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In vivo continuous evolution of metabolic 
pathways for chemical production
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Abstract 

Microorganisms have long been used as chemical plant to convert simple substrates into complex molecules. Vari-
ous metabolic pathways have been optimised over the past few decades, but the progresses were limited due to 
our finite knowledge on metabolism. Evolution is a knowledge-free genetic randomisation approach, employed 
to improve the chemical production in microbial cell factories. However, evolution of large, complex pathway was 
a great challenge. The invention of continuous culturing systems and in vivo genetic diversification technologies 
have changed the way how laboratory evolution is conducted, render optimisation of large, complex pathway pos-
sible. In vivo genetic diversification, phenotypic selection, and continuous cultivation are the key elements in in vivo 
continuous evolution, where any human intervention in the process is prohibited. This approach is crucial in highly 
efficient evolution strategy of metabolic pathway evolution.
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Introduction
Nature is the best chemist that the precision of biosynthe-
sis of chemical products are unmatched by conventional 
organic synthesis. However, wild type microbial cells are 
often evolved to maximise survival and growth in native 
habitat [1], resulting in low production, yield and titre 
to fulfil industrial requirements. These microbial cells 
can be retrofitted into highly effective chemical produc-
tion factories through rational design approach. When 
the related knowledge is available and precise, rational 
design approach is an efficient tool of genetic modifica-
tion. Furthermore, this approach provides a powerful 
tool to create a microbial cell factory from scratches. In 
the past decades, various natural and unnatural chemical 
products have been produced using rationally designed 
microbial cell factories (refer [2–4]). However, although 
metabolic engineers continue to reveal the relationship 

between carbon flux, genetic sequences and yield, our 
knowledge is still very limited, hindering us from pre-
cisely predicting the phenotypic outcome of genetic 
modification. This limitation has made knowledge-based 
rational design a cumbersome and time-consuming pro-
cess. Extensive knowledge and intense works are required 
for limited improvement of production, yield or titre.

Nature has her way to optimise metabolic pathway effi-
ciently. Evolution, as described by Darwin, is a continu-
ous process of mutation and adaptation which, through 
diversification and natural selection, provides an oppor-
tunity for the survival of the fittest [5]. Darwinian evo-
lution is also a solution to knowledge-free metabolic 
pathway modification provided by nature [6, 7]. However, 
in order to preserve essential genetic information over 
a long time, natural evolvability is extremely low [8, 9]. 
Furthermore, screening was impossible for unobserv-
able phenotype, further reducing the discovery rate of 
microbial strains with desired properties [10]. Directed 
evolution is an in vitro process, developed to mimic the 
natural evolution at a higher rate, towards a defined goal. 
Successful demonstration of in  vitro Darwinian evolu-
tion in 1967 [11], has inspired scientific community to 
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envision evolution as an efficient methods to discover 
products with novel properties. Amplification of Qβ bac-
teriophage genomic ribonucleic acid (RNA) results in 
the shrinking of genome to 17% of its original size, with 
15 times increases in replication rate, after 74 serial pas-
sages. Error prone (ep)-polymerase chain reaction (PCR) 
which has later been introduced, achieves in  vitro ran-
dom mutagenesis and selection by reducing the fidel-
ity of PCR under various conditions [12]. Since then, 
directed evolution have been widely applied, not only 
in the optimisation of biological systems (review can be 
found in [13–17]), but also in forming novel biological 
functions [18, 19]. These examples have demonstrated 
great opportunities provided by evolution. However, 
human intervention is required in every step in in vitro 
directed evolution process. This limitation has become a 
bottleneck when attempting to optimise large, complex 
systems, as there are too many combinations in the com-
binatorial space, rendering in  vitro directed evolution 
approaches unfit for deep mesoscale optimisation.

Back in nature, Darwinian evolution cycle is a natu-
ral process without any form of human intervention. 
In our perception, an ideal Darwinian evolution ena-
bling efficient evolution is supported by 3 major aspects 
(1) in  vivo genotype diversification, (2) fitness-coupled 
selection pressure  and (3) environment maintaining 
continuous culture, well-integrated in a system. Based 
on the above-mentioned perception, in  vivo continu-
ous evolution can be considered as a system with two 
main characteristics, (1) endogenous mutagenesis and 
(2) occurrence of mutagenesis along with proliferation 
(Fig. 1). This nature-tailored automated process is the key 
to realise efficient evolution of organisms. Microbial cells 
factories are continuously mutagenised and selected in 

a continuous culturing system to induce rapid evolution 
(Fig. 1a). Although longer evolution time is required for 
in vivo evolution compared to in vitro evolution to obtain 
an improved targeted strain, human intervention is not 
required for in  vivo evolution when an automated con-
tinuous culturing approach is employed. This automated 
continuous cultivation approach has freed the labours 
from benchwork, hence, increasing the time efficiency 
of each step in experiment. However, the involvement of 
intense labour in in vitro evolution, and longer time-con-
sumption in in  vivo evolution due to its random muta-
genic nature have rendered them impractical for deep 
mesoscale optimisation of large, complex pathway in a 
short time. Further improvement to accelerate the pro-
cess is made by coupling genotype diversification, natu-
ral mutation and selection into a single process (Fig. 1b), 
known as in vivo continuous evolution. With its advan-
tage over directed evolution, in vivo continuous evolution 
is becoming an important tool to evolve large, complex 
metabolic pathways for chemical production [20]. In this 
review, we will highlight the latest developments of each 
aspect in in vivo continuous evolution including in vivo 
genotype diversification, fitness-coupled selection pres-
sure and equipment maintaining continuous culture. We 
will present a systematic review of recent advances in 
in vivo genotype diversification technology and the com-
parisons of these technology covering modified natural 
mutagenesis system, plasmid-targeted mutagenesis sys-
tem, genome-targeted mutagenesis system and recombi-
nation-based mutagenesis system. Next, we will analyse 
fitness-coupled selection  pressure, covering natural and 
artificial metabolite production/cell fitness coupling for 
phenotypic selection. As a system mimicking natural 
continuous evolution mechanism, we will also review 

Fig. 1  Illustration of in vivo continuous evolution. a General concept of in vivo continuous evolution as an uninterrupted Darwinian evolution 
occurs for an extended period of time in continuous culturing system. 3 major aspects, in vivo genotype diversification, fitness-coupled selection 
pressure and environment maintaining continuous culture are well integrated into a system. The mutation occurs endogenously and along with 
proliferation. b The conceptual difference between in vitro continuous evolution, in vivo evolution and in vivo continuous evolution. I represents 
in vivo continuous evolution which genotype diversification, natural mutation and selection are integrated. This process occurs as a smooth 
process without distinguishable plateaus as in in vitro continuous evolution; II represents in vitro continuous evolution dividing into genotype 
diversification and selection; while III represents in vivo evolution showing a process in which mutation accumulates to form a desired strain
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equipment maintaining continuous culture, including 
flask, chemostat, turbidostat, microfluidic and droplet-
based continuous culturing system. Then, we will intro-
duce some cases successfully applying in vivo continuous 
evolution in improving metabolic pathway of microbial 
cell factories. Finally, we will evaluate importance of each 
technology in the integrated system of in  vivo continu-
ous evolution, and their inter-relationship to provide a 
comprehensive and quantitative understanding of these 
technologies in in vivo continuous evolution of metabolic 
pathways for chemical production.

In vivo genotype diversification
Genetic diversification is the first step in in  vivo con-
tinuous evolution to generate a diverse mutant library 
before selection to maximise the possibility to obtain an 
optimal strain. Natural mutation is an example of in vivo 
random mutagenesis [8, 9]. However, the natural muta-
tion rate is very low, which is around 2 to 5 in 10 billion 
base pairs per generations for most species [8, 9]. Mod-
ern molecular biology has enhanced the understanding 
of mutagenetic mechanism. Table 1 summarised in vivo 
genotype diversification methods developed based on 
modern molecular biology, while Fig.  2 illustrate the 
mechanism of each category, which will be introduced 
as the followings. These methods continuously trigger 
in  vivo mutagenesis throughout continuous cultivation 
process, while selection occurs  continuously. Simulta-
neous occurrence of in  vivo mutagenesis and selection 
in an equipment maintaining continuous culture results 
in a smooth evolution curve, accelerating the process to 
obtain strains with desired properties. 

Modified natural mutagenesis system
Modified natural mutagenesis is a system based on modi-
fication of nature-existing mutation mechanism, par-
ticularly, mutator isolated from highly mutating bacteria 
(Fig.  2a) [21, 22]. These mutators, when analysed care-
fully, proven to unidirectionally transverse certain nucle-
otides, i.e., mutT unidirectionally transverse A∙T bases 
to C∙G bases [21] (A detail review can be found in [23]). 
As most of the components used in this system are nat-
ural, the operations are relatively simple, with a slightly 
higher mutation rate compared to natural mutation. 
For instance, polymerase (pol) III ε-subunit dnaQ [24], 
increase the mutation rate of host genome by 150 times. 
Besides, the mutation rate for a commercially available 
Escherichia coli competent cell XL1-red with deactiva-
tions on its proofreading and repair enzymes, mutD, 
mutS, mutT is limited to 10−6 base−1 [25]. However, 
when applying modified natural mutagenesis system, it 
is important to note that intolerance might occur due to 

host mutation. Moreover, accumulation of host genome 
mutation might result in cytotoxicity and reduction in 
genetic stability [26].

Plasmid‑targeted mutagenesis system
Plasmid-targeted mutagenesis system was introduced to 
confine mutagenesis within the targeted plasmid, thus 
preventing mutation in host genome. The first in vivo tar-
geted plasmid mutagenesis system is demonstrated with 
the utilisation of ep deoxyribonucleic acid (DNA) poly-
merase I (PolI). Targeted gene is placed in PolI preferen-
tial region to be replicated by a low fidelity variant of PolI 
[27] (refer [28–31] for the functions of PolI). However, 
the replication rate was low. In the demonstration on 
LacI mutagenesis, 57 mutants were generated per million 
cells after 30 generations. Although the mutation rate is 
5000-fold higher compared to background mutation, the 
frequency is still considered low overall. Mutation rate 
was further enhanced by conjunction with the absence of 
mutHLS system. Another 20-fold increase in the absence 
of mutS system, and 40-fold in the absence of mutL sys-
tem was achieved [27]. However, the mutation rate in this 
system is distance dependence. The mutation rate drops 
by approximately 6 to 20 times when it is located far from 
the colE1 origin of replication, which is the targeted site 
of PolI [32]. On the other hand, another approach to 
improve PolI-induced mutagenesis by introducing point 
mutations in three structural domains, Ile709 and D424A 
in motif A [33], and A759R in motif B (O helix) [34] 
which govern the fidelity in DNA PolI is proposed. The 
mutation rate is increased by 80,000-fold [35]. However, 
due to the uncontrollability of polymerase in cell, there 
is a risk of ep-PolI scattering and reduction of polymer-
ase-plasmid orthogonality, which will result in the target-
ing on undesired fragments, causing a mutation on host 
genome, as high as it is achieved in the targeted region.

Another method called OrthoRep was proposed to 
avoid the limitation in PolI by using heterologous plas-
mid-polymerase pair, exploiting Kluyveromyces lactis 
cytoplasmic plasmid system [36–38]. This system is an 
orthogonal DNA plasmid-DNA polymerase pair extra-
nuclear replication system in yeast. In this replication 
system, there is a terminal protein (TP)-plasmid contain-
ing targeted gene, and another plasmid containing all the 
essential genes. Targeted mutagenesis with strict orthogo-
nality of TP-DNA polymerase (DNAP) autonomous repli-
cation process is achieved by engineering an ep-DNAP to 
target the TP-plasmid, resulting in rapid mutation of the 
targeted plasmid (Fig. 2b). The contrast between targeted 
(3.5 × 10−8) and global (10−10) mutagenesis was achieved 
by the nature of p1 replication initiation mechanism and 
spatial separation from nuclear DNA [36].
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Both PolI and OrthoRep are limited to specific host 
cell due to their unique mechanism. Although cross-
transferring of the technology was not possible, each has 
provided a tool to modify their respective system, cover-
ing the two main types of microbial cell species which 
are commonly used as microbial cell factories. However, 
the complicated setup of these systems has limited the 
application. A well-designed system is required before 
mutagenesis can be induced. Furthermore, mutation 
in mutagenesis-inducing plasmid can lead to the loss of 
orthogonality of plasmid-polymerase pair, resulting in 
the failure of targeting effect.

Genome‑targeted mutagenesis system
With the emergence of gene-targeting technologies, a 
more precise system targeting specific locus on gene 
rather than plasmid is developed as genome-targeted 
mutagenesis system. An example to this system is tar-
geting glycosylases to embedded arrays for mutagenesis 
(TaGTEAM) [39]. TaGTEAM is designed to target the 
binding site of DNA binding protein, TetR. This tech-
nology depends on resectioning and ep-Pol ζ to gener-
ate mutation through ep homologous recombination 
(HR). Although 800-fold of elevation in point mutation 

within 20 kbp region was developed, particular atten-
tion is required on the fact that 24.5% deletion rate has 
also been observed. This can lead to the loss in important 
genetic information in the targeted fragment.

The invention of clustered regularly interspaced short 
palindromic repeats (CRISPR) genome editing technol-
ogy [40] is a game changer to in vivo genetic diversifica-
tion technology. CRISPR associated (Cas) protein was 
coupled with a mutator protein, offering synergy advan-
tages of both systems. Cas protein offers precise target-
ing mechanism; while high mutation rate is realised with 
mutator proteins such as PolI and base editing enzymes 
(Fig. 2c). These genome editing tools function on only a 
strand of double-stranded DNA. Hence, neither dou-
ble strand break (DSB) will be induced, nor the system 
is HDR dependence, nor it requires a template. EvolvR 
[41] and base editing [42–44] are two examples to this 
category. EvolvR coupled CRISPR-nickase Cas protein 9 
(nCas9) to ep-DNAP PolI to combine the advantage of 
both systems, while preventing DSB by mutating RuvC 
nuclease domain in Cas9. For base editing, approximately 
33 types of base editors, categorised into cytosine base 
editors and adenosine base editors are developed. These 
editors generally have 18 to 23 bp window size [42–58], 

Cas
protein

gene
editor

DNAP

targeted 
plasmid

targeted 
gene

a b

c d 

Fig. 2  In vivo genotype diversification. a Modified natural mutagenesis system. Random mutagenesis with higher mutation rate is induced with 
mutators. b Plasmid-targeted mutagenesis system. DNA plasmid-DNAP pair is designed such that the ep-DNAP mutates only the targeted plasmid. 
c Genome-targeted mutagenesis system. A gene editor is bind to a targeting protein, usually a Cas protein to mutate only a specific locus in 
genome. d Recombinase targeted mutagenesis system. Native system in microbial cells is used to recombine or re-integrate mutated gene into the 
plasmid
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with an exception of CRISPR-X having a 100  bp win-
dow size [59]. However, controversies remained with 
CRISPR-based system. Unlike other targeted mutagene-
sis platform, off-target mutagenesis is one of the greatest 
problems in CRISPR system [60–62].

Recombination‑based mutagenesis system
Along with genome-targeted mutagenesis system, 
another technology based on in vivo recombination has 
been developed at the same time for targeted mutagen-
esis. This technology was made possible by recent devel-
opments of in  vivo recombinase expression system, 
or engineering microbial cell native retrotransposon 
element.

Synthetic chromosome rearrangement and modifi-
cation by loxP-mediated evolution (SCRaMbLE) [63] 
utilising Cre/loxP recombination system was proposed 
for high-throughput mutagenesis (refer [64] for Cre 
recombinase). LoxPsym, a palindromic DNA sequence 
is inserted after stop codon of non-essential gene at a 
distance of 3 bp in the synthetic genome. With the pres-
ence of Cre recombinase, recombination among loxPsym 
sites occurs. LoxPsyms break up symmetrically, allowing 
random recombination of gene. An oestradiol switch was 
designed to control the production of Cre recombinase 
in the cell and Cre recombinase was designed to release 
only once in a lifetime to prevent multiple recombina-
tions. To date, several variants of SCRaMbLE have been 
developed. Reporter genes were inserted into the circuit 
to distinguish those which have undergone SCRaM-
bLE [65]; design of red light activating SCRaMbLE [66]; 
activation by galactose in addition to oestradiol [67] 
and introduction of multiple pulses of Cre recombinase 
[68] to reduce recombinase activity. As an application 
of in  vivo genotype diversification for chemical produc-
tion, SCRaMbLEd yeast mutant with more than 2-fold 
increase in violacein and penicillin production were 
generated [69]. Diversification efficiency produced by 
SCRaMbLE is proportion to loxPsym inserted into the 
gene. Although diverse mutant library can be created by 
inserting more loxPsym into the chromosome, the diver-
sification efficiency is also limited by the maximum con-
centration of loxPsym. Furthermore, SCRaMbLE induces 
deletions and inactivation of essential genes. More 
SCRaMbLE events might lead to less viability of SCRaM-
bLEd microbial cells.

Retron-based targeted mutagenesis is another 
approach to achieve high mutation rate with recombi-
nation approach. It is a mutagenesis approach utilising 
native retrotransposons in microbial cells which exhibit 
similar properties to single-stranded RNA (ssRNA) ret-
roviruses. In E. coli, it depends on Ec86, the native ret-
ron in E. coli as core module to transcribe and reverse 

transcribe the content in ssDNA. The precision to target 
a homologous DNA region in chromosome depends on 
β recombinase (recβ) from bacteriophage λ [70], which 
is known for its single strain binding properties in λRed 
recombination [71]. On the other hand, in yeast [72, 73], 
retrotransposon-based element is the equivalent of ret-
ron. The targeted gene labelled with Ty1 retroviral rec-
ognition flank is transcribed, then reverse transcribed by 
Ty1 reverse transcriptase (Fig. 2d). This process generates 
specific mutation on gene. The mutated gene is then re-
integrated into its locus by Ty1 integrase. Mutation rate 
as high as 1.5 × 10−4 base−1 at URA3 locus is achieved. 
This strategy provides a high mutation rate with high tar-
get specificity compared to other methods. Furthermore, 
the utilisation of yeast native retrotransposon has greatly 
reduced the risk to damage the host cell as in other meth-
ods. However, due to its dependence on retrotransposon 
Ty1, this method is limited to S. cerevisiae and K. lactis.

Fitness‑coupled selection pressure
Under normal conditions, microbial cells prefer not 
to use growth irrelevant chemical production pathway 
which may impose extra metabolic burden and reduce 
cell growth. However, we can design a microbial cell 
factory by directing microbial cells to use the produc-
tion pathway of desired chemical via growth-produc-
tion coupling. Enrichment of these desired cells can be 
achieved by selection. When microorganisms are trans-
ferred into environment with harmful selection pres-
sure, e.g., β-lactam, they evolve β-lactamase metabolic 
pathway to destroy amide bond of β-lactam ring [74, 
75]. Under natural selection, only the fittest microbial 
cells, i.e., those producing the most β-lactamase are 
able to survive the best. Furthermore, under normal 
culturing conditions where the nutrient supply is con-
stant, microbial cells evolve to optimise their carbon 
source utilisation pathway to maximise their growth. 
The increase in scale fitness of E. coli by 1.8 times after 
50,000 generations [76] in the E. coli long-term evolu-
tion experiment (LTEE) have hinted us on the poten-
tial in adaptive evolution under selection pressure to 
evolve microbial cell to optimise their stock utilisation 
pathway. These properties can be exploited for in vivo 
continuous evolution and have long been utilised in 
microbial cells evolution for chemical production. 
Table  2 shows the details of various fitness-coupled 
stress selection system, which will be introduced as the 
followings.

Natural metabolite production/cell fitness coupling
In most cases, organisms are able to evolve some prop-
erties to protect themselves from harms caused by selec-
tion pressure. Under selection pressure, microbial cells 
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which produce more metabolite are able to proliferate 
and have a higher growth rate compared to low produc-
ing cells, hence outcompeting the low-producing cells in 
the culture after several dilution culture. This phenom-
enon can be observed in the regulation of gene expres-
sion in microbial cells under selection pressure using 
modern genetic analysis tools. When E. coli is grown in 
toxic level of ethanol, the expression of almost all genes 
in tricarboxylic acid (TCA) cycle, and  genes related to 
glycine, glycine betaine, peptidoglycan, colanic acid and 
enterobactin synthesis are up-regulated to enhance etha-
nol tolerance [77]. It has also been found that E. coli lack 
of glutamate-cysteine ligase (gshA) gene, an important 
enzyme for the formation of γ-glutamyl cysteine produc-
tion for glutathione (GSH) synthesis, evolved another 
GSH producing pathway from l-proline synthesis path-
way, to protect the  microbial cell from stressful condi-
tions [78]. These results show that selection pressure is 
useful in in vivo continuous evolution of metabolic path-
way when the cell fitness is coupled to desired products.

Wild type yeasts produce isopentenyl diphosphate 
(IDP) which is the natural precursor to carotenoid. 
This antioxidant is secreted to prevent the cells from 
being oxidised when exposed to oxidative stress. Evolu-
tion of β-carotene production pathway in S. cerevisiae 
with natural metabolite production/cell fitness coupling 
has successfully been demonstrated with an increase in 
β-carotene yield by 3-fold, to 18 mg g−1 [dcw] using peri-
odic hydrogen peroxide shocking strategy [79].

Besides chemical stress, physical stress can also be used 
to increase the production of chemical products. Shi-
norine is a compound in mycosporine-like amino acids 
(MAAs) family, produced by marine microorganisms. 
This compound has an absorption maximum of 333 nm 
[80]. This property makes it an important ingredient in 
some sunscreen products. Biosynthesis of shinorine in 
microbial cell factory has been successfully demonstrated 
[81]. Although evolution has not been conducted in this 
study, the higher growth rate of shinorine producing 
cyanobacteria Synechocystis hinted that this pathway is 
evolvable when it is exposed to ultraviolet ray. Lack of 
nonribosomal peptide synthase (NRPS)/polyketide syn-
thase (PKS) gene cluster in cyanobacteria [82] leads to 
the null effect in shinorine production in cyanobacteria 
exposed in ultraviolet ray. Using other type of microbial 
cell as host might result in the physical evolvability of shi-
norine production.

However, metabolite production/cell fitness coupling 
for chemical production does not always exist in nature. 
This method is limited to the pairs of various damaging 
source which can harm the microbial cell.

Metabolic evolution
Metabolic evolution, a method using synthetic circuit 
to evolve microbial cells during fermentation process 
was proposed [83]. Essential cofactor recycling is cou-
pled with the target pathway as the sole pathway to link 
the production of chemical products to the growth of 
microbial cells to induce evolution during fermentation. 
Sequential dilution was performed to enrich improved 
strain produced by evolution, and isolation was per-
formed by streaking. In the earliest demonstration, lac-
tate production pathway in E. coli was engineered as 
the sole anaerobic nicotinamide adenine dinucleotide 
hydride (NADH) oxidation route to couple ATP and lac-
tate production to growth [83]. The production of various 
chemical products, such as d-lactate [83, 84], l-lactate 
[85], l-alanine [86], ethanol [87], succinate [88, 89] has 
been improved using metabolic evolution (details listed 
in Table 2). This technology involves not only metabolic 
evolution, but also synthetic pathway construction to 
couple cell fitness to metabolite production. Vast knowl-
edge is required to enable evolution during fermentation 
process without the introduction of selection pressure. 
The difficulties in pathway design has limited the spread-
ing of this technology. However, with the emergence of 
automated continuous cultivation technology with the 
ability to trace not only the production, but also cell 
growth in each vial, the benchwork involved in this sys-
tem can be greatly reduced, transforming this system into 
a convenient evolution approach.

Artificial metabolite production/cell fitness coupling
Although it is difficult to find a link between cell fitness 
and industrial-relevant chemicals in nature, the sensors 
for these compounds exist naturally. Synthetic biologists 
have engineered biosensor regulating antibiotic resist-
ance gene into gene circuit, creating an artificial linkage 
of cell fitness to chemical production [90], mimicking 
the phenomenon of stress resistance adaptive evolution 
in wild type microbial cells. This is applicable to most 
chemical production pathway with the tools developed 
for synthetic biology.

Considering cell as a machine, the relationship between 
metabolite production and selection pressure can be 
understood as a sensor-actuator module in the machine. 
With an input of the concentration of chemical affecting 
cell fitness, the sensor transmits the signal to the actua-
tor, producing an output of metabolite production. An 
RNA device called riboswitch is a module that fulfil this 
function (detail review can be found in [91]). A ribose-
lector comprising a riboswitch and a selection mod-
ule which act as a functional unit, is utilised in mutant 
screening. An increased in production of l-lysine, using 
nickel ion as selection pressure is demonstrated [92]. This 
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technology has converted a natural system into a circuit 
which we can design artificially for in  vivo evolution. 
However, escapees which have a mutation in their sensor 
or undesired sites enabling a faster growth compared to 
other cells with greater metabolic burden is a great chal-
lenge to this system.

Currently, three approaches are proposed to eliminate 
the escapees from the library. One is through in  vitro 
compartmentalisation [93]. By encapsulating single-cell 
into microdroplet, each cell is being isolated. As there is 
no competing strain sharing the same culturing medium 
in droplet, low producing strains will be removed, and 
the improved strains are enriched by measuring the pro-
duction or titre in each compartment, usually through 
fluorogenic label. Another approach is through re-
transformation of plasmid into fresh parent strains after 
a few enrichment cycles of serial dilution [92]. In this 
approach, only the mutation of the desired fragments 
will be preserved, hence eliminating the escapees with 
mutation occurred on the host genome. However, these 
approaches are not continuous. Human intervention is 
required in each step. The third approaches is through 
introducing a toggle selector/counter-selector marker, 
i.e., tolC into the genetic circuit, which eliminate the 
escapees through negative selection [94]. This approach 
has enhanced the continuity of the process, but reduces 
the efficiency of selection.

To deal with the escapees in continuous evolution pro-
cess, a specific carbon source utilisation-based selection 
strategy has been proposed [95]. A carbon source utilis-
ing cassette is placed under the control of the biosensor 
of targeted metabolites, coupling the production of the 
metabolite to cell fitness, i.e., the more carbon metabolite 
produced by the cells, the better it grows. Avoiding lethal 
selection pressure such as antibiotics help to reduce the 
probability of escapees generation, as the occurrence of 
adaptation to non-exploitable carbon source is rarer than 
antibiotics stress [95]. Using this approach, strains with 
l-tryptophan production increased by 65% were success-
fully enriched.

Recently, another form of selection based on syntrophic 
interaction called syntrophic co-culture amplification 
of production phenotype (SnoCAP) was successfully 
demonstrated. It amplifies distinguishability of produc-
tion level into growth phenotype through metabolic 
cross-feeding circuit [96]. In this system, target molecule 
auxotroph sensor strain and target molecule secreting 
secretor strain which is an auxotroph to an orthogonal 
molecule secreted by sensor strain, are required. Mutant 
library of secretor strain is produced, and both sensor 
strain and secretor strain are co-cultured in in vitro com-
partment. Selection is conducted based on the final sen-
sor-to-secretor ratio varied due to the genotype diversity 

of secretor strain. Although continuous selection was not 
performed in this study, it can be achieved by employing 
droplet-based cultivation system (refer next section).

Equipment maintaining continuous culture
The question remained in in vivo continuous evolution 
is, how to avoid the intervention of human in the cul-
turing process. Conventionally, microbial cell cultiva-
tion and evolution depends on manual dilution culture 
in flask, which the root can be traced back to Louis Pas-
teur, the first microbiologist succeed in microbial cell 
cultivation. LTEE is a good example of microbial cell 
evolution based on manual dilution culture [76, 97, 98]. 
Great amount of effort, patience, and labour cost are 
involved in the whole experiment. As introduced at the 
beginning of this review, this is impractical for large, 
complex pathway optimisation for chemical produc-
tion. Table 3 summarised various equipment maintain-
ing continuous culture, while Fig. 3 shows some of the 
modern equipment. Miniaturisation of equipment can 
be observed along the history of continuous culturing 
system development, due to the requirements of paral-
lelisation and compartmentalisation for high-through-
put application or single-cell cultivation. Regardless of 
the size, partial or full automation has been achieved. 
Details of these technologies will be discussed in this 
section. 

Flask cultivation
Flask cultivation is the oldest form of microbial cell cul-
tivation, which is still a common practice in laboratory. 
Microbial cells are inoculated in sterile liquid medium in 
flask, and the flask is usually shaken in shaker incubator 
to ensure rich oxygen supply in the flask. This system is 
relatively simple. However, microenvironment fluctua-
tion occurs when the essential nutrients in the flask is 
depleting. Furthermore, manual operations are required 
for each cycle of dilution, rendering microbial cell culti-
vation a time-consuming process.

Chemostat and turbidostat
The invention of chemostat is a milestone in the his-
tory of microbial cell cultivation [99–101]. Although it is 
unintended, automation is achieved by open-loop control 
system through continuously replacing culture medium 
to maintain the nutrient in it. A culturing system with a 
closed-loop control system  was later introduced as tur-
bidostat [102]. Unlike chemostat which continuously 
diluting the culture at a fixed rate, turbidostat constantly 
monitors the optical density of the culture, and dilutes 
it when the optical density exceeds a predetermined 
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threshold value or at a predefined point of time. This sys-
tem enables a more robust automation for continuous 
evolution. To date, most of the systems proposed are the 
variants of chemostat or turbidostat.

In‑vial continuous cultivation system
Based on the design of turbidostat, a microbial selection 
device for in  vivo continuous adaptive evolution called 
morbidostat was proposed [103, 104]. The growth rate of 
microbial cell is maintained by inhibitor, i.e. antibiotics, 
rather than dilution. Inhibitor is added into cell suspen-
sion only when the concentration exceeded predefined 
concentration and the growth rate is positive. Modifica-
tions were made on the modules to improve the precision 
of the system [105–108], but the major breakthrough in 
morbidostat was made in 2018, with the development 
of an equipment for continuous cultivation and evolu-
tion, eVOLVER (Fig.  3a) [109]. eVOLVER is a system 
well-balance the trade-off between controllability and 
throughput. Each ‘sleeve’ is independent, thus enables 
parallel experiments, increasing the throughput while 
maintaining the controllability of bioreactors. Instead of 
conventional fluid control module using pump and pas-
sive control such as pressure, a millifluidic was used in 
eVOLVER to ensure precise fluid manipulation.

However, a great challenge for all the chemostat, tur-
bidostat and morbidostat in macroscale is the formation 
of biofilm. Biofilm unavoidably forms in all nutrient suf-
ficient medium [110], while scale effect in in-vial con-
tinuous cultivation system worsen the condition [111]. 
The formation of biofilm will not only interfere the func-
tion of device, but also dominating the dilution of the 
culture [112]. Although automation is achieved for the 
dilution, culture exchange, and selection pressure intro-
duction, human intervention is required for dilution at a 
larger scale and vial exchange is required every 24  h to 
prevent biofilm formation. Moreover, the cell conditions 
are measured in bulk, ignoring the heterogeneity of cells, 
leaving some important information unretrieved.

Microfluidic‑based continuous cultivation system
The small volume of microfluidic channels and automatic 
control of micropumps has contributed in the prevention 
of biofilm formation by periodic flushing of lysis buffer 
and culture medium in culturing channels (Fig. 3b). Fur-
thermore, by culturing microbial cells in a microscale 
culturing system, the microbial cells can be analysed at 
single-cell level, nicely address the limitation of bulk 
analysis in conventional culturing system. Successful 
demonstration of long term culturing in a microchemo-
stat for up to 500 h has encouraged the development of 
microfluidic-based microbial cell culturing system [113, 
114]. Scale effect exhibited in mesoscale system has not 

only increased reaction rate in microfluidic system, but 
also improved  some important parameters, e.g., oxygen 
transfer rate which is important to microbiology. In 1 ml 
working volume-turbidostat on-chip, oxygen transfer 
rate as high as 0.025 s−1, low mixing time and high con-
trol precision are achieved [115].

While single-cell analysis was made possible in micro-
fluidic device, the culture is shared between all the micro-
bial cells in the system. Risk of losing the information of 
slow growing but high production strain remains. More-
over, contamination occurs in devices when they are not 
properly designed. Contaminant might be trapped in the 
structure in the channel.

Droplet‑based continuous cultivation system
An improved method to support long-term in vivo con-
tinuous evolution in a compartmentalised system was 
proposed based on the study of André Lwoff [116]. Drop-
let encapsulation or in  vitro compartmentalisation has 
offered various benefit besides single-cell analysis, i.e., 
isolation and enrichment of slow growing but high pro-
ducing samples [93]. Taylor’s diffusion (refer [117]) and 
its consequence contamination can also be eliminated, 
while long-term cultivation is made possible with the 
invention of on-chip droplet formation [118], pico-injec-
tion [119, 120], droplet coalescence [121], and breakup 
module [122].

Millifluidic droplet analyser (MDA) is the first drop-
let-based continuous cultivation machine [123]. Growth 
of E. coli and minimal inhibitory concentration (MIC) 
for cefotaxime were measured using fluorescence sig-
nal. However, a junction is used for droplet formation, 
reducing its flexibility and the possibility for modulari-
sation. On the other hand, a droplet-based cultivation 
system with on-chip droplet generation and detection 
modules has been proposed (Fig. 3c) [124]. The idea was 
materialised into a device called microdroplet microbial 
culture (MMC) system. Modularisation is achieved by 
using microfluidic chips in both droplet formation and 
analysis modules. Analytical module and droplet genera-
tion chips in MMC system  are customisable, providing 
great flexibility to the system.

Case studies of autonomous in vivo continuous 
evolution
Despite of various methods have been developed for 
in vivo continuous evolution, the applications are still an 
uncommon practice, due to the interdisciplinary technical 
requirements. Here, we discuss the applications of auton-
omous in  vivo continuous evolution by interrelating the 
three aspects. The examples covered are listed in Table 4.

The most commonly used in  vivo genotype diversifi-
cation strategy is natural mutagenesis under selection 
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pressure and modified natural mutagenesis. These are the 
simplest approach with the least experimental setups. In 
the studies of metabolic evolution [83–89], mutagenesis 
and enrichment are achieved through fermentation of 
products in flask or fermentation vessels, greatly reduce 
the complexity of the system. However, rational design 
is involved in metabolic pathway construction, increas-
ing the hurdle of this technology. More effective in vivo 
genotype diversification approaches, e.g., EvolvR [41] and 
SCRaMbLE [69] were employed in some cases in in vivo 
continuous evolution to produce a diverse mutant library 
for selection. However, the genotype diversification in 
this approach was triggered only once in the lifetime.

Genome replication engineering assisted continu-
ous evolution (GREACE) is the first demonstration to 
couple mutagenesis with selection [125]. DnaQ mutant 
library was transfected into E. coli to continuously trig-
ger mutagenesis while the mutants generated  are  being 
selected under selection pressure  containing in the 
same flask, i.e., toxic level of n-butanol and acetate. The 
improved strain can be obtained at a shorter time by 

synchronising in vivo genotype diversification and natu-
ral mutation.

Automated continuous culturing system was intro-
duced in in  vivo continuous evolution by phage-
assisted continuous evolution (PACE) [126]. Unlike 
other systems, gene of interested are encoded in M13 
bacteriophage while the mutagenic (mutagenesis plas-
mid) and selective (accessory plasmid) factors are har-
boured by E. coli. When the bacteriophage infected E. 
coli, mutagenesis of bacteriophage will be triggered by 
E. coli mutagenesis plasmid. Only those mutated bac-
teriophages which induce protein III (pIII) production 
will be released, realising the purpose of screening. 
The mutation rate can be further increased by muta-
tors dnaQ926, umuC, umuD’ and recA730. Various 
proteins have been successfully evolved by this system 
[127–130].

The examples described above aimed to optimise the 
chemical production metabolic pathways of microbial 
cell factories through in  vivo continuous evolution. 
Attempts were made to couple all the aspects in in vivo 

a b 

c 

lysis buffer, 
culture medium 

valve close valve open 

microbial cell 

culture medium 

incubation 

oil 

analysis medium exchange droplets generation 

culture medium 
and

microbial cell  

single-cell 
encapsulation 

sensor

laser 

injection 

break-up

moving back and forth for droplets incubation 

Fig. 3  Equipment maintaining continuous culture. a In-vial continuous cultivation system. Each vial has an independent control logic, enabling 
parallel and compartmentalised continuous cultivation in macroscale. The whole system is designed to be programmable, empowering tailor-made 
continuous cultivation to fulfil the needs of each laboratories. b Microfluidic-based continuous cultivation system. Due to the scale of this system, 
single-cell analysis has been made possible, removing the barrier set by bulk analysis. Automation without human intervention can be achieved by 
using programmable parts, e.g., programmable syringe pumps. c Droplet-based continuous cultivation system. Almost all the operations involved 
in continuous cultivation can be performed automatically in this system in compartments, thus achieving rapid enrichment and high-throughput 
culturing system
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continuous evolution to increase the speed to improve 
microbial cells. However, to our knowledge, successful 
demonstration of in  vivo continuous evolution inte-
grating the modern technologies of all the aspects have 
not been reported. This might be due to the difficulties 
posed by the highly interdisciplinary requirements.

Conclusions
Nature has always had an answer to process optimisation. 
By improving and mimicking nature’s system, an opti-
misation outcome better than any other system can be 
created. The development and integration of in vivo gen-
otype diversification, fitness-coupled selection pressure, 
and equipment maintaining continuous culture is the 
key to realise in vivo continuous evolution, which has not 
been achieved before, due to the parallel development of 
profession in the past.

In vivo genotype diversification is the first step in 
in  vivo continuous evolution to maximise the gene 
combination to cover the maximum space in the gene 
combinatorial space. Technology developed based on 
exploitation of nature existing system such as PolIII and 
bacteriophage, mutagenesis induction in microbial cell 
factories, utilisation of engineered DNAP system in cell 
to target a targeted fragment of gene. These systems 
are further improved by introducing mutagenesis at a 
high precision from two approaches, genome-targeted 
mutagenesis system and recombination-based mutagen-
esis system, both utilising viral systems.

The mutant library is then selected using fitness-cou-
pled selection pressure, performed in equipment main-
taining continuous culture. Selection pressure has not 
only promoted the survival of the fittest, but also the 
evolution to a better strain adapted to the microenvi-
ronment, in order to dominate the community. Various 
strategies to evolve microbial cell factories under selec-
tion pressure are introduced.

In order to maintain continuous evolution to mimic the 
continuity of the natural environment, automation tech-
nology has been brought into the perspective. Despite 
of being widely utilised in industry, chemostat and tur-
bidostat have a relatively simple mechanism with large 
volume, making parallelisation a difficult process. Open-
source hardware technology has accelerated the develop-
ment of micro-cultivation system such as morbidostat, 
microfluidic-based cultivation system and droplet-based 
cultivation system, by international  and interdiscipli-
nary collaboration, have provided a robust platform 
for rapid evolution and selection. However, it is a great 
regret that these technologies are mostly used in study-
ing antibiotic resistance evolution, even though they are 
good platforms for metabolic pathway in  vivo continu-
ous evolution for chemical production. Only with these 

continuous culturing technologies, that the study of gen-
otype–phenotype relationship was made possible, open 
up the path to a better understanding on how genotype 
properties of microbial cells have linked to the phenotype 
expression, i.e., metabolite (chemical) production, to ena-
ble the rapid development of novel molecular biological 
tools for in vivo continuous evolution in the recent years. 
More modules for various platforms, e.g., absorbance-
activated droplet sorting (AADS) technology for droplet-
based continuous culturing system, have been developed 
to increase the detection precision and accuracy of the 
device, to enhance the speed to detect possible strain 
[131].

The advent of Turing learning machine [132] has pro-
vided a powerful tool to predict metabolic pathway in 
organisms [133]. This tool has also led to the optimisa-
tion of metabolic pathway [134]. Further improvement in 
computing power [135–137] will provide a greater plat-
form to pathway optimisation. With these technological 
improvements, it is reasonable to predict that stoichio-
metric pathway optimisation of large, complex pathway 
might become possible. However, it is important to note 
that big data analysis and optimisation rely on what we 
have learned in the past, scripted as knowledge. Unfor-
tunately, with our limited knowledge in metabolic path-
ways as input, it is still a difficult task to precisely predict 
the possible outcome of genetic modification by rational 
design. In this context, in  vivo continuous evolution is 
still a promising tool in the future to optimise chemical 
production pathway. At the same time, both genotypic 
and phenotypic data collected as a result of mutation will 
further assist rational design of microbial cell factories.
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