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Abstract
Background:  Prediction of protein structures is one of the fundamental challenges in biology
today. To fully understand how well different prediction methods perform, it is necessary to use
measures that evaluate their performance. Every two years, starting in 1994, the CASP (Critical
Assessment of protein Structure Prediction) process has been organized to evaluate the ability of
different predictors to blindly predict the structure of proteins. To capture different features of the
models, several measures have been developed during the CASP processes. However, these
measures have not been examined in detail before. In an attempt to develop fully automatic
measures that can be used in CASP, as well as in other type of benchmarking experiments, we have
compared twenty-one measures. These measures include the measures used in CASP3 and CASP2
as well as have measures introduced later. We have studied their ability to distinguish between the
better and worse models submitted to CASP3 and the correlation between them.

Results:  Using a small set of 1340 models for 23 different targets we show that most methods
correlate with each other. Most pairs of measures show a correlation coefficient of about 0.5. The
correlation is slightly higher for measures of similar types. We found that a significant problem
when developing automatic measures is how to deal with proteins of different length. Also the
comparisons between different measures is complicated as many measures are dependent on the
size of the target. We show that the manual assessment can be reproduced to about 70% using
automatic measures. Alignment independent measures, detects slightly more of the models with
the correct fold, while alignment dependent measures agree better when selecting the best models
for each target. Finally we show that using automatic measures would, to a large extent, reproduce
the assessors ranking of the predictors at CASP3.

Conclusions:  We show that given a sufficient number of targets the manual and automatic
measures would have given almost identical results at CASP3. If the intent is to reproduce the type
of scoring done by the manual assessor in in CASP3, the best approach might be to use a
combination of alignment independent and alignment dependent measures, as used in several
recent studies.

Published: 1 August 2001

BMC Bioinformatics 2001, 2:5

Received: 9 April 2001
Accepted: 1 August 2001

This article is available from: http://www.biomedcentral.com/1471-2105/2/5

© 2001 Cristobal et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any non-
commercial purpose, provided this notice is preserved along with the article's original URL. For commercial use, contact info@biomedcentral.com

http://www.biomedcentral.com/1471-2105/2/5


BMC Bioinformatics (2001) 2:5 http://www.biomedcentral.com/1471-2105/2/5
Introduction
One of the most important insights from modern biology
is that it is possible to infer information from genes that
are similar. By detecting these similarities it is possible to
predict the structure, the function and other features of
the gene products using no other information than its se-
quence. To examine methods to predict the similarity we
need to exactly define what is meant by similarity, which
might be non-trivial. Between two proteins it could be
defined as proteins that carry out equal functions, if they
have similar sequences, a common ancestor or if they
have similar three-dimensional structures. In this study
the latter definition will be considered, as a similarity of
structure often infers evolutionary and functional rela-
tionship and most importantly can be calculated auto-
matically. More exactly we ask how to best compare the
similarity of a model of a protein with the correct struc-
ture. The answer, to this question, is obviously useful to
(a) determine if one method to build a model is better
than another and (b) optimize the performance of exist-
ing methods. The most common method to evaluate the
similarity between two structures is to measure the root
mean square distance (rmsd) between them after an op-
timal superposition. However rmsd presents many prob-
lems. The rmsd for a model, that is mostly correct, but
has one bad region can be very high. Further the rmsd
between distant models provides hardly any informa-
tion. Other global measures, such as the average diver-
gence in dihedral angles offer similar type of problems.
One solution to this problem is to first calculate the rmsd
for segments of the protein, and then define a score
based on the number of residues in a segment and its
rmsd. However, the relationship between the length of
the segment and the rmsd still has to be defined.

Every two years, starting in 1994, the CASP process has
been organized to evaluate the ability of different predic-
tors to blindly predict the structure of proteins, [1]. The
blind prediction was deemed necessary to unbiasedly
evaluate different methods. As the number of submis-
sions to CASP, and the recently introduced fully auto-
matic counterpart CAFASP [2] climb, the use of
automated evaluation methods has increased in impor-
tance. During the CASP process several measures have
been introduced to evaluate these aspects of threading
targets. However, these measures have not been used to
completely automate the evaluation of the models sub-
missions but they have been provided as a help for the
manual assessment. In this study we perform a system-
atic analysis of a large set of the measures including
those used in CASP2 and CASP3, and 5 new measures,
and apply them to evaluate the CASP3 threading target.
The measures are analyzed on a model by model basis.
One problem that occurs is that several measures are not
designed to be equivalent between different targets, e.g.

a model with an rmsd of 4 Å for a 30 residues long target
is not of the same quality as a model of a 4 Å rmsd over
300 residues. To overcome this problem we have used
two methods to normalize the scores, either using all
models or normalizing the scores for each target sepa-
rately.

In CASP, targets have been divided into three categories:
homology modeling, threading and ab-initio. The divi-
sion of targets into these three categories is not absolute
and in some cases the targets could overlap. The quality
of homology models is dependent on the precision in the
alignments as well as the positioning of side chains and
loops. For distantly related proteins it was shown in
CASP3 that the quality was dominated by the correctness
of the alignment. Some of the best ab-initio models are of
similar quality as for some threading models. Conse-
quently, we believe that most of the measures evaluated
here are useful for difficult homology modeling targets
and ab-initio targets. For the easier homology modeling
targets it is probably necessary to take into account the
exact positioning of side chains, while all measures eval-
uated in this study only take into account the Cα posi-
tions. Although, it is important to develop automatic
methods for all three categories we will focus on the
threading targets in this study.

In the threading category the assessment has focused on
two aspects, the ability to predict the correct fold, and the
similarity of the model to the correct structure [3]. Sev-
eral groups have used the ability to recognize the correct
fold to benchmark different fold recognition methods
[4–13]. These studies have completely ignored the qual-
ity of the alignments. Moreover these benchmarks are
limited to methods that are based on the recognition of a
single protein or a family of related proteins. In contrast,
there is no such limitation in CASP where a predictor
might build a model using any method; therefore it is
necessary to use measures that evaluate the models di-
rectly. Recently some large scale benchmarks of align-
ment quality have been performed using a measure
evaluated in this study [14–16] and in automatic bench-
marking of web-based servers [17].

In this paper, we first give a review of existing measure-
ment methods, explaining the different methodologies
behind them and then perform a rough comparison be-
tween these measures. We also compare them to a man-
ual standard, the evaluation by Alexei Murzin of the
CASP3 threading targets. It would also be possible to
compare these measures for other set of targets, such as
the homology modeling targets in CASP3 or CASP4 tar-
gets, but as the evaluation of these targets, to a large ex-
tent, was based on automatic methods we do not use
them. Obviously, there are many of different ways the
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measures can be compared to each other. However, as
the goal of this study is not to proclaim a single measure
to be the winner, we try to detect general differences be-
tween measures as well as differences and similarities
between the automatic measures and the manual assess-
ment. We are convinced that others would have chosen
other methods to evaluate the measures and we do not
claim that these measures are the best methods, but we
think that by using our evaluations some general conclu-
sions can be obtained. It should also be noted that, al-
though we use a quite large set of models (1340) only a
small fraction of these are of high quality. To overcome
the limited number of high-quality models we have also
performed a limited study of all homology modeling tar-
gets in CASP3.

A note should also be taken on the difference between
manual assessment, and fully automatic methods. All
CASP threading evaluation has to at least some extent

been based on a mix of manual and automatic measures.
Due to the increasing in the number of models submitted
(11136 in CASP4) the importance of automatic measures
has increased, also the CASP evaluation techniques has
been used in other related studies such as LiveBench [17]
where the number of targets and models makes it impos-
sible to use manual assessments.

Measures of model quality
Many different measures can be used to define similarity
between a model and the correct structure. In CASP2
[18,19] and CASP3 [15,20,21] different measures have
been proposed and applied to evaluate the quality of the
predictions. These, and have recently developed meas-
ures, can be divided into four different types: global,
alignment dependent, alignment independent and tem-
plate based. These are all described below as well as sum-
marized in table I. A graphical explanation to the four
different types is shown in figure 1.

Global measures
Global measures consider all residues in both the model
and the correct structure in an "alignment dependent"
fashion, as described below. It can be noted that the
measures that are defined based on the rmsd are very
sensitive to large errors in a short section of the protein,

while measures that are based on contacts are not. There
are have global measures:

• crn CASP3 [20]

Table I: Description of measures.

Name CASP-name Type Measure Reference

Murzin - Manual - [3]
crn CRN Global Å/N [20]

arms ARms Global Å [15]
cspc CSpc Global % [15]
csnc CSns Global % [15]
ccrct CCrct Global N [15]
GDT GDT TS Alignment dependent S(N) [20]

MaxSub - Alignment dependent S(Å,N) [22]
LGscore - Alignment dependent S(Å,N) this work

S - Alignment dependent S(Å,N) this work
sf0 sf0 Alignment independent N [21]
sf4 sf0+sf4 Alignment independent N [21]

align ALIGN A4 P Alignment independent % [20]
LGA - Alignment independent S(Å,N) this work
eqr1 eqr Alignment independent N [21]

LGscore2 - Alignment independent S(Å,N) this work
acrct ACrct Template based N [15]
aspc ASpc Template based % [15]
asp4 ASp4 Template based % [15]
covr Covr Template based % [15]
sclen SClen Template based % [15]

Å = Rmsd in Ångstrm. N = Number of residues. % = Fraction of residues. S(N) = Score dependent on number of residues. S(Å,N) = Score dependent 
on quality and number of residues.
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Figure 1
The four types of measures: In this example the evaluation starts with a model (right) and the correct structure of a protein
(left). The left part of the model is quite good, but a large loop is inserted which results in a shift in the alignment in the central
part of the model. Some residues in the model are not aligned to the template. This creates a shift that results in the right part
of the model being correctly aligned again. A global measure (A) would use the complete model and compare it with the com-
plete correct structure and probably not score this model very well. As shown in the (B) an alignment dependent measure
would only consider the first and last fragments as correct. Measures that use an alignment independent approach (C) first do
a structural alignment and then and the most significant fragment. The shifted residues in the center of the model would be
included in the evaluation. In template based measures (D) the template used to build the model is used for comparison. In our
example the template extends to the right of the model and it also has one loop that is longer so that there is a gap in the
model that is not shown. The correct structure is superimposed on the template and the resulting alignment is compared to
the alignment of the model.

Correct Structure Model

Template based method

Template

A

B

C

D

Global measures

Segment detected using alignment dependent methods.

Segment detected using alignment independent methods.
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Crn gives the coordinate-based RMSD between the mod-
el and the actual target structure divided by the number
of Cα atoms in the target.

• arms CASP2 [15]

Arms gives the coordinate-based RMSD between the
model and the actual target structure.

• cspc CASP2 [15]

Contact specificity gives the percentage of contacts that
have been predicted in the model and have been found to
exist in the actual structure. Contacts are measured be-
tween Cα atoms more than 5 residues apart in sequence
with a threshold of 8 Å.

• csnc CASP2 [15]

Contact sensitivity gives the percentage of contacts that
are present in the actual target structure and (as in cspc)
also have been predicted in the model, and not in the ac-
tual structure as in cspc.

• ccrct CASP2 [15]

Correctly predicted contacts gives the number of con-
tacts that have been predicted in the model and are
found in the actual target structure as well. This number
is zero if no contacts could be found in the model or in the
template.

Alignment dependent measures
Alignment dependent measures are all based on an exact
match between the residues in the model and the correct
structure, i.e. residue 15 in the model corresponds to res-
idue 15 in the structure, as seen in figure 1B. It should be
noted that these measures do allow gaps in the segments
and use the best non-continuous segment for evaluation.

• GDT CASP3 [20]

The Global Distance Test measure is an estimation of the
largest number of residues that can be found where all
distances between the model and the correct structure
are shorter than the cutoff D. The number of residues is
measured as a percentage of the length of the target
structure. The measure used in this study was GDT TS,
which is the average of four measures with D = 1,2,4 and
8 Å.

• MaxSub NEW [22]

MaxSub is calculated from the largest number of resi-
dues that can be found where all distances between the

model and the correct structure are shorter than 3.5 Å.
The score is calculated by taking a variant of the structur-
al score S str as defined in [23] and cutoff values are used
to avoid accumulation of low scores.

• LGscore NEW (described in Material and Methods)

The most "significant" non-continuous segment of a
model is detected. The similarity is measured by using
the structural P-values as defined in [23]. The negative
log of the P-value is used in this study. For a detailed de-
scription, see Material and Methods.

• S NEW (described in Material and Methods)

The most "significant" segment of a model is detected.
The score is the same as in the LGscore but S str and not
the P-values is used.

In CASP3 a set of plots were also used [24]. These plots
compare the rmsd with the number of residues in a seg-
ment but do not produce a single value and were there-
fore ignored in this study.

Alignment independent measures
Alignment independent measures are all based on a
structural superposition between the model and the cor-
rect structure, see figure 1C. After the structural superpo-
sition, a residue in the model is considered equivalent to
the aligned residues of the correct structure and the sim-
ilarity is measured using this assumption. In theory if a
model is based on a correct fold but the alignment is
shifted, these measures would give a good score to such
a model. The different measures deviate both in the way
the superposition is computed and in the way the simi-
larity is measured. Further, some measures are com-
pletely alignment independent, while others only
consider residues that are within a shift error of +/- X
residues in the alignment. For example, in a measure
that only considers residues within a shift error of 4 that
residue 15 will be counted as a correct residues if aligned
with residue 17, but not if aligned with residue 20. It can
be expected that measures that only allow a limited shift
would behave more "alignment dependent" than meas-
ures that do not.

• sf0 CASP3 [21]

The number of correctly aligned residues in the highest
shift zero alternative superposition using ProSup [25] is
calculated. Even if this score is calculated using an align-
ment independent method, it is actually alignment de-
pendent as only identical residues are considered.

• sf4 CASP3 [21]
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The number of residues shifted by 0,1,2,3 or 4 residues in
the highest shift 0 alternative superposition is calculat-
ed.

• align CASP3 [20]

The fraction of residues aligned within a +/-4 sequence
window after sequence independent superposition is de-
termined using Dali [26].

• LGA NEW (see Material and Methods)

LGA is a new structure alignment method where GDT
serves as a basis for a scoring function. After the final
structural superposition the reported score LGA-Q ranks
the quality of alignment and is calculated using the for-
mula: Q = 0.1 x N/0.1 + RMSD. N denotes the number of
residues superimposed under the specified distance cut-
off (by default 4 Å), and rmsd is the root mean square de-
viation calculated on these residues. For rather "weak"
alignments the LGA-Q is less than 2.0. For a detailed de-
scription see Material and Methods.

• eqr1 CASP3 [21]

The number of equivalent residues in a alignment inde-
pendent superposition are calculated using ProSup [25].
Model and target are superimposed yielding (in general)
several alternatives. The superposition having the maxi-
mum number of equivalent residues is chosen.

• LGscore2 NEW (see Material and Methods)

After a structural superposition using the algorithm in
[23], the most significant subset is found using the same
algorithm as in the LGscore measure.

Template Based Measures
The final type of measurements, the template based
measures, are only available for models that are created
from the sequence being aligned onto a single structural
template. These measures differ from the alignment in-
dependent in the following sense: In an alignment inde-
pendent measure a model M is structurally
superpositioned onto the correct structure C. After the
superposition it is possible to measure the number of
residues that are in the correct position, i.e. when residue
15 in M is aligned with residues 15 in C. In template based
measures the model M is not directly compared with the
structure C, but instead both of these are compared with
a template T. The alignment of M onto T is given from the
method, while the alignment of C onto T is done by a
structural superposition. If the structure matches the
template it is assumed that the correct fold is recognized.
If the correct fold is recognized it is possible to compare

the alignment of the model and the correct structure to
the same template. One problem with these measures is
that they are missing if the alignment could not be recon-
structed unambiguously for a significant fraction (60 %)
of the model. A model that was not created directly from
a single template would not generate any measure even
if the model is correct [15]. Therefore, models created
from ab-initio methods or models that have been refined
are given a score of zero for all these measures. In addi-
tion if the template used was not identified as similar,
these measures will be missing. All measures were calcu-
lated by Bauer et al [15] and the "correct alignment" is
obtained from the alignment of the template to the cor-
rect structure using VAST [27].

• acrct CASP2

The number of correctly aligned residues in the model
are determined.

• aspc CASP2

Model alignment specificity gives the percentage of resi-
dues in the reconstructed model alignment that have
been aligned correctly.

• asp4 CASP2

Model Alignment Specificity +/-4 gives the percentage of
residues in the reconstructed model alignment that have
been aligned correctly, allowing for a per-residue shift of
up to 4 in either direction.

• covr CASP2

The coverage reports the fraction of the reconstructed
model alignment that has been aligned as well by VAST
[27], expressed as a percentage.

• sclen CASP2

Structure alignment length gives the extent of the struc-
ture superposition found by VAST between the target
structure and the template.

Manual assessment
In the manual assessment at CASP3 [3] 'all the models
that capture the characteristic features of the targets'
protein folds and/or specific features of their evolution-
ary super families well" were given one point (grade F).
The best of these models was then given 6 points and the
second 5 etc. It can be noted that the fold definition is
less strict than in Scop [28], as functional differences be-
tween different folds were not considered. It is easy to in-
terpret the manual assessment so that all models given
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one point are based on the correct fold, i.e. the correct
fold is recognized. However, it is pointed out by Murzin
that this is not necessarily so. Further, in the assessment
single points were also given to good ab initio models.

Results and Discussion
The choice of measure is dependent on what should be
measured and on the quality of the models. If the models
are quite good one of the simplest measure would be to
calculate the rmsd between the model and the correct
structure, but other measures have also been proposed
[29] and used [30]. Because many models are not of high
enough quality, these types of measures cannot be used

in this study. Anyhow, there are detectable differences
between the quality of different models.

Measures of similar type correlate best with each other
All measures examined in this study provide a single val-
ue for each model. For all measure "better" models
should be given a higher score than "worse" models, i.e.
they should correlate with each other. To examine this, a
covariance matrix was calculated and a principal compo-
nent analysis was performed, see figure 2 and 3. Using
both types of normalization two global measures, arms
and crn, are out-layers and therefore ignored in this fig-
ure (data not shown).

Figure 2
The two most significant axes from a principle component analysis of all measures after model based normalization are shown.
Each measure is represented by a cross. In both figures two global measures, arms and crn, are excluded.
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Most methods correlate with each other. However, the
average correlation for the is only 0.51 (model-normal-
ized) and 0.41 (template-normalized). If we study the
higher quality homology-modeling models the correla-
tion is slightly lower. In general, measures of the same
type correlate best with other measures of the same type.
The exception are some alignment independent meas-
ures that correlate better with alignment dependent
measures. These measures are measures that take the
shift into account, i.e. they are not completely alignment
independent. Further, there exist a few measures that
correlate best with measures of a different type: The
alignment dependent measure MaxSub correlates well
with aspc and asp4; the template based measure sclen,
which should be alignment independent, correlates quite

well with the alignment independent measures, using
model based normalization. For most measures the type
of normalization does not make a significant difference,
but for a few measures the correlations change dramati-
cally. One such measure is GDT that using template
based normalization correlate quite well with csns, LG-
score, S, sf0 and align, while when using model based
normalization strong correlation can only be seen with S.
This is obviously due to GDT being dependent on the size
of the target protein.

By studying clusters of measures that correlate well, in
the covariance and in the PCA analysis, some patterns
can be detected. The exact details of these patterns are
dependent on the type of normalization, but some gener-

Figure 3
The two most significant axes from a principle component analysis of all measures after target based normalization are shown.
Each measure is represented by a cross. In both figures two global measures, arms and crn, are excluded.
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al features can be extracted. The most noticeable cluster
of measures includes all the template based measures.
These measures cluster at one extreme of the PCA analy-
sis, figure 2 and 3, and show a high covariation using
both types of normalizations. Along the first axis of the
PCA analysis these measures are close to two measures,
Murzin and MaxSub. Another interesting cluster con-
tains the alignment independent measures, LGA, eqr1
and LGscore2. These measures are the only measures
that are completely alignment independent.

Automatic measures agree to 70% with the manual assess-
ment
It is possible to assume that the features of similarity we
want to detect are well represented in the manual assess-
ment. If we make this assumption, we should try to iden-
tify automatic measures that correlate well with the
manual assessment.  The manual assessment shows high
correlation with several measures. The highest correla-
tion is with asp4 and MaxSub, because their common
feature lies in a limited number of models scored. For ex-
ample, while the correlation takes all 1340 models into
account, the manual assessor only gave a score to 83 of
the models,and MaxSub gave non-zero score to only 50
models.

Below we will refer to the 83 models as "fold-models". It
is also possible that there exist some models that are sig-
nificantly better than the others and that these are easier
to detect. To study this we have tried to reproduce the
scoring scheme used by the manual assessor. Obviously,
this is not the only way to score these models. However,
if the comparison with the manual standard should be
meaningful we have to try to reproduce the choices made
by the manual assessor. All the fold-models were given a
score of F or better. Among all models for a given target
the best one was identified and it was given a score of A,
the second best B etc. The models given a score of A, will
be referred to as "A-models". To compare the manual as-
sessment with the automatic measures we have per-
formed a similar test. First the 83 highest scoring models
were detected and then the ranking of all models for each
target was identified. The identity of these models were
then compared with the identity of manual models given
a score. Of course, the measures that are dependent on
the size of the target, such as GDT, could not be expected
to successfully identify the 83 best models across all tar-
gets. However, they might be quite good at selecting the
A-models.

In table II it is seen that one measure (LGA) detects 78%
of fold-models, while the other two completely align-
ment independent measures, eqr1 and LGscore2 detect
62 and 69%. No other measure detects more than 52%,
indicating that the completely alignment independent

measures might be better at detecting "fold recognition".
Neither measures that are dependent on the size of the
target, such as GDT, or the two rmsd based measures,
crn and arms, detect more than 40% of the models. The
template based measures detect less than 50% of the
"correct fold" models. This is most likely due to that
these measures can not be obtained for all models, see
discussion above. We were surprised at the overlap be-
tween the alignment independent measures and the
manual selection of correct fold models. In earlier stud-
ies it has been indicated that this would be a difficult
problem to solve [15].

Seven out of ten of the "A-models" are identified by the
measure sf4, while several other measures identify six of
the A-models, see table III. Slightly higher fractions are
found if you find study the first two or three models for
each target. From table III it seems as if the best agree-
ment between the manual assessment and automatic
measures is obtained by either the alignment dependent
measures or the alignment independent measures that
use a shift-value, i.e. align sf0 and sf4. When it comes to
detecting the top five models for each target the com-
pletely alignment independent and some contact based
measures also perform well.

The ranking in CASP3 is reproduced by automatic meas-
ures
Bauer [15] showed that an automatic measure, cspc, pro-
vided similar results as the manual assessment only con-
sidering the "fold-models", while Siew [22], showed that
using MaxSub a similar ranking was obtained using all
models. In this section we want to answer the question
what would have happened if an automatic measure
were used in CASP3?

For simplicity we performed the assessment using all
models and a single score for each model. The scores for
all models were then summarized for each group. For
each target we have recalculated the results in CASP3
with normalized scores in two ways (tables available at
[http://www.sbc.su.se/∼ arne/LGscore/alltables.ps] ).
In these tables it can be seen that several different meas-
ures produce similar rankings between the top groups.
By studying the average ranking from all measures, it is
emphasized that automatic measures reproduce the
manual assessment well, see figure 4. The correlation be-
tween the manual assessor's rank and the average rank is
0.80 using the model based normalization and 0.79 us-
ing the target based. Most of the top groups are ranked in
the same order.

In some cases different measures do not agree at all
Although, in many cases the different type of measures
produce similar ranking there are a handful of noticeable

http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/alltables.ps
http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/alltables.ps
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exceptions. One such exception is the model of group 019
for the target T0046. This target is based on a hand made
alignment of the sequence onto 2 mcm. This target was
given one point (score F) by the manual assessor. None
of the alignment dependent or template based measures
score this model very high, while the alignment inde-
pendent score LGscore2 assigns it as one of the best pre-
dictions, see table III. The alignment dependent measure
LGscore finds 26 residues aligned with an rmsd of 5.2 Å,
while the LGscore2 aligns 29 residues with an rmsd of

0.9 Å. If the whole protein is superimposed 87 residues
can be aligned with an rmsd of 4.8 Å. When an error in
the alignment occurs, the sequence dependent measures
are not ideal for identifying whether a fold was recog-
nized correctly, while the alignment independent meas-
ures might allow this. It means that for a complete
model's analysis it might be useful to use two measures:
one alignment dependent and one alignment independ-
ent. For many other targets there exist interesting exam-

Figure 4
Comparison between manual assessors ranking and average ranking from all other non-global measures using model based
normalization. The groups that differ most between the manual ranking and the average ranking are shown. It should be noted
that the official manual ranking used slightly different targets than we used here, therefore the manual ranking is not identical
with the official CASP3 ranking this is to ensure that exactly the same targets were used in the comparison between the man-
ual and automatic measures.
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ples where the manual and automatic measures do not
agree, see  [http://www.sbc.su.se/∼ arne/LGscore/] .

CASP4, CAFASP2 and LiveBench
In CASP4 several automatic measures were used. The of-
ficial manual evaluation in fold recognition     category
was performed with the use of the eqr1, sf0 and sf4 meas-
ures . However, as we mention above, these measures are
for instance dependent on the size of the proteins. There-
fore, the evaluation was performed using a manually as-
signed cutoff for each target. The correct fold was
assumed to be found if the number of superposable resi-
dues, as measured by eqr1, was greater than the cutoff. If
the correct fold was found the alignment quality was
measured using sf0. In ab-initio and comparative cate-
gories the manual assessment was based on the results
obtained from GDT and LGA procedures.  In CAFASP2,
the fully automatic counterpart to CASP4, MaxSub was
used for the official evaluation. However both LGscore
and LGscore2 were also used for additional evaluations.
The overall results were very similar using all three
measures, however some interesting observations were
made. First it was observed that the LGscores did not as-
sign significant scores to targets that were short, while
MaxSub did not assign significant scores to very long tar-
gets. Secondly, it was shown for target T0100 that many
models were assigned a significant LGscore2 but not a
significant MaxSub or LGscore. The reason is that it is
quite easy to recognize the fold of this model, but it is

hard to obtain a correct alignment. In another large scale
automatic fold recognition evaluation, LiveBench [17]. A
combination of MaxSub, LGscore and LGscore2 plus a
new measure touch was used.

Conclusions
In this study we have performed the first comparison of
measures used to evaluate the quality of a protein model.
We show that several different automatic measures cor-
relate; the average correlation coefficient is about 0.5,
while measures of the same type correlate better with,
average correlation coefficient above 0.7.

When the automatic measures are compared with the
manual assessment it is noted that alignment independ-
ent measures correlate better when considered to detect
proteins that 'captured the characteristic features of the
targets' protein folds and/or specific features of their ev-
olutionary super families well", while identifying the
model that is best for each target, the overlap is higher
using measures that are alignment dependent. Therefore
we conclude that if the goal is to reproduce the manual
assessment of CASP3 it is best to use a combination of
two measures. For both types of measures the agreement
is quite good, about 70% of the models are identical, be-
tween an automatic measure and the manual assess-
ment.

An unavoidable question is to try to determine what
measure is the best for future CASP and CAFASP or sim-
ilar experiments. The choice of measure is obviously de-
pendent on what should be measured. It is possible to try
to measure the fold recognition capability or to try to
measure how good the actual model is. As target based
measures only can be used to analyze a fraction of the
models they should to the largest possible extent be
avoided. Although, these measures agree very well both
with the manual assessment, they do not seem to capture
any unique characteristics that cannot be identified by
some other measures. The global measures are quite dif-
ferent from all others measures and their correlation is
noticeably worse with the manual assessment.

From these conclusions we propose that future automat-
ic evaluations could preferably be based on alignment in-
dependent or alignment dependent measures or even a
combination of these as has been done in the large-scale
evaluation benchmark LiveBench [17]. From these con-
clusions we propose that future automatic  evaluations
could preferably be based on alignment independent or
alignment dependent measures or even a combination of
these as has been done in the large-scale evaluation
benchmark LiveBench [17]. Using a fully automated
measure     that does depend strongly on  the size of the
target is difficult while comparing models across differ-

Table II: Fraction of TOP models scoring

Measure A A-B A-E ALL (A-F)

crn 0.20 0.25 0.40 0.39
arms 0.10 0.25 0.30 0.30
cspc 0.30 0.30 0.47 0.47
csns 0.20 0.30 0.49 0.51
ccrct 0.30 0.45 0.43 0.44
GDT 0.30 0.35 0.36 0.29

MaxSub 0.40 0.50 0.60 0.39
LGscore 0.30 0.45 0.60 0.46

S 0.50 0.55 0.49 0.43
sf0 0.40 0.50 0.58 0.52
sf4 0.40 0.40 0.62 0.51

align 0.30 0.45 0.51 0.47
LGA 0.30 0.30 0.62 0.78
eqr1 0.20 0.35 0.55 0.69

LGscore2 0.30 0.30 0.51 0.62
acrct 0.40 0.45 0.55 0.43
aspc 0.30 0.45 0.55 0.43
asp4 0.30 0.50 0.58 0.45
covr 0.20 0.30 0.58 0.49
sclen 0.10 0.30 0.57 0.48

http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/
http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/
http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/
http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/
http://www.sbc.su.se/<FmSymbol>~</>arne/LGscore/
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Table III: All measures for best T0046 models.

T0046 Murzin crn arms cspc csns ccrct GDT MaxSub LG-
score

S sf0 sf4 align LGA eqr1 LG-
score2

acrct aspc asp4 covr sclen

061 6.00 -0.85 -8.48 31.11 23.73 70.00 37.19 0.00 1.81 0.37 40.00 75.00 63.03 3.16 75.00 1.91 0.00 0.00 0.00 0.00 0.00
074 5.00 -1.20 -12.70 33.33 27.12 80.00 34.88 0.22 2.36 0.35 37.00 58.00 47.06 3.00 69.00 3.72 0.00 0.00 0.00 0.00 0.00
212 4.00 -0.79 -6.62 50.99 34.92 103.00 33.83 0.25 3.03 0.26 34.00 53.00 44.54 2.98 66.00 2.51 21.00 25.00 66.67 71.43 76.00
003 3.00 -0.95 -8.16 46.55 27.46 81.00 29.62 0.22 2.28 0.28 31.00 60.00 47.06 2.66 68.00 2.23 21.00 24.42 69.77 69.77 72.00
085 1.00 -1.33 -14.60 25.11 20.00 59.00 19.75 0.00 1.09 0.16 22.00 22.00 7.56 2.37 53.00 2.17 0.00 0.00 0.00 0.00 0.00
005 1.00 -1.80 -21.47 20.61 15.93 47.00 20.80 0.00 0.86 0.19 14.00 20.00 1.68 2.78 68.00 2.49 0.00 0.00 0.00 0.00 0.00
217 1.00 -1.26 -10.81 23.56 15.25 45.00 20.17 0.00 0.68 0.17 24.00 24.00 2.52 2.79 65.00 2.97 0.00 0.00 0.00 0.00 0.00
053 1.00 -1.47 -17.47 12.34 12.88 38.00 19.12 0.00 0.56 0.18 21.00 21.00 21.01 2.49 66.00 2.18 0.00 0.00 0.00 0.00 0.00
224 1.00 -1.84 -14.88 9.47 6.10 18.00 15.76 0.00 0.28 0.13 10.00 10.00 19.33 2.40 49.00 2.99 0.00 0.00 0.00 0.00 0.00
033 1.00 -1.53 -15.90 4.71 3.05 9.00 17.44 0.00 0.20 0.16 11.00 11.00 4.20 2.39 57.00 2.19 0.00 0.00 0.00 0.00 0.00
273 1.00 -1.42 -16.92 9.79 7.80 23.00 17.02 0.00 0.18 0.13 7.00 7.00 6.72 2.40 50.00 2.37 0.00 0.00 0.00 60.50 72.00
090 1.00 -1.38 -13.22 10.09 7.46 22.00 16.39 0.00 0.08 0.15 11.00 18.00 5.88 2.46 48.00 2.55 0.00 0.00 0.00 60.42 62.00
019 1.00 -1.59 -16.68 2.73 2.37 7.00 16.18 0.00 0.06 0.14 13.00 13.00 15.13 2.43 53.00 3.20 0.00 0.00 0.00 0.00 0.00
072 1.00 -1.49 -108.00 54.26 3.81 2.71 16.17 0.00 0.05 0.15 11.00 26.00 23.53 2.18 61.00 1.31 22.34 5.00 5.32 4.41 0.00
023 1.00 -1.47 -17.44 3.08 2.03 6.00 17.23 0.00 0.04 0.12 12.00 12.00 20.17 2.30 56.00 2.48 0.00 0.00 0.00 63.44 67.00
166 1.00 -1.71 -10.10 33.57 15.93 47.00 18.28 0.00 0.04 0.13 10.00 10.00 0.00 2.21 46.00 2.39 0.00 0.00 0.00 0.00 0.00
176 1.00 -1.28 -12.39 19.71 13.90 41.00 16.39 0.00 0.03 0.14 9.00 10.00 0.00 2.34 44.00 2.83 0.00 0.00 0.00 0.00 0.00
017 1.00 -1.93 -14.06 12.41 6.10 18.00 16.38 0.00 0.01 0.14 11.00 27.00 20.17 2.07 53.00 1.68 0.00 0.00 0.00 0.00 0.00
035 0.00 -1.35 -16.04 22.94 16.95 50.00 23.95 0.00 1.78 0.24 31.00 31.00 0.84 1.94 44.00 1.58 0.00 0.00 0.00 0.00 0.00
045 0.00 -1.38 -16.33 17.20 9.15 27.00 17.86 0.00 1.10 0.17 20.00 20.00 0.00 1.30 32.00 1.74 0.00 0.00 0.00 0.00 0.00
060 0.00 -1.14 -13.54 10.13 8.14 24.00 20.80 0.00 0.99 0.17 19.00 19.00 0.00 1.13 33.00 1.82 0.00 0.00 0.00 0.00 0.00
179 0.00 -1.15 -12.32 11.49 9.15 27.00 22.48 0.00 0.73 0.19 15.00 20.00 22.69 1.78 51.00 3.13 0.00 0.00 0.00 0.00 0.00
028 0.00 -1.70 -19.51 9.04 5.08 15.00 16.17 0.00 0.11 0.15 17.00 17.00 0.84 2.09 57.00 1.98 0.00 0.00 0.00 0.00 0.00
076 0.00 -1.05 -11.70 10.89 9.49 28.00 19.96 0.00 0.11 0.19 15.00 25.00 0.00 1.99 54.00 2.95 0.00 0.00 0.00 0.00 0.00
222 0.00 -1.29 -14.82 1.66 1.69 5.00 18.28 0.00 0.09 0.16 16.00 17.00 1.68 2.02 44.00 2.16 0.00 0.00 0.00 0.00 0.00
105 0.00 -1.46 -16.22 0.80 0.68 2.00 16.17 0.00 0.08 0.15 8.00 8.00 21.01 2.06 51.00 2.00 0.00 0.00 0.00 0.00 0.00
266 0.00 -1.59 -18.91 8.40 3.39 10.00 14.71 0.00 0.08 0.12 5.00 5.00 0.00 1.10 29.00 1.38 0.00 0.00 0.00 0.00 0.00
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ent targets, but such a measure might give more accurate
scoring of predictions within each target. Therefore, the
MaxSub was used in the CAFASP2m while in CASP4
the combination of eqr1, sf0, and sf4 in fold recognition
category, and the combination of GDT and LGA  meas-
ures in comparative and ab-initio categories were ap-
plied.

Given that we have shown that a number of fully auto-
mated measures can reasonably well reproduce the man-
ual, human-expert evaluation, we feel confident that
these automated measures can be safely used in the eval-
uation of experiments with a large number of models.
Besides the obvious advantage of saving hundred of
hours to a human, using automated measures in such ex-
periments allow, if not a perfect evaluation, a fully repro-
ducible, objective and quantitative evaluation. In
addition, in order to be able to measure progress from
experiment to experiment using the same standards, an
automated measure can be used, while human expert-
evaluators, are unlikely to remain the same.

Material and Methods
The measures were downloaded from the CASP3 web-
site ( [http://predictioncenter.llnl.gov/casp3/] ) for the
CASP3 measures [20,21] or from  [http://www.nc-
bi.nlm.nih.gov/Structure/RESEARCH/-casp3/
casp3eval.shtml]  for the measures by [15] who used the
CASP2 measures on the CASP3 targets. We have also
studied five measures introduced after CASP3, MaxSub
from [22] and four new measures described in detail in
Material and Methods. All measures, with the exception
of crn and arms, should give a higher score for better
models. To simplify the comparisons, we used the nega-
tive value of these two measures.

CASP3 targets
The following CASP3 targets were used: T0081, T0044,
T0085, T0083, T0054, T0053, T0063b, T0079, T0046,
T0071a, T0067, T0043, T0059, T0061, T0075, T0052
and T0056. In the CASP3 assessment,[3], the following
targets were also used: T0051, T0078, T0072, T0077,
T0080 and T0077. Most of the measurements were not
calculated for T0051 and we were not able get the coor-
dinates for the other targets and therefore these were ig-
nored. In CASP3 each group was allowed to submit up to
five predictions for each target. However, the manual as-
sessment only gave scores to the first submitted model
therefore we only considered one prediction from each
predictor.

Normalization
One complication when comparing different measures is
that the measures produce vastly different numerical
outputs, see table III. Another problem is that several

measures are not comparable between different targets.
For instance several measures are dependent on the size
of the protein. To try to overcome these problems we
have used two types of normalization. In the first ap-
proach we normalized each measure by dividing its score
by its standard deviation calculated over all models. In
the second approach the normalization was done for
each target individually. All measures for a particular
target using one measure were scored from zero to one,
with one for the best model. For a measure that is com-
parable between targets the first type of normalization
should be quite good. All models for a particular target
were scored from zero to one by each measure, with one
for the best model. The second normalization should be
useful to compare the overall ranking of models for a giv-
en target, but it can obviously not be used for compari-
sons between different targets. Even if none of these
normalizations are ideal we believe that by using both we
can extract the most important features of the different
measures.

Calculation of LGscore, LGscore2 and S
Statistical significance of the similarity between two protein struc-
tures
Levitt and Gerstein [23] introduced a measure to calcu-
late the significance of the similarity between two struc-
tures after a structural superposition:

where M is equal to 20, d ij is the distance between resi-
dues i and j, d 

0
 is equal to 5 Å and N gap is the number of

gaps in the alignment.

To calculate the significance of this score they used a set
of structural alignments of unrelated proteins to calcu-
late a distribution of S str dependent on the alignment
length, l. From this distribution a P-value dependent on
S strand l was calculated.

Algorithms for calculation of alignment dependent measure LGscore
It is common that only a fraction of a model is similar to
the correct structure, and therefore it is necessary to de-
tect the most significant subpart of the alignment. It is
our assumption that the most similar subset is the one
with the the highest P-value as described above. To find
the most significant segment we have used two different
heuristic algorithms, referred to as the top-down and
bottom-up algorithms. The top-down algorithms works
as follows:

http://predictioncenter.llnl.gov/casp3/
http://predictioncenter.llnl.gov/casp3/
http://www.ncbi.nlm.nih.gov/Structure/RESEARCH/-casp3/casp3eval.shtml
http://www.ncbi.nlm.nih.gov/Structure/RESEARCH/-casp3/casp3eval.shtml
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Recent improvements to the LGscore
Since CASP4 the statistics for the LGscore were updated
and a new measure (the Q-value) was introdued. For
more information please visit  [http://www.sbc.su.se/
∼ arne/LGscore/] .

Calculation of the measure S
S was calculated in the same way as LGscore, but instead
of using the the P-value the measure S str divided with
the length of the model was used. First the statistics was
recalculated to better deal with short fragments. Second-
ly an additional measure, the Q-score, that takes the
length of the template into account, was introduced.

Algorithm for alignment independent measures
Often when the fold is correctly predicted the alignment
is sub-optimal. To ignore this problem it is possible to
superimpose the model with the correct structure before
the evaluation. After the superposition the structurally
aligned residues are considered to be equivalent. From
these equivalences it is possible to detect the most signif-
icant subset using the same algorithms as described
above. In this study the superposition was made using a
modified version of the algorithm used by Levitt. After
the superposition, the most significant subset was found
as described above. The log of the P-value is used as the
LGscore2 measure in this study.

The LGA-program
The LGA program is being developed for structure com-
parative analysis of two selected 3D protein structures or
segments of 3D protein structures.

The LGA analysis can be made in two general modes:

• Alignment dependent analysis. This mode can be used
when two protein structures are identical by the number-
ing of their amino-acid sequences. Under this mode (LCS
and GDT analysis) the program is able to identify the

segments where two structures are identical, and the seg-
ments where they differ.

• Alignment independent analysis. This mode can be
used for structural comparison of any two proteins. The
best superposition (according to the LGA technique) is
calculated completely ignoring the alignment relation-
ship between the two proteins. The suitable amino acid
correspondence (structural alignment) is reported.

The LGA algorithm searches for the best structural align-
ment of two proteins accordingto the LCS and GDT
scores calculated for each analyzed alignment  independ-
ent superposition.

The measures LCS and GDT [19, 20] established for de-
tection of  local and global structural similarities between
two proteins were successfully verified during the CASP
process providing a very good ranking of the evaluated
protein models. When comparing two protein structures
the LCS procedure is able to localize (along the sequence)
the Longest Continuous Segments of residues that can fit
under the selected RMSD cutoff, while the Global Dis-
tance Test (GDT) algorithm is designed to complement
evaluations made with LCS searching for the largest (not
necessary continuous) set of "equivalent" residues devi-
ating by no more than a specified DISTANCE cutoff. The
combined LCS and GDT scores produce the LGA-S
number which is used to determine the best structural
alignment. The additional LGA-Q value reported in the
output from the LGA program is calculated for the final
superposition. This number ranks the quality of the
alignment and is obtained from the formula: Q = 0.1*N/
(0.1+RMSD), where N denotes the number of residues
superimposed under the specified distance cutoff (by de-
fault 5), and RMSD is the root mean square deviation
calculated on these residues. For rather "weak" align-
ments the LGA-Q is less than 2.0. 

The LGA server is available through the web site       [ht-
tp://PredictionCenter.llnl.gov/local/lga] 

Abbreviations
CASP, Critical assessment of protein structure predic-
tions.; CAFASP, Critical assessment of fully automated
protein structure predictions.;
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