) is the most relevant
statistical technique used in the analytical optimization. RSM,
which is a collection mathematical and statistical techniques,
can be well applied for the fit of a polynomial equation to
the experimental data with the objective of making statis-
tical prevision. To understand and characterize the highly
nonlinear relationships between the extraction and response
variables, the second class is inspired by the data-driven
techniques [22]. As an example, the artificial neural network
(ANN) methodology is one of the most promising artificial
intelligence methods [23, 24]. ANN analysis provides the
modeling of complex relationships and is quite flexible in
regard to the number and form of the experimental data.This
makes it possible to use more informal experimental designs
than with statistical approaches, potentially making the ANN
model more accurate.

Over the years, the backward propagation neural net-
work (BPNN), which is a typical ANN, has been widely
employed to unveil the complicated relationships between the
input and output variables [25]. Since the weights of BPNN
are trained with an optimization method such as gradient
descent algorithm, it is not possible to guarantee to find the
global minimum solutions, but only a local minimum [26].
As can be seen, genetic algorithm (GA), which simulates the
survival-of-the-fittest principle of nature, is commonly used
in searching for global optimum in the entire solution space
[27]. Besides, GA is applicable to solve a variety of optimiza-
tion problems, specifically the discontinuous, no differen-
tiable, stochastic, and highly nonlinear objective functions
[28]. To overcome the limitation of local minimum perfor-
mance of backward propagation algorithm, the optimization
of weights of BPNN, therefore, can be implemented by GA.
This combinational method, abbreviated as GA-BPNN, has
been successfully applied in diverse fields [29–31].

Depending on the single variable approach, four extrac-
tion parameters of ammonia concentration, ethanol concen-
tration, circumfluence time, and liquid-solid ratio, which
strongly influence the content of glycyrrhizic acid, are chosen
as the independent variables in the present study [32].
Furthermore, CCD of four factors and five levels is taken
into consideration for the experiments of glycyrrhizic acid
extraction from Glycyrrhiza glabra. After acquiring data
related to each experimental point, the predictable models of
RSM, BPNN, and GA-BPNN are developed to describe the
interaction between the different experimental variables and
approximate a nonlinear response function to experimental
data for the extraction process of glycyrrhizic acid. According
to the abovewell-establishedmodels, GA is assigned to search
for optimizing the extraction parameters of glycyrrhizic acid.
For the first time, a comparative study of these three compu-
tationalmodels is conducted for the evaluation and optimiza-
tion of the effects of the extraction independent variables on
the extraction efficiency of glycyrrhizic acid fromGlycyrrhiza
glabra. Additionally, it is shown that GA-BPNN is more
reliable and accurate andhas better predictive power than two
other models for optimization of glycyrrhizic acid extraction
from Glycyrrhiza glabra.

2. Materials and Experimental Design

2.1. Reagents and Materials. The herbal drug—Glycyrrhiza
glabra (batch number: 150701)—was purchased from Hu-
qingyutang pharmacy (Zhejiang province, China) and was
identified by Shenwu Huang, the professor of Zhejiang
Chinese Medical University. The crude slices were of the
stipulated quality standards in Chinese Pharmacopoeia (2015
edition). Glycyrrhizic acid (batch number: 110731-201517,
purity: ⩾98%) was purchased from National Institute for the
Control of Pharmaceutical and Biological Products (Beijing,
China). The chemical structure of glycyrrhizic acid is shown
in Figure 1. The other reagents were of analytical grade.
The working solutions of glycyrrhizic acid were prepared
by diluting appropriate amounts of the stock solutions with
buffer solutions. The FA1004N analytical balance (Precision
Instrument Co., Ltd., Shanghai, China) was utilized to accu-
rately weigh the materials. The 018268 type electric-heated
thermostatic water bath (Automation Instrument Factory,
Suzhou, China) was used to extract the glycyrrhizic acid.The
TU 1900 type double-beam UV-visible spectrophotometer
(Puxi General Instrument Co., Ltd., Beijing, China) was
prepared to detect the content of glycyrrhizic acid. Finally, the
Milli-Q (Millipore, Bedford, MA, USA) purification system
was employed to provide the deionized water for preparing
all the required solutions.

2.2. Calibration Curve and Methodological Study. Here, the
methodological study was in line with [32]. For preparation
for sample solutions, 5.00 g powdered drug of Glycyrrhiza
glabra was precisely weighed and extracted by the conditions
as listed in (1).Themethod of condensing and heat refluxwith
ammonia-ethanol was used in this paper. Then, the mixture
was filtered and transferred quantitatively to a 100ml mea-
suring flask with ethyl alcohol. After beinf diluted to 100ml,
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Figure 1: The chemical structure of glycyrrhizic acid.

the solutions were processed through 0.22𝜇m syringe filter
and subsequently detected under the established ultraviolet
conditions.

0.5% ≤ ammonia concentration (𝐴) ≤ 0.7%,
50% ≤ ethanol concentration (𝐵) ≤ 70%,
1.5 h ≤ circum fluence time (𝐶) ≤ 2.5 h,
10 : 1 ≤ liquid-solid ratio (𝐷) ≤ 12 : 1.

(1)

To verify the reliability of experimental methodology,
the following four aspects were proposed as the evaluation
criteria:

(i) Calibration curve: seven working solutions, whose
respective concentrations were as follows, 8, 16, 24,
32, 40, 48, and 56𝜇g/ml, were exploited to make the
calibration curve of glycyrrhizic acid, where the value
of optical density (𝑌) and its corresponding standard
concentration (𝑋)matched a linear regression curve.
Subsequently, one of the glycyrrhizic acid working
solutions was scanned in the whole wavelength, and
the maximum absorption wavelength of glycyrrhizic
acid was detected at 252 nm. Consequently, the linear
regression of glycyrrhizic acid for the calibration
curve was calculated as 𝑌 = 12.674𝑋 + 0.0303 with
the fitting degree 0.9995 and the concentration range
8 𝜇g/ml–56𝜇g/ml.

(ii) Precision: for this part, the within-day and between-
day precision was checked. To determine the within-
day precision, one working solution (56𝜇g/ml) was
examined 5 times in the same day. To determine
the between-day precision, the same working solu-
tion was analyzed on other 5 consecutive days. The
relative standard deviation (RSD) was taken as a
metric of precision. The fact that RSD of within-day
and between-day precision were 0.17% and 0.65%,
respectively, implied that the developed UV detection
method was feasible.

(iii) Stability: the stability of sample solutions was mea-
sured after 0 h, 2 h, 4 h, 6 h, and 8 h at room

temperature under the selected UV detection con-
ditions. Similarly, RSD was taken as an evaluation
metric. Through the experimental tests, the stability
trend of 5 samples fluctuated up and down which was
no significant difference. And the RSD was 0.884%,
which suggested the stability of sample solutions at
room temperature.

(iv) Recovery: to evaluate the property of recovery, three
working solutions (16, 32, and 48 𝜇g/ml) were used
in recovery test. The absorbance values were taken
into the calibration curve. The corresponding results
of recovery for 16, 32, and 48 𝜇g/ml (expressed by
“mean value ± standard deviation” with 𝑛 = 6) were98.032%±6.031%101.026%±3.094%, and 99.877%±1.739% respectively.

2.3. Experimental Design and Data Normalization. Before
applying the predictable models, it is necessary to choose
an experimental design to define which experiments should
be carried out in the experimental region being studied. In
this work, the independent variables with major effects on
the extraction process to determine glycyrrhizic acid from
Glycyrrhiza glabra were selected through the single variable
approach. These parameters and their delimitation for the
extraction experiments are displayed in (1).

In order to evaluate the coefficients of interaction param-
eters, CCD was identified to carry out the experiments.
The domain of variation for each factor was determined
based on knowledge of the system and acquired from initial
experimental trials. Their ranges and levels with actual and
coded values of each parameters were shown in Table 1,
where the independent variables were coded to two levels,
namely, low (−1) and high (+1), whereas the axial points
were coded as −2 and +2. Then, the Design-Expert software
(version 8.01) was used for this experimental design matrix.
Totally, 30 experimental points, including 16 factorial points,
8 axial points, and 6 replicated at the center points, were
defined with four independent factors and five levels. All
the runs were conducted in duplicate randomly to minimize
the experimental errors, as well as to verify the adequacy of
the proposed models. Eventually, the complete CCD matrix
in terms of coded variables 𝑥𝑖 (𝑖 = 1, 2, 3, 4), as well as
experimental results, is exhibited in Table 2.

Codification of the levels for each variable consists of
transforming the studied real values into coordinates inside a
scale with dimensionless values, which must be proportional
at their localization in the experimental space. Moreover,
it cancels the order of magnitude difference between the
extraction parameters and avoids causing large prediction
error. The results improve the learning efficiency and the
prediction accuracy of models. Therefore, one can use this
codification schematic as the normalization process for the
experimental data. Precisely, the normalization process is
applied to transform a real value (𝑧𝑖) into a coded value (𝑥𝑖)
according to the following equation:

𝑥𝑖 = 𝑧𝑖 − 𝑧0𝑖Δ𝑧𝑖 , (2)
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Table 1: Effective factors and levels for glycyrrhizic acid extraction from Glycyrrhiza glabra.

Coded levels Ammonia concentration (%)(A) Ethanol concentration (%)(B) Return time (h)(C) Liquid-solid ratio(D)
2 0.70 70 2.50 12.0 : 1
1 0.65 65 2.25 11.5 : 1
0 0.60 60 2.00 11.0 : 1
−1 0.55 55 1.75 10.5 : 1
−2 0.50 50 1.50 10.0 : 1
𝑧0𝑖 𝑧01 = 0.60 𝑧02= 60 𝑧03= 2.00 𝑧04 = 11.0 : 1
Δ𝑧𝑖 Δ𝑧1 = 0.05 Δ𝑧2 = 5 Δ𝑧3 = 0.25 Δ𝑧4 = 0.05
Note. For the independent variable 𝑖, 𝑧0𝑖 is actual value at the central point and Δ𝑧𝑖 is the step change of the independent variable corresponding to a unit
variation of the dimensionless value.

Table 2: Central composite design matrix and the experimental results for glycyrrhizic acid extraction from Glycyrrhiza glabra.

Run A (𝑥1) B (𝑥2) C (𝑥3) D (𝑥4) Content of glycyrrhizic acid (mg)
1 1 −1 −1 1 360.68
2 0 0 2 0 372.52
3 1 1 1 −1 368.57
4 0 0 −2 0 333.06
5 1 1 1 1 353.78
6 0 0 0 0 366.60
7 −1 1 −1 −1 290.93
8 1 −1 −1 −1 312.35
9 −1 1 1 1 347.86
10 −1 −1 −1 1 343.91
11 −2 0 0 0 297.87
12 1 1 −1 1 376.46
13 0 2 0 0 334.03
14 −1 1 −1 1 339.97
15 0 0 0 2 369.56
16 −1 1 1 −1 345.89
17 1 1 −1 −1 306.43
18 0 0 0 0 366.60
19 1 −1 1 −1 364.62
20 1 −1 1 1 358.71
21 0 0 0 0 364.62
22 0 0 0 0 367.58
23 −1 −1 1 −1 340.95
24 −1 −1 −1 −1 293.61
25 2 0 0 0 367.58
26 0 0 0 −2 337.01
27 −1 −1 1 1 351.80
28 0 0 0 0 363.64
29 0 −2 0 0 319.94
30 0 0 0 0 363.64
Note. 𝑥𝑖 is the dimensionless value of the independent variable i.
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where 𝑥𝑖 is the dimensionless value of the independent
variable 𝑖, 𝑧𝑖 and 𝑧0𝑖 is actual value and that at the central point,
respectively, and Δ𝑧𝑖 is the step change of 𝑧𝑖 corresponding
to a unit variation of the dimensionless value. The related
parameters for each independent variable normalization are
also displayed in Table 1.

3. Models and Optimization

3.1. Determination of the Optimal Extraction Parameters. GA
is a parameter searching and optimization technique based
on emulation of nature evolutionary processes. In a GA, a
population of candidate solutions (also called individuals) to
an optimization problem is evolved toward the best solution.
Individuals are represented in binary as strings of 0s and 1s,
but other encodings are also possible. In each generation, the
fitness, which is usually the value of the objective function in
the optimization problem being solved, is assessed for each
individual in the population. The more fit individuals are
stochastically selected from the current population, and the
next new population of candidate ones is created through
the bio-inspired operators, such as selection, mutation, and
crossover. As the algorithm proceeds, the best fitness of the
population is gradually improved. Commonly, the algorithm
terminates when either a maximum number of generations
has been achieved or a satisfactory fitness level has been
reached.

In light of the powerful search function, GAwas exploited
to optimize the extraction conditions for glycyrrhizic acid
throughout this work. Each individual was represented by the
extraction parameters 𝐴, 𝐵, 𝐶, and𝐷, with values within the
variable upper and lower bounds as defined in (1).The fitness
functions were identified by the well-constructed mathemat-
icalmodels, which are presented in the following subsections.

3.2. RSM and Statistical Analysis. In statistics, CCD is the
most popular class of design used for fitting a second-order
model in RSM, especially in the extraction process. Based on
the obtained experimental data, RSM with a second-degree
polynomial formula was applied to explore the relationship
between four explanatory variables of𝐴, 𝐵,𝐶, and𝐷 and one
response variable of glycyrrhizic acid, which can be seen in
the following:

𝑦 = 𝑎0 + 4∑
𝑖=1

𝑎𝑖𝑥𝑖 + 4∑
𝑖=1

4∑
𝑗=1

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀, (3)

where 𝑦 expresses the content of glycyrrhizic acid, 𝑥𝑖 (𝑖 =1, 2, 3, 4) represent the extraction parameters, 𝑎0 is the con-
stant term, 𝑎𝑖 (𝑖 = 1, 2, 3, 4) are the coefficients of the linear
part, 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3, 4) indicate the coefficients of the quad-
ratic part, and 𝜀means the residual associatedwith the experi-
ments.

The mathematical model, found after fitting the function
to the data, can sometimes not satisfactorily describe the
experimental domain studied. Based on the multiple sample
mean data, the more reliable way to evaluate the quality of
the fitted model is by the application of one-way analysis
of variance (ANOVA). In this work, the data were analyzed

by the Design-Expert software (version 8.01), and the coeffi-
cients were interpreted by Fisher’s test. The statistically
nonsignificant terms were omitted in the specific model. The
accuracy and general ability of the polynomial model fitted
can be evaluated by the coefficient of determination𝑅2, which
is defined as follows:

𝑅2 = 1 − ∑𝑖 (𝑦𝑖,𝑝 − 𝑦𝑖,𝑒)2
∑𝑖 (𝑦𝑖,𝑒 − 𝑦)2 , (4)

where 𝑦𝑖,𝑝 is the value predicted by the model, 𝑦𝑖,𝑒 is the
experimental value, and𝑦 is themean of experimental values.
It is worth mentioning that 𝑅2 is only applicable to the train-
ing data set, and its range is [0, 1]. In addition, the larger 𝑅2
indicates that themore percent of the variance in the response
variable can be explained by the explanatory variables.

3.3. BPNN Model. ANN is a novel information processing
technique and a simplified computational model, which is
enlightened by the structure of biological neural networks. It
often consists of three layers, i.e., input, hidden, and output
layers. The pattern of interconnection among the neurons
is called the network structure, and it can be conveniently
illustrated by a graph as shown in Figure 2(a). Data generated
from the experimental design can be used as relevant inputs
and outputs for ANN training.

The training is carried out by adjusting the strength of
connections between neurons with the aim of adapting the
outputs of the entire network to be closer to the desired
outputs. In this approach, sum of inputs arrived at each
neuron is weighted, and an output signal is generated through
an activation function as

𝑦𝑗 = 𝑓( 𝑛∑
𝑖=1

𝜔𝑖𝑗𝑥𝑖 + 𝑏𝑗) , (5)

where 𝜔𝑖𝑗 and 𝑏𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) are the weights between
two sequential layers and 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑛) are the
corresponding inputs and outputs, respectively. A general
schematic of such architecture is illustrated in Figure 2(b).

Then, the network calculates the output values and
obtains the evaluation criteria by comparing the predicted
values and the experimental values. After that, the network
updates the weights to improve the criteria and achieves the
optimal goals through a neural network learning algorithm.
In the present work, a three-layer BPNN was developed for
explaining the extraction mechanism of glycyrrhizic acid, in
the sense that the weights were updated via the backward
propagation algorithm.

The performance of the model is statistically evaluated by
the following two evaluation criteria: the maximum absolute
error MAE and the correlation coefficient 𝑟, as well as the
coefficient of determination 𝑅2. The former two matrices are
calculated as follows:

MAE = max
𝑖

𝑦𝑖,𝑝 − 𝑦𝑖,𝑒 ,
𝑟 = ∑𝑖 (𝑦𝑖,𝑝 − 𝑦𝑖,𝑝) (𝑦𝑖,𝑒 − 𝑦𝑖,𝑒)

√∑𝑖 (𝑦𝑖,𝑝 − 𝑦𝑖,𝑝)2√∑𝑖 (𝑦𝑖,𝑒 − 𝑦𝑖,𝑒)2
, (6)



6 Evidence-Based Complementary and Alternative Medicine

input hidden output

x1

x2

x3

x4

y

(a)

activation
functionsum

x1

x2

x3

xi

w1j

w2j

w3j

wij

bj

yj

(b)

Figure 2: Artificial neural network: (a) general schematic of a three-layer network; (b) operation of a single neuron through an activation
function.
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where 𝑦𝑖,𝑝, 𝑦𝑖,𝑝 (𝑖 = 1, 2, . . . , 𝑛) are the predicted values and
the corresponding mean values, respectively, and, 𝑦𝑖,𝑒, 𝑦𝑖,𝑒(𝑖 = 1, 2, . . . , 𝑛) are the experimental values and the corre-
sponding mean values, respectively. In particular, the evalu-
ation criterion MAE is stricter than those metrics of mean
absolute error and root mean square error, etc.

In order to avoid the overlearning of the model data, the
number of hidden nodes was increased from 𝑛1 to 𝑛2, and a 𝑘-
fold cross-validation method was applied in this work, where
all data were randomly subdivided into two distinct groups:
the training set was used to train the network, and the testing
set was used to evaluate its performance.

3.4. GA-BPNNMethod. Although the backward propagation
method is the best known example of neural network learning
algorithm, it has trouble crossing plateaux in the error
function landscape. This issue results in the drawback of the
local optimum to calculate the gradient of the loss function

with respect to the weights of networks. In this study, GAwas
applied to optimize the parameters of BPNN, and the outline
of the combination GA-BPNNmodel is depicted in Figure 3.
As can be seen in Figure 3, the new combinational algorithm
can be formalized by the following two parts:

(i) Determining BPNN structure: the input layer consists
of four nodes related to the independent extraction
variables and the output layer has one node associated
with the response of glycyrrhizic acid. The optimal
number of hidden nodes is determined among exam-
ined neurons from 𝑛1 to 𝑛2.

(ii) Utilizing GA to optimize BPNN: a population with𝑁 individuals is generated randomly, and the corre-
sponding individuals are decoded into the network
weights. Then, BP algorithm is employed to update
the weights, and the fitness value of each individual
is assessed. Finally, the best individual is found by
selection, crossover, and mutation operators, and the
corresponding BPNN model is confirmed.

The performance of BPNN was measured by the mean
square error attached to Matlab 2015a. Meanwhile, a 𝑘-fold
cross-validation method was also applied. In the iterative
optimization, theweightswere encoded by real encoding, and
the encoding length could be calculated by the equation as 𝑆 =𝑅𝑆1+𝑆1𝑆2+𝑆1+𝑆2, where𝑅, 𝑆1, and 𝑆2 are the number of input,
hidden, and output nodes, respectively. The tangent sigmoid
transfer function at both hidden and output layers was
successfully employed. Network training was performed by𝑀 epochs.Thefitness function of each individual was defined
as the maximum value between the maximum absolute error
MAEtrain of the training set and the maximum absolute error
MAEtest of the testing set, in view of the following:

fitness = max {MAEtrain,MAEtest} . (7)

4. Results and Discussion

Experimental results for optimizing four factors according to
the selected CCD are shown in Table 2. The average value of
runs 6, 18, 21, 22, 28, and 30, carried out at the central point,
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was 365.45mg, which indicated that the extraction ability of
glycyrrhizic acid was stronger by comparing to the other runs
in this experimentation. Meanwhile, the relative standard
deviation was 0.46%, which showed that the experiments
were stable. The highest value (376.46mg) was obtained in
run 12 with the extraction conditions as 𝑥1 = 1, 𝑥2 = 1, 𝑥3 =−1, and 𝑥4 = 1 and thereby highlighted the importance of the
changes of these conditions to enhance extraction yield. The
lowest value (290.93mg)wasmarked in run 7with the extrac-
tion conditions as𝑥1 =−1,𝑥2 = 1,𝑥3 =−1, and𝑥4 =−1. By com-
parison with the extraction parameters of these two extreme
values, the conditions of ammonia concentration and liquid-
solid ratio might exert significant effects on the response 𝑦.

To disclose the more precise relationships between the
independent and dependent variables, the previously intro-
duced RSM, BPNN, and GA-BPNN models in combination
with experimental design were utilized to optimize the
extraction conditions for glycyrrhizic acid from Glycyrrhiza
glabra. The corresponding results and analysis are presented
in the following subsections.

4.1. Modeling and Optimization by RSM. From the regression
analysis applied to the results in Table 1, the following model
of RSM of (8) is derived for the content of glycyrrhizic acid(𝑦) as function of the extraction conditions 𝑥1, 𝑥2, 𝑥3, and𝑥4, where the coefficients are estimated via the least squares
method, and the statistically nonsignificant ones (𝑝 > 0.05)
are removed.
𝑦 = 365.45 + 11.92𝑥1 + 11.95𝑥3 + 11.45𝑥4 − 14.1𝑥3𝑥4

− 8.25𝑥21 − 9.68𝑥22. (8)

The corresponding ANOVA results are displayed in Table 3.
According to (8), the negative coefficients for the model

terms 𝑥3𝑥4, 𝑥21, and 𝑥22 indicate the unfavorable effects on
the extraction of glycyrrhizic acid; the positive coefficients
for the model terms 𝑥1, 𝑥3, and 𝑥4 mean the favorable effects
on the dependent variable. Meanwhile, the goodness of fit of
regression equation can be assessed by adjusted determina-
tion coefficient of𝑅2.The values𝑅2 of 0.9465 and adjusted𝑅2
of 0.8966 show that the model could be significant predicting
the response and explaining approximately 90% of the vari-
ability in the extraction of glycyrrhizic acid. Generally, the
model 𝐹-value of 18.96 implies that the model is significant
and shows that the model is statistically significant at 95%
confidence level (𝑝 < 0.0001).

Despite the nonsignificant coefficient of the linear term𝑥2, the parameter 𝑥2 still negatively influences the response
value by virtue of its significant coefficient of quadratic term.
According to ANOVA, pred-𝑅2 value is 0.6954, and the
lack of fit is statistically significant, which both reflects that
this model is invalidated for predictive purpose. Indeed, the
profile for predicted values and desirability option in the
GA toolbox of Matlab 2015a was used for the optimization
process. Each individual was represented by the extraction
parameters 𝑥1, 𝑥2, 𝑥3, and 𝑥4, with values within the variable
upper and lower bounds in Eq. (1), and the fitness function
was the regression equation Eq. (8). In addition, GA was
processed with 12 generations (Figure 4), population size of
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Figure 4: Plot of best fitness by GA method. The fitness function is
defined in equation (4), and the maximum content of glycyrrhizic
acid is read as 427.156mg with the optimization extraction condi-
tions: 0.722, 0, 2, and −2 in the coded form.

30, and the rest setting as default. As a result, the maximum
content of glycyrrhizic acid (427.1562mg) was predicted by
GA at the following conditions: 0.722, 0, 2, and −2 in the
coded form (Table 4). Under these extraction conditions
taken into account, the experimental results (Table 5) were
conducted. Therefore, it could be concluded that this model
cannot be considered a good choice for modeling the exper-
imental data of this study. Nonetheless, it is presented here
only for comparison with BPNN and GA-BPNN modeling.

4.2. Modeling and Optimization by BPNN. Firstly, the 10-fold
cross-validationmethod was adopted to divide the input data
into two distinct sets: the training set of 90% input data and
the testing set of 10% input data. Meanwhile, BPNN toolbox
of Matlab 2015a with the maximum epochs 2000 was applied
for BPNN model. The relation among the number of hidden
neurons, 𝑅2, 𝑟, and MAE is shown in Table 6.

As can be seen in Table 6, MAE for the training set
has a significant improvement in performance by increasing
the number of hidden layer, whereas, for the testing set,
its performance exhibits the negative effect for 5, 7, 8,
and 9 neurons, respectively. Combined with the correlation
coefficient 𝑟, the optimal structure of the network with 4
neurons in the hidden layer is applied for further prediction.

Thereafter, the whole data were used to train the neu-
ral network. The learning curve for training is given in
Figure 5(a). As can be found in Figure 5(a), mean square
error decreases initially and then it becomes almost con-
stant. Moreover, the trained network is used to estimate the
response of 30 experimental points, and the correlation coef-
ficient between actual and estimated responses is 𝑟 = 0.9975,
as shown in Figure 5(b).

After being well trained, an optimization was then per-
formed using GA, whose results are also listed in Table 4. As
already mentioned, this model was obtained so as to deliber-
ately overtrain the network. Despite the better performance
obtained for this model, it cannot be considered a good
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Table 3: Analysis of variance (ANOVA) for the fitted quadratic polynomial model for optimization of glycyrrhizic acid.

Score Sums of squares Degree of freedom Mean squares 𝐹-value 𝑝 value (Prob > 𝐹)
Model 17222.01 14 1230.14 18.96 <0.0001𝑥1 3410.55 1 3410.55 52.58 <0.0001𝑥2 41.19 1 41.19 0.63 0.4038𝑥3 3426.30 1 3426.30 52.82 <0.0001𝑥4 3149.21 1 3149.21 48.55 <0.0001𝑥1𝑥2 13.14 1 13.14 0.20 0.6591𝑥1𝑥3 50.13 1 50.13 0.77 0.3932𝑥1𝑥4 13.14 1 13.14 0.2 0.6591𝑥2𝑥3 0.65 1 0.65 0.000 0.9217𝑥2𝑥4 0.45 1 0.45 0.007 0.9348𝑥3𝑥4 3180.40 1 3180.40 49.03 <0.0001𝑥21 1866.57 1 1866.57 28.77 <0.0001𝑥22 2572.45 1 2572.45 39.66 <0.0001𝑥32 286.71 1 286.71 4.42 0.0528𝑥42 265.19 1 265.19 4.09 0.0614
Residual 973.04 15 64.87
Lack of Fit 958.61 10 95.86 33.23 0.0006

𝑅2 Adj-𝑅2 Pred-𝑅2 Adeq Precision
0.9465 0.8966 0.6954 15.413

Note. 𝑥𝑖 is the dimensionless value of the independent variable 𝑖, and 𝑝 value < 0.05 is statistically significant.

Table 4: Optimized conditions in the coded form obtained by three different optimization models.

Optimization method Ammonia concentration (%) Ethanol concentration (%) Return time (h) Liquid-solid ratio
RSM 0.72 0 2 −2
BPNN 1.54 1.09 −1.23 1.38
GA-BPNN −0.10 −0.31 2 0.13

Table 5: Experimental and predicted data of the content of glycyrrhizic acid from Glycyrrhiza glabra under the extraction conditions
optimized by different models.

Optimization method Number of experiments Experimental value (mg) Predicted value (mg) Expectation discrepancy
RSM 3 369.23 427.1562 57.9262
BPNN 3 365.58 376.4012 10.8212
GA-BPNN 3 376.46 381.24 4.78

Table 6: Effect of the number of hidden neurons of BPNN on the maximum absolute error, the determination coefficient, and the correlation
coefficient for the training data and the testing data.

Hidden neurons MAEtrain MAEtest 𝑅2trian 𝑟train 𝑟test
1 29.5138 12.3344 0.7102 0.7102 0.6638
2 24.6360 7.4841 0.8532 0.9237 0.9464
3 6.9000 21.7254 0.9844 0.9924 0.9889
4 6.6441 14.0391 0.9905 0.9952 0.9448
5 5.0962 40.3892 0.9935 0.9968 −0.1862
6 4.7070 44.1666 0.9921 0.9963 0.7794
7 6.0375 23.0501 0.9923 0.9964 −0.5058
8 2.4151 16.9665 0.9985 0.9963 −0.9959
9 5.2294 14.8987 0.9953 0.9980 −0.9267
Note. MAEtrain andMAEtest are the maximum absolute error of the training set and the testing set, respectively. 𝑅2trian is the determination coefficient of the
training set. 𝑟train and 𝑟test are the correlation coefficient for the training data and the testing data, respectively.
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Figure 5: (a) Learning performance curve for the whole data, and the best training performance is 0.6493 at epoch 208. (b) Experimental and
BPNN predicted results for glycyrrhizic acid for the whole data. The number of hidden neurons of BPNN is 4, and the correlation coefficient
is 𝑟 = 0.9975.
Table 7: Effect of the number of hidden neurons of GA-BPNN on the maximum absolute error, the determination coefficient, and the
correlation coefficient for the training data and the testing data.

Hidden neurons MAEtrain MAEtest 𝑅2train 𝑟train 𝑟test
1 24.8167 13.6733 0.6818 0.8260 0.5455
2 12.4153 11.4872 0.8422 0.9186 0.5325
3 6.9400 9.4277 0.9895 0.9952 0.5841
4 7.1209 6.8005 0.9857 0.9929 0.5667
5 4.1890 4.2232 0.9967 0.9984 0.7681
6 2.0200 4.8036 0.9984 0.9992 0.7052
7 3.8732 2.3678 0.9987 0.9979 0.9964
8 3.0094 3.2231 0.9967 0.9984 0.9957
9 6.8777 4.1785 0.9955 0.9979 0.9155
Note. MAEtrain andMAEtest are the maximum absolute error of the training set and the testing set, respectively. 𝑅2train is the determination coefficient of the
training set. 𝑟train and 𝑟test are the correlation coefficient for the training data and the testing data, respectively.

choice being obtained through an inadequate training/testing
methodology. Hence, there was a bad agreement between
the BPNN predictions and experimental data (Table 5) with
the above optimum conditions. Although the optimization
cannot be considered reliable due to the above explanation,
it is presented here only for comparison with RSM and GA-
BPNNmodeling.

4.3. Modeling and Optimization by GA-BPNN. As already
mentioned, BPNN is an effective data processing method.
But the problem is that BP algorithm is easy to get stuck
in local minimum in the sense that the different original
weights always give rise to the different training epochs. In
this regard, GA was combined with BPNN to optimize the

initial distribution of weights and enable BPNN to fit not only
the training data, but also the testing data very well.

Similarly, GA toolbox of Matlab 2015a was applied for
GA-BPNN model. The relationships among the number of
hidden neurons, 𝑅2, 𝑟, and MAE are shown in Table 7. The
main criterion for selection of the optimum BPNN struc-
ture is theMAE of the test data as well as the correlation coef-
ficient 𝑟. As can be found in Table 7, the values of 𝑟 and
MAE both reach the best performance if there are 7 hidden
neurons. Moreover, the corresponding weights of BPNN are
calculated as listed in Table 8.The plot between the measured
and model-predicted values is illustrated in Figure 6(a),
which implies that BPNN model with 7 hidden neurons is
consistent with the experimental data. It should be noted
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Table 8: The weights of well-trained GA-BPNN with 7 hidden neurons for predicting the content of glycyrrhizic acid.

𝑊1 𝑊2 𝐵1 𝐵2−1.7112 6.3033 2.1697 −1.9326 −0.7868 −1.6870 0.7532
0.6937 0.6410 0.6825 −6.2043 0.4207 28.0577 /
−0.2540 3.1229 −0.8732 22.4836 0.4419 −0.4640 /
4.1697 −0.6174 0.8745 3.9847 0.6316 0.5918 /
1.5632 0.4164 1.0697 5.9332 −0.7100 5.7520 /
−0.8586 10.9352 1.5034 −1.7881 0.7376 1.1129 /
−0.9376 0.3819 4.8547 −4.6069 1.0109 −6.2961 /
Note.𝑊1 and 𝐵1 are the weights between the input and hidden layers, and𝑊2 and 𝐵2 are the weights between the hidden and output layers for the trained
GA-BPNNmodel.

that the Q-Q probability plot of the prediction residuals
can provide additional information regarding model fitting
to a data set. In fact, a careful examination of Q-Q plot
in Figure 6(b) reveals that the probability distribution of
residuals corresponds with the expected normal distribution
of the test line, and it is demonstrated that the prediction
performance of this model for glycyrrhizic acid with high
confidence levels is credible. Henceforth, based on these con-
siderations as a whole, one can infer that GA-BPNN model
is the best modeling and optimization tool under the spe-
cific conditions selected for this work.

After modeling, an optimization was then performed
using GA, whose results are listed in Table 4. The fitness
function was the equation of BPNN model with the weights
presented in Table 8. Compared with the experimental data
in Table 5, it was truly remarkable that GA-BPNN model
produced the best agreement between the predicted and the
experimental values among these three models. The genera-
lization ability of GA-BPNN is better; this may be due to that
GA is good at global searching, and the weight adjustment is
exquisite.

4.4. Comparative Study of RSM, BPNN, and GA-BPNN. On
the one hand, Chinese herbology is the theory of traditional
Chinese herbal therapy, which accounts for the majority
of treatments in traditional Chinese medicine. There are
roughly 13,000 medicinal plants used in China and over
100,000 medicinal recipes recorded in the ancient literature.
Chinese herbal extracts are herbal decoctions that have
been condensed into a granular or powdered form. For
example, glycyrrhizic acid is the major active ingredient of
Chinese herbal medicineGlycyrrhiza glabra, which has many
pharmacological activities. On the other hand, RSM, BPNN,
and GA-BPNN are three alternatively computational and
predictable models capable of solving linear and nonlinear
multivariate problems. In the present work, these three mod-
els were developed for describing the experimental data of
the extraction of glycyrrhizic acid fromGlycyrrhiza glabra. As
a consequence, all models could be well fitted to the experi-
mental response of glycyrrhizic acid. After being well estab-
lished, GA was set to optimize the extraction conditions,
which are summarized in Table 4 for the selected models.
In order to further evaluate their accurate prediction and

practicability, the extraction experiments were carried out for
each of the predicted optimum conditions, and the corre-
sponding results are displayed in Table 5.The existence of the
high degree of agreement between the experimental results
and predicted optimum results indicated that the GA-BPNN
could be used effectively for the evaluation and optimization
of the effects of the extraction independent variables on the
extraction concentration of glycyrrhizic acid from Glycyr-
rhiza glabra.

It was indeed that RSM had a regression equation for
forecasting and achieving optimum conditions for extraction
process. However, classical RSM requires the specification of
a polynomial function such as linear, first-order interaction,
or second-order quadratic, to be regressed. Moreover, the
number of terms in the polynomial is limited to the num-
ber of experimental design points. Hence, it has its draw-
backs in providing the complex intrinsic relationships among
input/output data set clearly. Also, this might be why it was
less effective for predictive purpose and therefore was not
suitable for the experimental data in this work. Although
BPNN methodology provides the modeling of complex rela-
tionships, especially nonlinear ones, that may be investigated
without complicated equations, it cannot be considered a
good choice being obtained through an inadequate train-
ing/testing methodology.

Since GA has good global searching ability and can learn
the near-optimum solution without the gradient information
of error functions, it has been a powerful tool of opti-
mization, searching, and machine learning. Additionally, the
cross-validation method prevents the so-called overtraining
responsible for a reduction of neural network ability to
generalize knowledge. Comparing the discrepancy between
the experimental and predicted data in Table 5, it is evident
that GA-BPNN can be accepted as the most precise method
within RSM and BPNN for modeling of the extraction of
glycyrrhizic acid from Glycyrrhiza glabra.

As discussed in [29], GA-BPNN is not suitable for some
complicated data sets. When data sets are complex, GA is so
slow and hard to process them; it can only be treated as a pre-
search technique, that is, to find a better search space.
However, GA-BPNN is not always valid; its parameters are
also hard to decide. The future goals of this study include (1)
applying this method for optimization of bioactive ingredient
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Figure 6: (a) Experimental and GA-BPNN predicted values of glycyrrhizic acid for the training and testing data. The number of hidden
neurons of BPNN is seven. (b) Q-Q plot of standard normal distribution versus error data of the training set.

extraction from other Chinese herbal drugs; (2) adjusting
related parameters to further improve the algorithm’s effi-
ciency.

4.5. Remarks. In the current studies of traditional Chinese
medicine, a variety of data (such as extraction data, pharma-
cokinetics and pharmacodynamics data, and clinical data) are
produced. The corresponding relationships are complex, and
some are even randomand fuzzy.Therefore, the deterministic
approaches are often powerless, and one needs to appeal
the new technologies, such as complex system and artificial
intelligent. Particularly, machine learning, a fundamental
concept of artificial intelligent research, has been demon-
strated to possess the ability to describe the complex rela-
tionship between inputs and outputs. Moreover, the recently
developed deep neural network has more powerful self-
learning ability [26]. Indeed, the neural network technology
in machine learning and genetic algorithm in global opti-
mization algorithm have received extensive attention and
extensive research and have shown an attractive application
prospect.

It is remarkable that the evaluation and optimization of
the extraction process of saponins and total flavonoids from
Glycyrrhiza glabra have been conducted in [32]. Undoubt-
edly, it is a multilevel optimization problem, and the entropy
weight method is used to assign the corresponding weights.
Besides, the model of BPNN is developed for explaining
the extraction mechanism. Through this previous study, it
is found that BP algorithm is easy to get stuck in local
minimum, and it means one should try a couple of times to
obtain a satisfied result. In view of this fact, a combinational
model of GA-BPNN is offered to be an alternative to RSM
and BPNN as a modeling tool. Therefore, one component

from Glycyrrhiza glabra is reconsidered as a single object
optimization to illustrate the feasibility of the methodology
proposed in thiswork. Frankly, the relevant results are incom-
parable, and the multilevel optimization problems are all
important topics for further research in the near future.

5. Conclusion

In this study, the bioactive ingredient glycyrrhizic acid was
successfully extracted from Glycyrrhiza glabra. By using
central composite design, the time of analysis and experiment
expense were decreased without obvious reduction in effi-
ciency. Afterwards, the significant variables were optimized
by RSM, BPNN, and GA-BPNN. These three models were
compared for their predictive and generalization capabilities
as well as their ability to optimize the concentration of
glycyrrhizic acid. Comparing the results of numeric opti-
mization and experiments through the abovemethods, it was
shown that GA-BPNN was absolutely satisfactory owing to
its adequate training/testing method. Under the reliable opti-
mum conditions, the experimental and predicted content of
glycyrrhizic acid were 379.46mg, and 381.24mg, respectively.
Although GA-BPNN model has been successfully validated
by the comparative results with two well-known correlations,
it has its drawbacks in processing themore complex data sets.
Nevertheless, the main benefits of GA-BPNN for extraction
and determination of glycyrrhizic acid from Glycyrrhiza
glabra are low sample consumption, minimum use of raw
materials, simplicity, and high enrichment product.
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