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Abstract: The phase field approach was developed in the last 20 years to handle radiation damage
in materials. This approach bridges the gap between atomistic simulations extensively used to
model first step of radiation damage at short time and continuum approach at large time. The
main advantage of such an approach lies in its ability to compute not only the microstructure at the
nanometric scale but also to calculate generalized susceptibilities such as elastic constants under
irradiation. After a brief description of the rate theory, used to model the microstructure induced by
irradiation, we briefly discuss the foundation of the phase field method, highlighting not only its
advantages, but also its limitations in comparison with the rate theory. We conclude this presentation
by proposing future orientations for computing the microstructure in irradiated materials.

Keywords: radiation-induced patterning; phase field approach; nano-structures

1. Introduction

Modern materials science has enormously progressed from a descriptive endeavor to
more physically sounded foundations. The ultimate goal of such a fundamental tilt is to
design material with tunable properties. The use of new experimental techniques such as
particle irradiation made possible to escape the tyranny of the phase diagram. Overcoming
this restriction, it becomes possible to observe the formation of patterns at the nanometric
scale. It is now clear that such patterns affect the properties of materials and thus need to
be understood and controlled.

On the other hand, materials under irradiation may be considered as toy models to
study systems maintained far from equilibrium. Varying the control parameters (tem-
perature, particles flux), experimentalists can then test different approaches for modeling
instabilities and pattern formation far from equilibrium.

The slowing down of energetic particles (electrons, ions and neutron) in crystalline
solids were studied in detail over the past 60 years [1]. Even if mechanisms occurring
during the slowing down of particles are complex [2], it is nowadays admitted that a
part of the energy dissipated by incident particles during their slowing down generates a
distribution of point and extended defects in materials. This distribution is far from being
uniformly distributed along the material but localized in spatial areas, named displacement
cascades [3]. The atomic fraction of defects in these areas is largely superior to those
expected from the thermal equilibrium. Such an over-concentration of defects is responsible
for the formation of unexpected microstructures over few tens of nanometers: voids,
bubbles and nano-precipitates. Moreover, self-organized nano-structures may emerge
under some specific conditions of irradiation flux and temperature. Many examples of such
patterns have been observed in metals, alloys, ceramics and amorphous materials [3–7].

The conditions associated with the formation of these radiation-induced nano-patterns,
as well as mechanisms associated with their formation is still subject of debate. In this
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paper, we present new achievements to answer these questions applying the Phase Field
formalism. The first part of this work is devoted to the rate theory approach and its
extension applied to discuss the formation of nano-patterns. A brief description of this
technique, its successes and limitations is discussed. The second part of this work describes
in detail the foundation of the Phase Field method, its application to radiation damage and
its limitation. Some prospects for future works is proposed as a conclusion.

2. The Rate Theory

The formation of steady state patterns in driven chemical systems has long been a
puzzling problem, both theoretically and experimentally. In 1952, Turing [8] proposed that
the interplay between diffusion and reacting species could lead to the formation of spatial
patterns due to non linear interactions. The interest of this original approach is to describe
the dynamics of the system under investigation by sets of ordinary or partial differential
equations. Conditions and mechanisms associated with the formation of chemically driven
systems can thus be associated with the stability of these dynamical equations. Patterns
result from Hopf or Turing bifurcations [2,5]. Extension of this approach to radiation
damage in metals was developed in the early 70 [9,10].

2.1. Foundation of the Rate Theory

The aim of the rate theory was first developed to study the radiation-induced mi-
crostructure at large time such as for instance the radiation-induced swelling of iron steel
or nuclear fuels. Two major assumptions are applied to build up a rate theory:

• Defects produced during the slowing down of incident particles in the medium are
produced over a time scale τC, i.e., the characteristic time of a displacement cascade
(10−9 s), much smaller than the time scale τD associated to the growth or shrink of
extended defects (voids, dislocations) which is controlled by mass transport (10−6 s).
Such an assumption makes a distinction between point defects (vacancy, interstitials)
and extended defects (voids, dislocations, self interstitial tetrahedron ) produced in
displacement cascades.

• The flux of incident particle is large enough to neglect the correlation between sub-
cascades and the the correlation between produced defects. The production rate of
point defects can then be considered as uniform in the irradiated area.

Under these two assumptions, a master equation may be formulated for modeling
the dynamics of extended defects. Such a formulation of the problem can be obtained
performing a coarse-graining over a space scale larger than the sub cascade size (few
angstroms). The master equation holds over a characteristic time scale larger than the
displacement time scale of a cascade formation [11]. By analogy with the Doring and Becker
formalism of nucleation [5], the size of each extended defect, i.e., void cavities for instance,
grows and shrinks by a process of accretion and emission, controlled by the fluctuation
of point defects in its neighborhood [12]. Thus, an appropriate framework for describing
such events is the theory of stochastic processes [13,14] for which the size x of extended
defects appears to be a random variable defined by a probability P(x, t) in the continuum
approximation:

P(x, t) =
∫

dx
∫

dtW(x + δx→ x, t)P(x + δx, t)−W(x→ x + δx, t)P(x, t) (1)

where δx refers to the indexation of different states and W(x→ x + δx, t) is the transition
rate from state x + δx to state x. This description is extensively used to discuss a large
class of phenomena such as chemical reactions [13] or in nucleation process under thermal
equilibrium as pointed out by Becker and Doring (for a summary of the theory of nucleation
under thermal equilibrium, see the book of Ghoniem [5]).
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To make things more concrete, we can determine the transition rate produced under
ballistic mixing. Applying the seminal approach of Sigmund [2,11], it reduces to:

W(x + δx→ x, t) = p(x, δx, t)

= p(x, δx)δ(t) (2)

Since the life time of a displacement cascade is of about 10−9 seconds [1], W(x + δx→
x, t) can be considered as a instantaneous function of time, i.e., its time dependence re-
duces to a Dirac. Under irradiation, the characteristic relocation length of a recoil depend
on its kinetic energy and then varies. The function p(x, δx, t) can thus be approximated
by a probability density function pR(x) for high energy displacement cascades, i.e., dis-
placement cascades produced for high energetic particles (E > 10 keV.) The term R is a
characteristic relocation distance which can be understood as the mean free path for the
atomic relocation. Its second moment

∫
x2 pR(x)dx is the ballistic diffusion coefficient and

can be computed from binary collision approximation [11] or extracted from Molecular
Dynamics simulations.

It must be kept in mind that the kinetic energy of ion beams, used for simulating
radiation damage produced in nuclear plants [6], are of about 10 keV/amu, well below the
Coulombian barrier, and they do not induce any fission nor disintegration in the materials.
In nuclear plants, neutrons will not only generate damage, but also they will modify the
chemical composition of the material [15]. These chemical modifications are not taken into
account in this paper.

2.2. The Rate Theory Approach

It has been clearly shown [13] that if the process W(x, t) modeling the effect of sub
cascades on the microstructure of materials under consideration is a Poisson distribution,
i.e describes a rare event, resolution of the Master Equation can be simplified. For a Poisson
distribution, the absorption and emission rates depend no more on P(n, t) but only on
< x > the first moment of the random variable x, i.e., the mean value of the distribution
P(x, t). The dynamics associated to the growth of the cluster is no more given by a set
of coupled differential equations but reduces to a simple differential equation describing
the dynamics of the averaged cluster size < xP(x, t) >. In other words, it is possible to
compute from the Master Equation, the first moment of the distribution according to:

< x >=< f (x) >≈ f (< x >) (3)

This simplification procedure is equivalent to the one used in reaction rate theory
for chemical reactions [13]. The evolution of cluster size is now given by a deterministic
equation in which all fluctuations, i.e., higher moments of P(x, t), are neglected in the
function f . The Master Equation may then be understood as a mean field approximation.

Assuming the production rate of point defects are uniformly distributed, dynamics
of point defects, i.e., vacancies(v) and interstitials (i), can be modeled by the following
quasi-equilibrium “chemical” reactions [16]:

dCi
dt

= Ki − KivCiCv − KviCiCs

dCv

dt
= Kv − KivCiCv − KviCvCs (4)

where “s” refers to the different sinks (free surface, grain boundaries, dislocations loops,
cavities) associated with the micro-structure. Ki(v) = νi(v)σ

dφ where φ is the flux of imping-
ing particles, σd is a displacement cross section and is an estimation of the displacement
cascades formation averaged over all crystalline direction, νi(v) an efficiency factor varying
from few percents to few tens of percent depending on the temperature and the displace-
ment cascade density. The vacancy-interstitial recombination term Kiv = 4πr2

iv
(Di+Dv)

Ω
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where riv is the radius capture in which a vacancy and an interstitial recombines and Di(v)
is the thermal diffusion of the point defect in the medium and Ω the atomic volume within
the effective medium theory framework [9]. The term Ki(v)s can also be computed. In the
assumption of the equivalent medium [9], it reduces to k2

i(v)sD∗(ci(v) − ceq
i(v)(T) where k−1

i(v)s
characterized the mean free path associated with the diffusion of a point defect to a sink
and has the dimension of a length and ceq(T) is the equilibrium concentration of point
defect in the medium (for a summary of coefficients used in Equation (4), see the article of
Bullough et al. in [10]).

Similar equations can be extended to study the growth rate of radiation-induced
precipitates or dislocations. This is achieved by adding evolution laws [5] leading to a set of
differential equations for the radius of precipitates R or the density ρ of dislocations. Within
the framework of the rate theory [10,16], the late time evolution of the microstructure is
given by the resolution of such a set of differential equations for which the temperature,
the flux, the diffusion coefficients or the k−1

i(v)s terms, usually called the sink’s strengths,
are external parameters, given by different models. In the theory of dynamic systems [17],
these parameters ate called as control parameters and they control the possible bifurcation
of the dynamical systems to different steady states named attractors. Solving the set of
(partial) differential equations defining the dynamical system is often hopeless and need
lots of computational resources. Knowing the list of possibles attract, i.e., steady states,
allows the prediction of all possible radiation-induced microstructures able to emerge at
late time. As the kinetic energy of incident particles (ions, neutrons, electrons) is dissipated
into the formation of displacement cascades under irradiation, materials under irradiation
belong to the universality class of dissipative systems. The energy dissipation leads to the
formation of microstructure, unpredictable from the analysis of the thermodynamic phase
diagram. The number and the nature (attractive, repulsive, etc.) of these attractors and the
dependence of the long-term behavior of the system to its initial conditions and control
parameters accessible to the experimentalists can then be achieved by an inspection of the
set of (partial) differential equations [2,18]. For instance, the qualitative evolution of the
system can be obtained from the simple computation of the phase portrait as displayed in
Figure 1.

Figure 1. Example of phase portrait of solute atoms in precipitates (x) and vacancies (n) calculated
under irradiation. Reprinted with permission from Ref. [19]. Copyright 1977 Elsevier. At large time,
the system can reach two distinct attractors: a stable node (0,0) and a the saddle critical point (x*,n*).
The existence of these attractor partition the abstract x-n plane in four distinct quadrants. The arrows
displays the velocities of the solute atoms and vacancies in each quadrant (I to IV).
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The phase portraits of the dynamical system, displayed in Figure 1, for instance,
describe the evolution of a small number of variables and are appropriate for systems
with small spatial extension (the mean free path k−1 is smaller than the distance between
sinks). For larger systems, transport processes and/or non local (elastic) interactions can
take place:

dX
dt

= G(X, µ) + D∇2X (5)

where X is a vector describing the variables of the problem (ci, cv,r ho, R). This equation
can be considered as the archetype of Turing reaction-diffusion equations. Introducing in
the last term of Equation (4) the divergence of fluxes Ji = ∑j Dij∇X, such an equation can
describe the evolution of the microstructure defined by X in large systems with appropriate
boundary conditions.

2.3. Limitations of the Rate Theory Approach

Despite that rate theory is extensively used to describe the evolution of the microstruc-
ture of materials under irradiation, it suffers from two distinct limitations. Since atomic
clustering in materials under irradiation is driven by the concentration of point defects
(vacancies, interstitials), the complete distribution of clusters (di-mere, tri-mere, etc.) is thus
given by a coupled hierarchy of discrete equations. This results in the cluster distribution
not only being determined by the average size of clusters < xP(x, t) >, but also by all the
different moments of P(x, t). only in a pure birth process, i.e., W(x + δx, x) = cte and other
W term are null, P(x, t) is given by a Poisson distribution ( λi = λ; µi = 0) and the variance
of the process is equal to its mean value. No theorem ensures that in radiation damage, W
terms follow a Poisson distribution. If it is not the case, fluctuations (second and higher
moments of P(x, t)) need to be explicitly taken into account even in the averaged equation.
A hierarchy of equations describing the evolution of the different moments of P(x, t) must
be computed. In these equations, the moments of P(x, t) are related to those of P(x + 1, t).
To obtain solutions, we thus need to perform some kind of truncation. Realistic truncation,
if it exists, is obviously related to the system size and the correlation length over which
two parts of the system “feel” each others. This leads to a drastic increasing of the set
of differential equations and obviously the number of control parameters, restricting the
predictive power of the rate theory.

Even if the rate theory offers the fascinating possibility to determine different steady
states for the microstructure depending values of control parameters, underlying physically
sounded mechanisms responsible for the evolution of the microstructure remains unclear.
No symmetry argument can be applied to select some of all possible microstructures and
up to now model parameters may be force fitted to experimental data. The large amount of
fitted parameters for reaction constants limits the predictive nature of such an approach.

Moreover, the continuum theory of elasticity needs to be introduced in the rate theory
to discuss diffusion-controlled kinetics due to interactions with applied fields.

3. The Phase Field Approach

The main difficulties of the rate theory is due to the fact that many parameters are
needed to efficiency model the large time microstructure such as the strength of sinks k∗
for instance. These parameters evolve with the microstructure via elastic (or electric for
ceramics) interactions leading to a feed back effect difficult to understand.

On the other hand, the spatial distribution of sub cascades responsible for the anisotropy
of the point defects production terms are difficult to take into account in such a formalism.
Kinetic Monte Carlo methods were then developed handling the spatial anisotropy of
the defects formation. However, the accuracy of these simulations is directly related to
the knowledge of main defects produced under irradiation and their associated diffusion
paths. Up to now, no clear formalism such as for instance the detailed balance in thermal
equilibrium exists under irradiation, assessing the validity of the choice of the set of defects
and their diffusion paths.
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During the last decade, the phase field approaches initially developed by Landau [20]
for describing phase transition in thermal equilibrium, has been successfully applied for
understanding and modeling radiation-induced nano-patterns. This approach seems to
reproduce kinetic Monte Carlo simulations and offers a guide to understand key parameters
responsible for the nano-structures induced by irradiation. On the other hand, this approach
provides the unique opportunity to compute generalized susceptibilities (elastic constants,
dielectric constants, etc.) associated with radiation-induced nano-structures. We briefly
describe the application of the phase field to radiation-induced patterning.

3.1. Foundation of the Phase Field

As it is the case for the rate theory, the phase field may be understood as a mean field
theory. To understand this, we can assume that an atom in a disordered solid occupies a
vertex of a geometric lattice, assumed cubic for simplicity. At the atomic scale, all sites of
the underlying lattice are occupied by species (atoms or vacancy). Calling σi the occupation
number at the i -th site and d the dimension of the lattice defined by a characteristic length
a, we can define “d-blocks”. Every “d-block” will have a volume lad. We can define the
averaged occupation σ(r) by a coarse-graining procedure:

σ(r) =
1
Nl

∑
i

σi = (
a
la
)

d
∑

i
σi (6)

Nl can be understood as the number of degrees of freedom. Obviously, different coarse-
graining procedures can be used instead of a simple summation. However, this definition
seems reasonable as long as Nl is large. After performing an averaging, σl(r) does not
fluctuate much on microscopic scale but varies smoothly in space.

Of course, in general we need to specify l in order to determine σl(r), but the coarse
graining procedure we are applying will be useful only if the final results are independent
of l at least in the spatial scales considered. Under equilibrium, we now must express the
partition function in terms of He f f (σl(r)), where He f f can be considered as an effective
Hamiltonian [21]. Since we now have a system made up of “blocks” this effective Hamilto-
nian will be composed of two parts: a bulk component relative to the single blocks and an
interface component relative to the interactions between the blocks.

When we suppose that every block of volume lad is separated from the rest of the
system, σl(r) inside every one of them is uniform only if the dimension of the blocks is
much smaller than the correlation length, i.e., the characteristic length of variation of σl(r)
labeled ξ. When la << ξ, a non equilibrium free energy density f (σ(r)) may be introduced
according to Landau [22,23]. This free energy density, f (r), describes the evolution of a
uniform system made of non interacting blocks. The coarse graining procedure insures that
σl(r) results from a mean field theory.

To go a step beyond, we now must take into account the fact that adjacent blocks do
interact. Since, as we have stated, σl(r) does not vary much on microscopic scales, the inter-
actions between the blocks must be such that strong variations of magnetization between
neighboring blocks are energetically unfavorable. If we call δl a vector of magnitude la that
points from one block to a neighboring one, the most simple analytic expression that we
can guess for such a term can be an harmonic one:

Hint
e f f = ∑

r
∑
δl

κ̄

2
(σl(r)− σl(r + δl))

2 (7)

where the factor 1/2 multiplying κ̄ has been inserted for convenience. The term κ̄ defines
the stiffness of the material under consideration, i.e., the ability of the material to create
interfaces between blocks.

This term known as the Ginzburg term [20,23] can also be considered as a first ap-
proximation of a general interaction between the blocks, namely as the first terms of a
Taylor expansion of the real interaction energy. Since the linear dimension of the blocks la is
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much smaller than the characteristic length L of the system, we can treat r as a continuous
variable and thus substitute the sum over r with an integral:

∑
r
→ 1

(la)d

∫
dr (8)

Finally, we obtain the following expression for the Hamiltonian:

He f f =
1

(la)d

∫
[ f (σl(r) +

κ̄

2(la)d−2 |∇(σl(r)|2]drd (9)

Application of the saddle point approximation allows computing the partition function
Z(β) and allows identifying F = −kBTlog(Z) to the stationary value σ(r) of the functional
He f f . The term |∇(σl(r)|2 insures that the Ginzburg–Landau free energy F may take into
account inhomogeneities of the order parameter σ(r) [22,23]. The term κ = κ̄

2(la)d−2 is the
cost associated with the formation of an interface. The Landau free energy describes the
evolution of the system not only at equilibrium but also far from equilibrium. It must be
kept in mind that the non equilibrium Landau free energy exhibits some minima corre-
sponding to those associated with phase diagrams expected from equilibrium. As the free
energy is not restricted to the equilibrium free energy, such an approach allows computing
a kinetic path for the transition. As it is the case for the rate theory, application of the PF
approach to radiation damage may allow computing radiation-induced microstructures.

The kinetics of the system is now given by a partial differential equation:

∂σ(x, t)
∂t

= ∇p
∫

L(σ(x− y, t))∇p δF(T, σ(y, t)
δσ(y, t)

(10)

L(σ(x, t) is the Onsager coefficient associated with the kinetic path [24]. This kinetic
coefficient defines the relaxation time scale. From the definition of the order parameter
(atomic position, atomic fraction, polarization, strain field, etc.) and the non equilibrium
free energy, more generally thermodynamic potential, it is possible from Equation (10) to
infer some features of the system: list of all possible low symmetry phases for a given
symmetry of the “parent” phase, degeneracy of the “low symmetry” phases (number of
variants) and susceptibilities (latent heat, heat capacity, etc.). In Equation (10), δF(T,σ(x,t)

δσ(y,t)
has a clear meaning. It is the chemical potential of the system. Kinetics occurring during
a lower time scale cannot be handle by such relaxation equations. For non conservative
OP [22], p is null. It is equal to 1 for conservative OP [25]. Neglecting the dependence of
Onsager coefficient with the OP, classical PF equations are recovered [26]:

∂σ(x, t)
∂t

= −L
δF(T, σ(x, t)

δσ(x, t)
(11)

∂σ(x, t)
∂t

= M∆
δF(T, σ(x, t)

δσ(x, t)
(12)

The first equation holds for non conservative OP associated with ordering whereas the
second equation holds for conservative OP associated with phase separation. L can be un-
derstood as a damping coefficient controlling the time relaxation of the OP to its equilibrium
value. Usually, the term M is the mobility and is related to the diffusion coefficient of diffus-
ing species. Introducing the H−1 inner product defined by < f |g >H−1=< (−∆)−1 f |g >L2

for functions of L2(Rd) (d is the dimension of the embedded space), the two equations are
formally identical. Both dynamics are then gradient flows of the same Lyapunov func-
tional, L[σ],associated with the H−1 or the L2 metrics. Computing the inner product in the
Sobolev space H−1 is equivalent to solve the Poisson equation ∆w = − f associated with
boundary conditions.
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Equation (13) may be derived from the application of the principle of minimal en-
ergy dissipation postulated by Onsager [27]. This principle is based on the assumption
that the system under consideration is close to an equilibrium condition, so that locally
thermodynamic equilibrium can be assumed. As a consequence the concepts of equilib-
rium thermodynamics can be extended to these non-equilibrium conditions based on the
linearization of different fluxes as a function of the generalized thermodynamic forces.

Assuming kinetic coefficients L and M do not depend on the order parameter,
Equation (13) is a gradient systems and F(T, σ(r, t) is the Lyapunov of the system [13]
and dF

dt < 0. This implies that dynamics evolves to different minima of F(T, σ(r, t). As it is
the case for the rate theory, different minima of F(T, σ(r, t) define a set of different attractors
of the system. These attractors are separated by separatrices. These separatrices themselves
make up an invariant set for the gradient flow dynamics. These gradient systems are
dissipative systems since dF

dt < 0 even when M and L are assumed independent of the
order parameter.

These partial differential equations can be solve as soon as boundary and initial
conditions are defined:

• The initial condition is usually given by an uniform distribution σ̄ of the order param-
eter in the integration volume V. Since σ̄ is an attractor of these equations, a small
random variable db is added to the uniform value of the order parameter. The mean
value of this random variable db is null and its variance of the order of kBT [28].

• For close systems, Neumann conditions must be applied to the the order parameter

and the driving force, defined by the chemical potential ∂L[σ]
∂σ(x,t) . This implies ∇σ ad

∇3σ are null over δV for the conservative Cahn–Hilliard equation. Obviously for the
non conservative equation, only the second condition holds.

• Neglecting edge effects, periodic conditions are usually applied for computing mi-
crostructures within the framework of the phase field theory. This implies that the
order parameter σ(x, t) can be expanded in an infinite cosine set. Numerically, a finite
set of discrete cosine transform (dct-I) is used to solve these equations for close systems
[29].

3.2. Application to Radiation Damage

Applying the PF approach for computing radiation-induced pattern implies to take
into account the effect of radiation damage. Radiation damage is handled in two dis-
tinct ways:

• Point defects produced during the collision step are assumed to only modify the mo-
bility of species or more precisely the kinetic Onsager coefficients. Their concentration
is supposed to evolve rapidly with time and reach a steady state. It may result from
the resolution of RT equations. The interest of such an approach lies in the fact that this
steady state may evolve with the nano-structure dictated par the solutions of the Phase
Field approach. The nano-structure is no more freeze and defined at the beginning
of the simulation such as in the RT but can evolve with time. Under this approach,
the atomic fraction of point defects is always small and does not modify the value of
the thermodynamic potential describing the formation of the nano-structure under
equilibrium. For instance, the value of the stiffness coefficient trigging the formation
of heterogeneous structures does not depend on the atomic fraction of point defects.

• The motion of atoms under irradiation is dictated by an external dynamics resulting
only from the ballistic mixing occurring inside sub-cascades. This ballistic mixing
is due to a spatial averaging of atomic collisions occurring inside the sub-cascade.
The flux of ejected particles is not proportional to the chemical potential of different
species in the material as it is the case in thermal diffusion but depends on the atomic
fraction of diffusing species. The key feature of the ballistic mixing lies on the fact
that it exhibits a spatial dependence. As clearly pointed out by Sigmund [11], it
depends on the nature and the energy of incident particles and can be modeled by a
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simple diffusion equation. It can be analytically computed [1] or extracted from MD
simulations [30].

As a first approximation, the dynamics induced by the ballistic mixing may be modeled
by the following equation:

∂σ

∂t
= Γ(E, φ)

∫
(pR(y)− δ(y))σ(x− y)dy (13)

The term Γ(E, φ) defines the strength of the the mixing, i.e., the ability of irradiation to
exchange atoms at a given position irrespective to their chemical nature. It is a function
of the energy of primary knock-on atoms E and the flux φ of incident particles. pRx) is
a probability density function modeling the ability to eject atoms at a distance x from its
initial position in the sub-cascade. Generally speaking, this probability density function
may be modeled by a Levy’s function [31]. The term R can be understood as the mean free
path associated to the ballistic mixing. It is a complex function of the energy and the mass
of incident particles and atoms forming the material. For incident particles with kinetic
energies below a few MeV, R is of the same order of magnitude than the unit cell parameter
[30].

Application of the phase field theory to radiation-induced microstructure implies that
R must be larger than the coarse graining characteristic length la. Fixing the coarse-graining
length to R implies that the PF approach is not able discussing modifications of interfaces
below R. The PF approach then only provides a description of the microstructure over
length scale larger than few nanometers forbidding the description of radiation-induced
dislocations loops for instance.

Within the framework of the phase field theory, the radiation-induced microstructure
results from a competition between thermal and ballistic effects. The first one is associated
with the thermal evolution of the system and modeled by a PF equation and the second
one results from a ballistic mixing generated inside sub-cascades:

∂σ(x, t)
∂t

= M(T, φ)∆
∂F(σ(x, t))

∂σ(x, t)

+ Γ(E, φ)
∫
(pR(y)− δ(y))σ(x− y)dy (14)

where σ(x, t) is the order parameter proportional to the local atomic fraction of the species
B in the AB alloys. This order parameter is by definition null at high temperature. The
mobility M(T, φ) enhanced by the steady state concentration of point defects produced
under irradiation appears to be the unique control parameter. Equation (14) illustrates the
power of the phase field approach. Even if the late time evolution is modeled by a partial
differential equation, as it is the case in the rate theory, only a unique control parameter
physically sounded M(T, φ) is needed.

Moreover, Equation (14) allows computing a Lyapunov functional for the system
L(t) = F[σ(x, t)] + Γ(E,φ)

2M(σ(x,t)G[σ(x, t)] where G(t) = 1
2

∫
σ(y, t)gR(x− y)σ(x, t)dxdy and

∆gR = pR(σ(x))− δ(x). The function gR(x) quantifies the “averaged” spatial extension
of the ballistic mixing induced by all sub cascades in the medium. As pR(x) displays an
exponential-like tail associated with rare events, i.e., the ejection of atoms far from the
center of the sub cascade [31], gR(x is also a decreasing function of x as expected. Assuming
the ballistic mixing occurring in sub-cascades is isotropic and pR(x) = pR(x) =∝ exp(− x

R ),
gR(x) is isotropic and can be explicitly computed. A similar Lyapunov functional can be
computed for non conservative OP [32].

The key point of this analysis is that dL[σ(r,t)]
dt < 0. This inequality insures that the

system is dissipative as expected. The energy of incident energetic particles is dissipated in
many collisions during the slowing down of these particles in the medium and generate
nano-patterns. The existence of such a Lyapunov implies that no chaotic nor oscillatory
steady state exists [33] and its minimization allows drawing all possible steady states pro-
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duced under irradiation. This Lyapunov functional L[σ] can be understood as an “effective”
free energy including irradiation damage. However, recent numerical simulations [34]
highlight the fact that radiation-induced patterns in non miscible binary alloys depend on
the average composition of the alloy as displayed on Figure 2.

Figure 2. Simulation of 3D nano-patterns of Agc̄Cu1−c̄ irradiated with 1 MeV Kr ions at 330 K with a
flux of φ = 1011cm−2s−1. Different periodic microstructures emerge depending upon the average
Ag concentration c̄ ((a): 1D stripes (S); (c): cylinders forming hexagonal patterns (C); (e): 3D body
centered cubic structures (c̄ = 0.65) (B); (g) solid solution (c̄ = 0.75) (SS)). Micro-structures associated
with the co-existence of such domains are also plotted ((b): S+C; (d): C+B; (f): B+SS). The color stick
defines the composition of radiation-induced nano-patterns. The blue and red colors refer to a null
concentration of Ag and a null concentration of Cu respectively.

This result, in agreement with kinetic Monte Carlo simulations [35], highlights fun-
damental differences between systems under equilibrium and far from equilibrium. Such
a dependence of radiation-induced steady states with the average composition forbids
to describe the evolution of the microstructure in irradiated alloys applying the notion
of phase diagram [4,35–37], as it is the case under thermal equilibrium. The existence of
an “effective” free energy is not sufficient to apply concepts of the thermal equilibrium to
systems far from equilibrium. In fact, this functional is not homogeneous under irradiation
but varies in space. Ground states of this functional are not homogeneous forbidding to
establish any phase diagram under irradiation.

This example shows that the phase field offers the possibility to list all possible
radiation-induced steady states tracking minima of the Lyapunov. A Lyapunov functional
may also be computed from the rate theory formalism even if its computation is much more
complicated and many parameters need to be known. Both theories then give the same
information on the final microstructure. The main advantage of the phase field approach is
its ability to propose a mechanism for the formation of radiation-induced patterns.

The self-organization of systems leading to the formation of patterns results from the
invariance of the correlation function versus the space scale [13,26,33]. Computing the
structure factor S(k, t) =< |σ̂(k, t)|2 > (where < . > is a radial average and f̂ is the spatial
Fourier transform of f (r)) is the usual way to track the spatial invariance. Figure 3 illustrates
this point showing structures factors (right panel) associated with a random (top graphs)
and a self-organized (bottom graphs) distribution of Cu-rich precipitates in AgCu [38].
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Within the phase field theory, S(k, t) ∝ ( ∂L′ [σ]
∂[σ]

)−1 is directly related with the quadratic part

of the Lyapunov via L′[σ] =
∫

D(k)|σ̂(k, t)|2dk with D(k) = [−1 + k2 + ∆(T, φ)gR(k)].

Figure 3. Radiation-induced patterns simulated via the phase field approach of Ag0.38Cu0.62. The
initial solid solution (graph a) leads to a labyrinthine structure (graph c) after irradiation with 1 MeV
Kr ions at φ = 6× 1012cm−2s−1, and T = 440 K. Associated Power Spectral Density |S(k, t)|2 in
the Fourier space are also plotted (graphs b,d). In these simulations, A rich (black) (B rich (white))
domains are associated with positive (negative) σ values (the 3D domain size is equal to 200 in
reduced units). The PSD is radially symmetric and peaks sharply around k0 (intense white ring
in graph d) as expected for a patterning whereas it is flat as expected for a random distribution of
atoms (graph b). On the 2D cut of the 3D pattern (graph c), extended defects such as disclination and
geometrical dislocation lines are clearly visible.

The term ∆(T, φ) is the ratio between the a-thermal ballistic coefficient Γ(E, φ) and the
radiation-enhanced mobility M(φ, T) and appears to be the unique control parameter of
the problem:

• Low values of ∆(T, φ) implies that ballistic effects induced by irradiation can be
neglected and that the system behaves as it does under thermal equilibrium. S(k, t)
displays a maximum at k0 ∝ t−1/3 as expected for a spinodal decomposition [24].

• High values of ∆(T, φ) implies that ballistic effects dominate the micro-structure
of the material under irradiation. As thermal effects are negligible, the large time
microstructure results from a random distribution of Cu atoms in an Ag matrix. S(k, t)
displays a maximum at k0 = 0.

• When ∆(T, φ) ≈ 1, a competition between thermal and ballistic effects occurs. At large
time, S(k, t) displays a maximum at a non null k0 value independent of time [39]. The
pattern shows the existence of this non null k0 value of about few nm−1. This implies
that a nano-patterning occurs under irradiation for given values of temperature T and
flux φ.
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A large time, D(k) has a minimum k0 and can be expanded in the neighborhood of
this minimum:

D(k) = D(k0) +
d2D(k0)

2dk2 (k− k0)
2

≈ D(k0) +
d2D(k0)

8k2
0dk2

(k2 − k2
0)

2 (15)

Since k0 is a minimum of D(k), d2D(k0)
dk2 is positive and the first order expansion of

D(k) leads to the conservative form of the Swift-Hohenberg equation [33]. This equation
is extensively applied to discuss liquid/crystal transition in unary systems [40] It was
successfully used to model dynamics of microstructural defects [41], diffusive atomistic
dynamics of edge dislocations [42,43], plasticity and micro-mechanics of emergent patterns
in plastic flows [44] out of irradiation.

This example illustrates how the Phase Field can help to rationalize the appearance
of radiation-induced nano-patterns in irradiated materials. Therefore, more information
can be deduced from the phase field model. It may explain the formation of nano-patterns.
In the example of the AgCu alloy, the minimum of D(k), occurring for ∆(T, φ) ≈ 1, is
isotropic. However, ground states of L[σ(r) describing radiation-induced microstructures
are non isotropic symmetry adapted functions for satisfying boundary conditions. The
mechanism associated with the formation of nano-patterns can be clarify. It results from
the symmetry breaking of L[σ(r) by ground states. This symmetry breaking generates
an instability such as the Eckaus instability [5]. This instability propagates via Goldstone
modes [45], i.e., without dissipation of energy [2].

The existence of nano-structures displayed in Figure 2 generalizes the notion of topo-
logical defects defined for equilibrium structures and are generally the rule beyond pattern
forming instabilities, as it is the case in equilibrium phase transitions [26,33]. In graph c of
Figure 2, disclination and geometrical dislocation are clearly visible.

The phase field approach points out that defects result from the existence of a set of
unstable modes. Although each individual spatio-temporal patterns break transnational
and rotational symmetries, different patterns grow in different part of the system implying
the formation of various defects connecting these different steady states.

The formation of energy-less nano-structures via the propagation of Goldstone modes
impacts the properties of materials. In a more precise way, the appearance of radiation-
induced nano-structures may modify the response of the materials to external perturbation
such as constraints or temperature gradients. By its ability to compute generalized sus-
ceptibilities [23], the phase field method then offers the unique opportunity to compute
for instance variations of elastic constant induced by the formation of B-rich precipitates
under irradiation [46]. As irradiation stops the coarsening of B-rich precipitates in non
miscible alloys [39], the characteristic size of nano-structured B-rich precipitates is about
few nanometers in agreement with experimental results [46,47] in AgCu and are always
in coherence with the underlying atomic lattice. Applying the formalism developed by
Katchaturyan [48] for computing elastic constants, variation of elastic constants result-
ing from the radiation-induced microstructure has been computed. Figure 4 displays
the comparison between Young moduli computed from the application of the Katchatu-
ryan’s methods [46] and extracted from nano-indentation [49] experiments performed in
Ag0.42Cu0.58 thin films irradiated at different temperatures (for all experiments, the Poisson
ratio is equal to 0.24 in agreement with numerical simulations). The experimental increasing
of about 10% of the Young modulus with the temperature (navy triangle on Figure 4) can
only be modeled taking into account the precipitate-precipitate dipoles elastic interactions
(blue stars on Figure 4) highlighting the impact of infinite range on the elastic properties of
irradiated alloys. Neglecting this interaction leads to a decreasing of the Young modulus
with the temperature (red line on Figure 4) not experimentally observed.
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Figure 4. Comparison between experimental Young moduli (navy triangles) extracted from nano-
indentation experiments performed on Ag0.42Cu0.58 thin films and computed from application of
the Phase Field approach including elastic terms (blue stars) versus the temperature. The red line is
displays Young moduli resulting from a simple lever rule neglecting the formation of nano-structures
under irradiation.

3.3. Limitations of the Phase Field Approach

Despite that the phase field method seems to reproduce nano patterns observed in
some irradiated alloys, its application to radiation damage is still questionable:

• The theoretical foundations of phase field models lies in the ability to perform a coarse-
graining procedure over a length scale la small in comparison with the characteristic
length of the system L but large enough to neglect fluctuations of the order parameter
proportional to (la)d/2 under equilibrium. Under irradiation, specific mechanisms of
energy deposition may impose larger fluctuations over this length scale and then may
be taken into account to define the coarse graining length scale. Whatever the choice
of the coarse graining length, this approach is inaccurate to compute for instance the
formation of radiation-induced dislocation nor evolution of the short range order.

• The control parameter ∆(φ, T) is the ratio between a-thermal ballistic diffusion term
and the radiation-enhanced mobility M(φ, T). This last term is directly related with the
concentration of point defects produced under irradiation. This concentration depends
on the late time microstructure, resulting from the calculation of the microstructure
using the phase field approach, via the numbers and the density of sinks. This feedback
effect must be studied in detail.

• Since the dynamics of vacancies and interstitials created under irradiation cannot be
described by any free energy functional, the phase field approach is inefficient for
computing the evolution of point defects under irradiation.

Many authors apply the phase field approach for modeling the evolution of point
defects under irradiation [50,51]. They combine a Landau–Ginzburg functional to describe
the spatial evolution of the concentration of point defects and a rate theory approach.
However, the use of a Landau–Ginzburg term for describing agglomeration of vacancies
is doubtful. Recent publications [52] confirm the analogy between the Swift–Hohenberg
equation extensively used for describing out of equilibrium structures and the PF approach
of ballistic mixing modelled by Equation (14) firstly pointed by Simeone et al. [38]. However,
they pointed out that this analogy may not be satisfied in all the patterning regime. Recent
works [34] confirm that patterns similar to those derived from the SH model can be observed
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in the pattern domain and that approach extends also to the phase separation regime
induced by low irradiation fluxes.

4. Conclusions and Perspective

Studies of the behavior of materials maintained far from equilibrium at length scale
larger that what we can handle by direct atomic simulations and smaller than what allows
macroscopic continuum averaging displays difficulties. The fair agreement between simu-
lation and experimental results demonstrates that the PF approaches is then a powerful
tool able to simulate not only microstructure but also properties of irradiated materials.
Application of this method allows predicting the unexpected patterns observed in non
miscible alloys such as AgCu [47] under irradiation at large time. This method demon-
strated that the notion of phase diagram cannot be applied under irradiation. By its ability
to compute generalized susceptibilities, it also offers the unique opportunity to understand
and explain modifications of properties of materials under irradiation.

The main interest of this mean field approach in comparison with the rate theory
formalism, extensively used to describe the evolution of the microstructure in irradiated
materials, lies in the small physically sounded number of control parameters in comparison
with those used in the rate theory. The strength of this approach is also its weakness. Since
the phase field approach is based on a coarse graining procedure and a minimization of an
“effective” free energy density, it fails to model evolution of radiation induced point defects.

The existence of kinetic Onsager’s coefficients, i.e., L and M, under irradiation as well
as their dependence with the defect concentrations need to be clarified. In particular their
dependence to the the order parameter will dictate the dynamics of the system. Since
these coefficients can be considered as independent of the order parameter, the system is is
gradient flow system and at equilibrium.

On the other hand, both rate theory and Phase field approach assume that reaction
paths (meta-sable states and minima of the energy landscape) are independent of the
environmental noise which does not reduced to kBT under irradiation. This point needs to
be understood in detail [53].

The combination of rate theory and phase field should give an accurate description of
the microstructure of material under irradiation. To be achieved, efficient methods need
to be developed to plug these two approaches. Combination of rate theory and PF could
achieve both the computation of a realistic population of point defects and nano-patterns at
large time scale. Extension of this method to irradiation by swift heavy ions which mimic
the impact of fission products and to oxidation processes under irradiation, is still an open
field.
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