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Adipose cells are unique in the dynamism of their sizes, a
requisite for their main function of storing and releasing lipid.
Lipid metabolism is crucial for energy homeostasis. However,
the regulation of lipid storage capacity in conditions of energy
excess and scarcity is still not clear. It is not technically feasible
to monitor every process affecting storage capacity such as
recruitment, growth/shrinkage and death of individual adipose
cells in real time for a sufficiently long period. However, recent
computational approaches have allowed an examination of the
detailed dynamics of adipose cells using statistical information in
the form of precise measurements of adipose cell-size
probability distributions. One interesting finding is that the
growth/shrinkage of adipose cells (. 50 mm diameter) under
positive/negative energy balance is proportional to the surface
area of cells, limiting efficient lipid absorption/release from
larger adipose cells. In addition to the physical characteristics of
adipose cells, quantitative modeling integrates dynamics of
adipose cells, providing the mechanism of cell turnover
under normal and drug-treated conditions. Thus, further use of
mathematical modeling applied to experimental measurements
of adipose cell-size probability distributions in conjunction with
physiological measurements of metabolic state may help
unravel the intricate network of interactions underlying
metabolic syndromes in obesity.

Introduction

Organisms that maintain body temperature homeostatically by
internal processes, heating or cooling, are able to function in a
broad range of external temperatures. While this is apparently a
considerable advantage as a survival strategy, it requires the
maintenance of an energy store capable of buffering against the
vicissitudes of weather and food supply. As the main store of
energy in mammals, white adipose tissue (WAT) plays a central
role in energy homeostasis. Its primary function is to efficiently
store energy in the form of lipid droplets, mainly triglycerides
(TG), supplying non-esterified fatty acids (NEFA) as needed.
Absence of WAT leads to ectopic fat deposition in the periphery,
suggesting, teleologically, that other organs have not needed to
develop alternatives that allow the body to cope with dysfunction
or inadequacy in WAT storage capacity. WAT dynamics,

defined in this review as the hormone-mediated interplay
between adipose cell growth (lipogenesis), shrinkage (lipolysis),
recruitment and apoptosis/necrosis, is an intricate ensemble of
processes that buffers energy supply and demand for the entire
mammalian body.

WAT is constantly varying. It can expand to store excess fatty
acids (FA) in the form of TG—lipogenesis—or shrink by
hydrolyzing stored TG—lipolysis—to provide energy under
fasting conditions. WAT expansion occurs either by enlarging
the size of the adipose cells—hypertrophy—wherein existent
cells uptake available FA, or by increasing their number—
hyperplasia—wherein new adipose cells are recruited from adipose
cell precursors, which in turn are differentiated from mesench-
ymal stem cells and undergo replication/proliferation.1 WAT
dynamics is regulated by both external stimulation, such as
hormonal (e.g., insulin from the pancreas) and neural (e.g.,
noradrenaline) inputs and internal stimulation (e.g., leptin pro-
duced within the adipose tissue). These factors vary depending
on nutritional input, environment, genetic makeup, gender, age
and location of the adipose tissue depot.2,3

It has long been recognized that the sizes of adipose cells are
indicators of metabolic state. Radiocarbon dating studies on lipid4

and adipose cells5 age suggest a continuous shuttling of lipids
between adipose cells of different sizes.4 Similarly, a regular
turnover of both adipose cell precursors and adipose cells is
observed.1,5 Aged or malfunctioning adipose cells die and are
replaced by new differentiating ones such that, in healthy human
adults, the total adipose cell number stays approximately
constant.5,6 Comprehensive surveys of the various factors affecting
WAT physiology are available.7-9

A dysfunction in lipid storage ability of WAT leads to
lipotoxicity—i.e., excess fat accumulation in non-adipose tissues
such as skeletal muscles, kidneys, heart, liver and pancreas—and
consequently cell apoptosis, and cardiac and metabolic diseases such
as cardiomyopathy, type 2 diabetes, dyslipidemia and non-alcoholic
steatohepatitis.10,11 Aside from lipodystrophy, obesity is a major
factor in the processes leading to lipotoxicity. A possible reason is
that since there is a need to keep plasma NEFA concentrations
within a safe range,12 an overabundance of lipids causes a redirection
of the dietary fat pathway. However, not all obese individuals have
the same risk of developing a metabolic syndrome. For example,
insulin sensitivity varies among individuals with the same level of
obesity.13 A better predictor is how lipid is distributed among the
various WAT depots, as the latter vary in their functional
properties.14,15 For example, many studies show a positive
correlation between upper body obesity and cardiac and metabolic
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diseases,16,17 more so in the visceral than the subcutaneous adipose
depots.18-21 On the other hand, a preferential lower body fat
accumulation, particularly in the subcutaneous gluteofemoral depot,
is seen to protect against obesity-related diseases.22,23

During early development in humans and other mammals,
WAT expansion is mainly driven by hyperplasia.24,25 On the other
hand, in adulthood, the expansion is mainly due to hypertrophy26

followed by hyperplasia, especially after prolonged obesity.27,28 It
is generally believed that obesity-related insulin resistance is
associated with adipose cell hypertrophy, particularly in the
abdominal region for humans.29 This is possibly due to the higher
basal lipolysis rate of large adipose cells30,31 and their association
with a higher level of pro-inflammatory factors and cell
necrosis.32-34 After comparing insulin sensitive and insulin
resistant obese individuals, Klöting et al. reported that the latter
showed larger adipose cell size in the omental and subcutaneous
adipose tissue and higher amounts of macrophages, particularly in
the omental depot, independent of total body fat.20

Adipose Cell-Size Probability Distributions

The Coulter counter serves as a useful instrument for the
quantification of adipose cell size.35 Precise cell-size measurements
reveal that adipose cell size has a roughly bimodal distribution
(Fig. 1). This suggests that there may be two distinct populations
of cells, and that mean adipose cell size and mean cell number
may not be effective measures for summarizing the state of
adipose tissue. In particular, adipose cells exhibit an enormous
range in their volumes. Large adipose cells have diameters more
than ten times bigger than small ones. This flexibility is directly
relevant to the primary function of adipose cells: storing energy in
the form of lipid. The volume of lipid stored in an adipose cell
increases as the third power of the diameter. As mature adipose
cells consist of a large lipid droplet surrounded by a thin

cytoplasmic layer, this volume increase is almost entirely available
for lipid storage. Adipose cells of diameter 200 microns contain
1,000 times the lipid of an adipose cell of diameter 20 microns.

It is not clear, however, that there is an inherent metabolic
difference between small and large adipose cells. Wueest et al.
measured insulin responsiveness of adipose cells of different sizes
taken from the epididymal depot of mice and found no difference
between small and large cells.31 McLaughlin et al. investigated the
cell-size distribution of adipose cells taken from the subcutaneous
adipose tissue of insulin-resistant and insulin-sensitive human
subjects and reported that the former showed a larger population
of very small cells than the latter.36 Furthermore, small cells
isolated from Zucker obese rats were shown to have higher
expression of inflammatory genes as compared with large cells,
and lower levels of adiponectin and PPARc as compared with lean
rats,37 which may explain the lower adipose tissue lipid storage
capacity in insulin-resistant individuals.11 Inflammatory activity
was shown to be associated with insulin-resistance independent of
obesity in both abdominal subcutaneous38 and omental visceral39

adipose tissue. Similarly, a higher proportion of small cells is also
associated with a rise in inflammation40 and higher ratio of visceral
to total (visceral and subcutaneous) fat.21 These studies did not
show, however, whether the upregulation in inflammatory
markers precedes the expansion in small cell population or vice
versa. As insulin resistance is also accompanied with a down-
regulation in adipose cell differentiation in both human36 and
rodent37 subjects, one can speculate that the increase in small
adipose cell population in insulin-resistant subjects must be due to
proliferation. If this is true, then these new small cells might not
necessarily represent mature adipose cells since the latter are
generally believed to be unable to replicate; adipose cell
proliferation was only observed in vitro41,42 but is yet to be
shown in vivo.43 Alternatively, it is possible that though adipose
cells do not normally replicate, they do so under extenuating
circumstances, giving rise to new malfunctioning cells which, in
turn, would increase inflammation further. If the malfunction is
due to infiltration by macrophages, then one would expect large
cells to be deficient in the uptake of fatty acids too. This, however,
seems not to be the case as evidenced by the increase in the size of
large adipose cells in Zucker obese rats.37 Clearly, small adipose
cells are not inherently unable to uptake new lipids as pioglitazone
treatment was shown to enhance insulin sensitivity44-46 and
increase the population of small adipose cells in the human
abdominal subcutaneous fat depot46,47 and the ovarian, retro-
peritoneal and subcutaneous fat depots of Zucker obese rats.45

Studies examining the size distribution of adipose
cells21,36-40,46,48—as opposed to simply calculating the total cell
number and mean cell size—were able to shed more light on the
mechanism of adipose cell redistribution and its relation to obesity
related diseases, particularly since adipose cells are not homo-
geneous in their ability to uptake lipids or their functional
properties. Correlations may be drawn between measured
physiological characteristics and attributes of the probability
distributions, assuming that the state of the adipose tissue is at an
approximate equilibrium with respect to the associated physio-
logical parameters.

Figure 1. Adipose cell-size distribution. Adipose cells from epididymal fat
depots in C56BL/6 mice (male and 3 mo old) were isolated, and relative
frequencies of their diameters were measured by a coulter multisizer.
Mean ± SEM (n = 6).
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Our focus here is on the understanding of adipose tissue
remodeling that can be gleaned from modeling the temporal
dynamics of detailed adipose cell-size probability distributions.
We are concerned in this review with dynamic measurements
that show evolving changes in the adipose cell-size probability
distributions. It is not possible to adequately fit such complex
changing distributions with a small set of fitting functions as
in references 36, 40, 46 and 48. Besides this inadequacy, dyn-
amic data contains a plethora of information that should not
be discarded by static fitting. The alternative is to use all the
information contained in the adipose cell-size probability
distributions produced by the Coulter counter and model
physiological changes along with the time-evolution of the
distributions. What is needed is a dynamic model that tracks
the time course of the change in the adipose cell-size distribu-
tion with the progression of age and physiological inputs such
as hormones, cytokines and growth factors. Current experi-
mental techniques alone are incapable of tracking the evolu-
tion of microscopic details in vivo. Instead, one can obtain the
data of interest (e.g., adipose cell-size distribution, plasma
insulin concentration, etc.) at different time periods. Then,
with the aid of a mathematical model, it is possible to explore
the progression of events underlying the phenomenon of
interest. Furthermore, such an approach allows the examination

of competing hypotheses via a comparison of their likelihood
values.

What questions can we answer with these fine-grained time-
dependent adipose cell-size probability distributions? The appro-
priate questions depend on whether this data are longitudinal
or cross-sectional. We focus here on what we can learn from
the dynamics of adipose cell-size distributions measured at a
succession of time-points. The cell-size distributions may be
obtained from the same animal by means of micro-biopsies, or
from animals killed at each time-point. In the latter case, it is
possible to obtain absolute cell numbers from each fat location
and thereby obtain estimates of the absolute adipose cell-size
distribution. In the former case, the absolute cell numbers are
unavailable and the analysis must be confined to easily accessible
fat depots.

For dynamic changes in probability distributions, the standard
mathematical tool is the Fokker-Planck equation. This equation
describes the evolution of a probability distribution of a family of
similar objects with a measured characteristic, in our case adipose
cells with the cell-size as the measured characteristic, with respect
to time as a result of processes that change the measured charac-
teristic. Thus, in our case, the processes of interest are lipid
turnover, lipid uptake, lipolysis, cell death and cell neogenesis,
which manifest as cell-size fluctuations, cell-size increase, cell-size

Figure 2. Schematic changes of cell-size distribution under various processes. Initial cell-size distribution (dotted gray line) changes with (A) recruitment
of new cells at the minimal size, (B) growth and (C) shrinkage of cells, (D) fluctuation of cell size and death of cells at (E) small and (F) large size.
Note that the total cell number is normalized as a unity for the initial size distribution.
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decrease, cell-number decrease and cell-number increase, respec-
tively. Figure 2 shows how each of these processes leads to
characteristic changes in the adipose cell-size probability distribution.

To answer qualitative questions about dynamics in the adipose
tissue, it may suffice to apply Bayesian model comparison49 to a
variety of models suggested by the qualitative questions of
interest, and avoid parameter estimation in a Fokker-Planck
approach. Thus, for example, to ascertain if there is feedback in
adipose cell-size distribution changes that may be correlated with
additional cell recruitment, it suffices to check if there is any
periodicity in the adipose cell-size probability distributions for a
variety of possible periods.50

Changes of Adipose Cell-Size Distribution

Lipid metabolism is critical for energy homeostasis. However,
specific mechanisms of lipogenesis and lipolysis in adipose cells are
not clearly understood because real-time monitoring of individual
adipose cells for sufficiently long time is not technically feasible.
As an indirect way, changes of adipose cell-size distribution have
been examined under various conditions in chick embryo
development,51 lean and obese Zucker rats,52,53 partially lipecto-
mized Wistar rats,54 rabbit biopsy55 and human adipose tissue.56,57

Figure 3 shows changes of adipose cell-size distributions under
weight gain and loss conditions. In the weight gain condition
(Fig. 3A), total cell number increased, large cells appeared more
and a bump at the size distribution disappeared. In the weight loss
condition (Fig. 3B), total cell number decreased especially at small
size of cells, and the bump reappeared. To explain all these
changes systematically, mathematical modeling has been used.58,59

By modeling the changes in the cell-size distribution, we can

extract detailed information regarding recruitment, size-depend-
ent growth/shrinkage, size fluctuation, and death of adipose cells.

Figure 4 shows how mathematical models described changes in
the adipose cell-size distributions under different energy balance
conditions (see Table 1 for a detailed description of the model
and parameters). Details for each biological process that we
considered follow:

Recruitment. To describe the change of total cell number
under weight gain and loss conditions, it is a sufficient assumption
that adipose tissues exhibit a net increase in cell number only
during positive energy balance, but not during negative energy
balance.58 The adipose cell-size probability distribution data by
itself cannot distinguish between a combination of recruitment
and apoptosis, and the net effect of these processes, without
additional immunohistochemistry or staining showing the
frequency of DNA replication and/or apoptosis. Thus, modeling
the temporal changes with both processes included independently
leads to unidentifiable model parameters, and therefore, in the
absence of data fixing the rate of one or the other process, it is
necessary to restrict models to only the net change in cell number.
To provide more storage for excess energy under a high energy
diet, adipose tissues use the two available mechanisms of
hyperplasia and hypertrophy. We have found that hyperplasia
strongly depended on genetics as well as diet, while hypertrophy
depended more on diet.59

Growth/shrinkage. The growth rate of adipose cells depends
on cell size. Under small positive energy balance, the cell-diameter
change occurs faster at small cell size (, 50 mm), while under
large positive energy balance, the cell-diameter change becomes
constant independent of cell size. The latter observation suggests
that the cell growth rate is determined by surface area.58 Adipose

Figure 3. Changes of adipose cell-size distributions under weight gain and loss conditions. C56BL/6 mice were fed with a high-fat diet for 7 weeks,
then with a regular diet for following 12 weeks. Cell-size distributions in epididymal fat depots were measured from different mice at initial time
(3 mo old; black), after 7-week high-fat diet (red) and after 7-week high-fat + 12-week regular diets (blue). Mean ± SEM (n = 6). Note that absolute
frequencies of cell sizes were obtained from their relative frequencies using epididymal fat mass measured.
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Figure 4. Mathematical models describing cellularity dynamics. Changes of adipose cell-size distribution under various conditions were explained with a
general model including recruitement of new adipose cells, growth/shrinkage, and size fluctuation of adipose cells. Detailed explanation of the model
and values of model parameters are summarized in Table 1 . We simulated four diet conditions: (A) small and (B) large positive energy balances;
and (C) small and (D) large negative energy balances. For each condition, left panels show growth rates of cell diameter depending on cell size. Note that
negative growth represents cell shrinkage. Here the net growth rates were determined by the balance between lipogenesis (red; increasing cell size) and
lipolysis (blue; decreasing cell size). Right panels display 4-week evolutions of cell-size distribution starting from the same initial size distribution (blue)
for each condition. Shaded region (gray) below 25 mm is excluded in the simulation since cells below the size have not been systematically measured
in experiment. Here the size frequency is normalized as a unity for the initial cell-size distribution.
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cell-size changes by two processes: lipogenesis and lipolysis. A
simple explanation of the size-dependent growth/shrinkage rate
may be that the net growth rate is determined by the balance
between lipogenesis and lipolysis. In each process, adipose cells
increase/decrease their size in a sigmoidal manner depending on
their size. It indicates that large cells above a certain critical size
change their diameter proportionally to cell surface area, while
small cells change less than the rate expected from cell surface
area. This may be due to the fact that the cytosolic volume of the
adipose cell becomes increasingly like a thin covering of the
central lipid droplet at larger sizes, and therefore leads to lipolysis/
lipogenesis proportional to the surface area of the cell. Note that
the critical sizes for lipogenesis and lipolysis are not coincident,
and depend on energy balance (Table 1). For positive energy
balance, the critical cell size for lipogenesis is smaller than the one
for lipolysis, and this relationship is the opposite of that observed
during negative energy balance. Then, depending on the relative
contribution of lipogenesis and lipolysis, the growth or shrinkage
rate of adipose cells showed various forms (Fig. 4).

Size fluctuations. Adipose cells show lipid turnover.4 Adipose
cells release/uptake lipids to/from neighboring cells. This lipid
turnover leads to size fluctuation of adipose cells. Modeling shows
that this turnover plays an important role in the size of newly-
recruited small cells. When these cells get larger by random size
fluctuations and reach a threshold size, they start to grow at a
higher rate. It is this mechanism that is correlated with the
bimodality of the adipose cell-size probability distribution. Under
a high energy diet, the size fluctuations increase, and provide more
chance for the newly recruited small adipose cells to reach the
threshold size.59

Death. Under a weight loss condition, we have observed that
the total number of adipose cells decreases. Two possible explana-
tions are shrinkage of adipose cells below our size-measurement
window and death of cells. Bayesian model comparison,
quantifying probabilities of different models for explaining the
given data, has revealed that the former is more plausible to fit
the change of cell-size distribution under the negative energy
balance.58 On the other hand, under a prolonged weight gain
condition, we have also observed that total number of adipose cells

in epididymal fat decreased, and mathematical modeling revealed
that large cells are removed by cell death.58 If cell death occurred
under both weight gain and loss, the former death may be a passive
failure for storing energy, while the latter death may be an active
process for removing unnecessary energy-storage space.

Adipose Cell Turnover

All observations of adipose cells show that adipose cells have an
upper size limit. In particular, adipose cells cannot keep increasing
their size under positive energy balance. In obesity, cell death at
large adipose cells has also been suggested as due to macrophage
infiltration32,60 and the fragility of enlarged adipose cells.61 Our
mathematical modeling has found that large adipose cells undergo
apoptosis or necrosis under prolonged weight-gain conditions.58

In addition to a failure in storing more energy in obesity, large
adipose cells may undergo apoptosis for cell turnover under
normal conditions. Spalding et al. have reported that adipose cells
are renewed with 10 y lifespan in humans.5 Therefore, cell turn-
over may result from the following sequences of events: recruit-
ment of new cells, their growth and death of large, and possibly
old, cells. A basic question that may be experimentally addressable
is the possibility of a correlation between adipose cell age and size.
Our longitudinal study using biopsies of subcutaneous fat tissue
from rats has also found oscillation of adipose cell-size distribution
with 55 d period (Fig. 5).50 Unlike the long-term changes of size
distributions in adult animals under fixed energy balance (Fig. 3),
more dynamic models that consider time-dependent parameters
are required to describe dynamic adipose cell-size distributions
for the short-term oscillation, developmental period and large
alternations of energy balance. One interesting example is the
cyclical weight gain and loss of hibernators.62

Our results show that TZD treatment leads to more adipocytes
and greater energy uptake by intermediate-sized adipocytes, in
the inguinal fat pad of the Zucker fatty rat. We have quantita-
tively shown that treatment-induced hyperplasia is more or less
complete within the first eight days of treatment, with subsequent
hyperplasia at a much slower rate. We have also found that an
increase in hypertrophy induced by treatment occurs mainly in

Table 1. Model parameters

Parameter Unit Description
Small positive
energy balance

Large positive
energy balance

Small negative
energy balance

Large negative
energy balance

B %/week* recruitment rate 7 49 0 0

v+max mm/week maximal growth rate 5.1 9.2 5.0 5.0

g+ mm characteristic size of growth 30 30 60 60

v2max mm/week maximal shrinkage rate 5.0 5.0 5.1 9.2

g2 mm characteristic size of shrinkage 60 60 30 30

D mm2/week fluctuation rate 7.4 14.8 7.4 14.8

The mathematical model, describing changes of adipose cell-size frequency n(s,t) at size s with time t, is ∂tn = bd(s2 s0)2 ∂s[v(s)n] + D∂s2n. The first term on
the right had side describes recruitment of new adipose cells at the minimal size s0 with birth rate b. The Kronecker-delta function d(s 2 s0), therefore, is 1
only at the minimal size s = s0, otherwise 0. The second term represents growth/shrinkage rates depending on cell size. In particular, we distinguish two
processes affecting cell size positively (through lipogenesis) and negatively (lipolysis): v(s) = v+(s) 2 v2(s) where each component is a sigmoidal function for
size s, v± = v±max tanh(s/g± ). Finally, the third term corresponds to size fluctuation with fluctuation rate D. *Number of recruiting cells per week is represented
as percentile of initial total cell number.
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intermediate-sized adipocytes. This hypertrophy may be related to
the greater glucose utilization induced by TZD treatment,63

which in turn may be linked to increased insulin sensitivity in
adipocytes.64 A similar size range for hypertrophy was found in
reference 59, suggesting that the size range for hypertrophy is
independent of the stimulus for generating larger adipocytes. On
the other hand, the availability of additional adipocytes in a size
range capable of additional energy storage due to treatment may
itself alleviate hyperglycemia by enabling liponeogenesis. Data in
the work of MacKellar et al.47 shows that the insulin sensitizing
effects of TZDs appear by day 2 of treatment but there is a
decrease in plasma glucose area-under-the-curve (AUC) between
day 6 and day 10 without a concurrent additional drop in insulin
AUC. This suggests that the availability of additional energy
storage in the form of adipocyte recruitment by day 8 leads to
glucose removal from circulation by lipogenesis either in the liver
or in the adipose tissue. This may support the hypotheses of de
Souza et al.45

Perspective

We have focused in this review on the dynamic characteristics of
adipose tissue that can be elucidated with the combination of
precise adipose cell-size probability distributions and mathemati-
cal modeling. Even without taking the detailed physiological

status of the animals into account, mathematical modeling has
elucidated characteristics of adipose tissue cellularity that impact
energy storage and availability.

For example, adverse metabolic conditions such as insulin
resistance may result from the less responsive behavior of large
adipose cells rather than their large size. Large adipose cells are
inefficient for energy storage and release: According to our
mathematical models, absolute lipolysis per unit mass of adipose
tissue is lowered if the proportion of large cells is increased
because adipose cell-diameter change is independent of size,
implying lipid absorption/release proportional to cell surface area.
In addition, prolonged weight gain ultimately induces the death
of large cells.58 Therefore, hypertrophy by itself is inadequate
for storing excess energy, and leads to hyperplasia. However,
lipodystrophy/lipotoxicity induced by a dysfunction in lipid
storage by adipose cell hypertrophy induces inflammation (due
to reactive oxygen species generation, for example65) affecting
small adipose cells as well as large cells. Thus, insights from
mathematical modeling can provide an integrative view of adipose
cellularity in metabolic syndromes.66 As another example, the
impact of TZD administration appears to decouple the insulin-
sensitizing effects and the recruitment of new adipocytes. This
conclusion, reached by mathematical modeling of cell-size
distribution changes under TZD administration,47 has been
confirmed by molecular studies.67

Figure 5. Oscillation of adipose cell-size distribution. Adipose cell-size distributions were measured in a Zucker fa/fa rat (4 weeks old) over a period
of 151 d, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animal. The biopsies were done on days 0, 2, 6, 9, 13, 23, 33, 57, 69,
86, 98, 134, 141 and 150. Their cell-size distributions could be consecutively categorized into five stages (S1 to S5) based on the Bayesian analysis
of data.50 Those stages appear periodically with an interval of ~55 d.
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Mathematical modeling also sheds light on the origin of
bimodality. The origin of the nadir observed between the large
number of adipose cells at small size and the other modal number
at medium size is the size-dependent growth of adipose cells,
coupled with size fluctuations associated with lipid turnover. Thus,
newly recruited cells accumulate at small sizes (, 30 mm) unless
size fluctuations move them to a size at which they can store lipids
efficiently, leading to growth to larger sizes. Hence, the bimodality
may represent two distinct populations of adipose cells.

Size-dependent features of adipose cell growth/shrinkage and
death have not been explored in experiments. The changes of
adipose cell size through lipogenesis and lipolysis will be linked
to the lipid-droplet configurations. Small cells in WAT have
multiple (multilocular) small lipid droplets, while large cells have
single (monolocular) big droplets.68 It is of interest that adipose
cells in brown adipose tissue, playing a role for energy dissipation,
have multilocular lipid droplets.69 This physical configuration of

droplets may affect lipid absorption and release due to the surface-
to-volume ratio of entire droplets in cells. Furthermore, several
molecules such as fat-specific protein of 27 kDa (FSP27)70 and
caveolin,71 involved in the lipid droplet formation, have been
identified. Therefore, recent intensive studies regarding lipid
droplets72 may shed light on the microscopic details of size-
dependent adipose cell growth and shrinkage.

Further progress in relating the mechanistic changes in the
cellularity of adipose tissue and the metabolic state of the animal
will require cell-size distribution measurements along with
measurements of insulin, leptin, adipokines, cytokines and
circulating metabolites.
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