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Abstract: Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of 
effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among 
them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) 
Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological 
characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the 
discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have 
gathered substantial evidence showcasing WA’s significant anti-tumor effects against a wide range of cancers in both in vitro and 
in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. 
Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition 
(EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and 
mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable 
anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which 
need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, 
WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA’s 
action represents a crucial research direction to pursue in the future. 
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Introduction
Cancer poses a severe threat to human health and has emerged as a leading cause of death in many countries worldwide, 
particularly those experiencing rapid population growth and aging. According to the 2020 global cancer statistics, there 
were 19.3 million new cases and almost 10.0 million cancer-related deaths. It is projected that the number of cancer cases 
will rise to 28.4 million by the year 2040.1 Consequently, there is an urgent need for novel anti-cancer drugs and 
treatment approaches.

Natural products have long been vital in drug discovery due to their unique biocompatibility, novel structural 
backbones, and diverse pharmacological activities. Many anti-cancer agents are either natural products or direct synthetic 
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derivatives of natural products,2 such as paclitaxel, colchicine, irinotecan (a derivative of camptothecin). However, 
chemotherapeutic agents often come with undesirable side effects. As a result, dietary compounds derived from food 
sources are being explored as potential alternatives for anti-cancer drug discovery.

One such traditional medicine is Withania somnifera (L.) Dunal (WS), also kwon as Indian ginseng (Ashwagandha) 
and considered the king of Ayurvedic herbs, which has been utilized for 6, 000 years in Indian.3 WS finds wide 
application in treating various conditions, including cancers, epilepsy, depression, arthritis, diabetes, Parkinson’s disease, 
schizophrenia insomnia, and hypothyroidism, and palliative effects, such as analgesic, rejuvenating, regenerating, and 
growth-promoting effects, as well as improvement in sexual function.4–9 Numerous research groups have investigated the 
chemical constituents of Ashwagandha to identify its bioactive entities. Withaferin A (WA) is a major bioactive lactone 
of WS (Figure 1). WA displays a wide range of activities, including anti-inflammatory, anticancer, anticoagulant, 
neuroprotective, hypoglycemic, hepatoprotective, and antiarthritic effects. Furthermore, recent study have reported that 

Graphical Abstract

Figure 1 Role for different cancer types of WA isolated from Withania somnifera.
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WA can potentially treat or prevent the COVID-19 transmission by inhibiting the virus’s S protein from binding to the 
host receptor.10

Of particular note is WA’s highly sensitive and broadly applicable anticancer efficacy. Studies have indicated that WA 
is a promising candidate and may become a potential treatment option for various cancers. In this review, we provide 
a comprehensive examination of the pharmacology and mechanism of WA as a potential drug candidate for cancer 
therapy. Additionally, we discuss viable strategies to overcome limitations and enhance the feasibility of WA as a novel 
anti-tumor agent.

The Anti-Tumor Efficacy of WA Against Various Cancers
Despite WA’s popularity as a small molecule compound with diverse bioactivities, its antitumor activity has raised 
significant concerns. Nevertheless, WA shows promise in the treatment of multisystem tumors (Figure 1). In this study, 
we demonstrated the remarkable antitumor activity of WA in cancer cells (Table 1) and animal models (Table 2). 
Furthermore, we provided a comprehensive summary of the progress of WA in clinical trials.

In vitro Anti-Tumor Effects of WA
WA exhibits significant anti-tumor efficacy against almost all type cancers, Notably, it demonstrates promising results in 
reproductive system tumors, such as breast cancer,11–13 cervical cancer,33 ovarian cancer,38,46 and endometrial cancer,119 

as well as urinary system tumors, including prostate cancer48,49,125 and renal carcinoma.59 Additionally, WA shows 
potential in combating digestive system tumors, such as oral cancer,88,89,131,132 colorectal cancer (CRC),61,62 pancreatic 
cancer,68,69 hepatocellular carcinoma (HCC)74,128 and gastric cancer,118 as well as respiratory system tumors, including 
lung cancer.76,77,141 Furthermore, it displays anti-tumor effects in endocrine system tumors like adrenocortical 
carcinoma,116 and thyroid cancers,87,130 circulatory system tumors like lymphoma96 and leukemia97,134 nervous system 
tumors including glioblastoma (GBM)103 and neuroblastoma,101 and motor system tumors like osteosarcoma.109,110,142 

Moreover, WA exhibits significant tumor inhibition in other types of tumors, including in uveal melanoma,93 

melanoma,112 mesothelioma,111 head and neck squamous carcinoma cells117 and Ehrlich ascites.138 The anti-tumor 
efficacy of WA is attributed to its ability to modulate multiple signaling pathways. It inhibits cell proliferation, migration, 
angiogenesis, and cancer stem cells (CSCs), while also inducing cell cycle arrest, apoptosis, autophagy, ferroptosis 
(Table 1).

In vivo Anti-Tumor Effects of WA
Various animal models have been utilized to evaluate the in vivo anti-tumor efficacy of WA (Table 2). The results 
consistently demonstrate that WA exhibits potent inhibitory effect on tumor growth and metastasis across multiple 
cancers when administered intraperitoneal (i.p.) or per os (p.o.) at doses ranging from 1–20 mg/kg. Moreover, WA has 
been showed to have synergistic effects when combinations with chemotherapeutics. In in vivo experiments, observations 
of mouse mortality and body weight suggest that WA is well-tolerated and safe, further indicating its potential for future 
development.

Clinical Research of WA
Given the significant antitumor activity of WA in cancers, several clinical trials have been conducted to investigate its 
safety and pharmacokinetics in the clinical treatment of cancer patients. Notably, a Phase I trial conducted by Pires 
N et al found that WA was generally well-tolerated in patients with advanced stage high-grade osteosarcoma at doses of 
72, 108, 144 and 216 mg.142 Furthermore, a recent clinical study titled “Combination therapy with liposomal doxorubicin 
and WA in recurrent ovarian cancer” aims to assess the feasibility and tolerance of WA in phase I and evaluate the 
treatment response (complete response (CR), partial response (PR), and stable disease (SD)) in recurrent ovarian cancer 
patients in Phase II (ClinicalTrials.gov Identifier: NCT05610735, 2022).
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Table 1 Anti-Cancerous Activities of WA in vitro

Cancer Cell Lines Mechanisms of Cancer Cell Death Refs

Breast cancer MCF-7, MDA-MB-231, SUM159, SK-BR-3, 
BT474, ERBB2, T47-D, MDA-MB-468, MCF-10A, 

BT-20, SUM149, 231MFP, MDA-MB-361, 231MFP

Inducing apoptosis, G2/M arrest, autophagy. 
Inhibition of EMT, stemness. Inhibition of NF-κB, 

STAT3, Notch1/2/4, ERα signaling. Activation of 

ERK/RSK. Alteration of MAPK signaling.

[11–32]

Cervical cancer Caski, SK-Hep1, HeLa, SKGII, SKGIIIb, and 

ME180

Inducing apoptosis, G2/M arrest. Repression of 

HPV oncogenes.

[33–37]

Ovarian cancer A2780, SKOV3, A2780 OKV18, CAOV3, A2780/ 
CP70

Inducing autophagy, apoptosis. Targeting putative 
cancer stem cells. Generation of ROS. Activation 

of p53. Down-regulation of Notch1, Notch3.

[33,38–47]

Prostate cancer LNCaP, PC3, 22RV1, DU145 Inducing autophagy, oxidative stress, mitotic 

catastrophe, G2/M arrest, FOXO3a-dependent 

apoptosis. Inhibition of AKT signaling.

[48–58]

Renal 

carcinoma

Caki Inducing endoplasmic reticulum stress (ERS) 

mediates apoptosis.

[59,60]

Colorectal 

cancer

WS480, HT-29, HCT-116, RKO, SW-480, SW- 

620, Caco-2

Inducing ERS-mediated autophagy and apoptosis, 

G2/M arrest. Inhibiting of STAT3, Notch-1 
signaling. Downregulating of AKT/NF-κB /Bcl-2.

[61–67]

Pancreatic 
cancer

PANC-28, BxPC-3, MIA PaCa-2, AsPC-1, Panc-1, 
SW1990

Inhibition of proteasome. Inducing ERS-mediated 
apoptosis, autophagy. Targeting pancreatic CSCs, 

heat shock protein 90. Inactivating of PI3K/Akt 

pathway.

[61,68–73]

Hepatocellular 

cancer

Huh7, HepG2, MHCC97H and MHCC97L Inducing autophagy and apoptosis. [74,75]

Lung cancer H1355, PC9, H358, H928, CL1-0 CL1-1, CL1-3, 

CL1-5, H157, H520, A549, PC13, PC14, H1299, 
H460, CL1-0, CL1-1, CL1-3, CL1-5, PC13 and PC14

Inducing autophagy, apoptosis. Activation of ROS. 

Inhibition of cell adhesion, migration, invasion, 
the growth of lung CSCs. Inhibition of mTOR/ 

STAT3 signaling, AK4-HIF-1α signaling axis.

[76–86]

Thyroid cancer SW1736 Inducing apoptosis. [87]

Oral cancer Ca9-22, CAL 27, HSC-3, SCC-4, HSC-4 Inducing apoptosis and DNA damage, G2/M arrest, 
autophagic cell death, endogenous ROS production. 

Inhibition of ROS-mediated migration, invasion, 

targeting MAPK/RAS/RAF signalling pathway.

[88–92]

Uveal 

melanoma

OMM2.3, 92.1, and MEL290 Inducing G2/M arrest and apoptosis. Suppression 

of c-Met, AKT, and Raf-1 signaling.

[93]

Skin cancer JB6 Cl-41 P+ Suppressing of up-regulation of acetyl-coA 

carboxylase 1, ubiquitin-proteasome pathway, 
isocitrate dehydrogenase 1 activity and 

mitochondrial function.

[94,95]

Hematologic 

tumor

LY-3, LY-10, SudHL-6, 37, HL-60, MDS-L, THP-1, 

Jurkat and Ramos

Inducing cell cycle arrest, apoptosis, autography. 

Inhibition of NF-κB nuclear translocation.

[96–100]

Neuroblastoma Be(2)-c, SMS-KCNR, SH-SY5Y, LAN-5, IMR-32, 

IMR-32, SK-N-SH, Kelly, NB69, CHP-134, IMR-32, 

NLF, CHP-212, SK-N-DZ, SK-N-BE(2)-C, SK-N-AS, 
SH-EP

Inducing ferroptosis. Inhibition of STAT3. [101,102]

(Continued)
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Table 1 (Continued). 

Cancer Cell Lines Mechanisms of Cancer Cell Death Refs

Glioblastoma U87, U251, GL26, YKG1, U118MG, A172 Inducing G2/M arrest, intrinsic apoptosis. Combined 

inhibition of NF-κB and STAT3 activation.

[103–108]

Sarcoma S-180, U2OS Inducing apoptosis, generation of ROS and 

disruption of mitochondrial membrane potential.

[109,110]

Mesothelioma H2373, H2452, H2461, H2595, H226 MPM Inducing apoptosis. Decreasing the chymotryptic 

activity of the proteasome

[111]

Melanoma MelJD, MelCV and MM200, M14, Mel501, SK28, 

Lu1205, WM793

Inducing apoptosis. Generation of ROS. Down- 

regulation of Bcl-2.

[85,112–115]

Adrenocortical 

carcinomas

Y1, SW13 Inducing cell cycle arrest from G1/G0 to G2/M, 

apoptosis. Modulating expression of Jagged 1, 
MAPK, and AKT/mTOR pathway proteins.

[116]

Head and neck 
squamous cell 

carcinoma

MDA1986, JMAR, UM-SCC-2, and JHU011 Inducing apoptosis, cell death, cell-cycle shift 
from G(0)/G(1) to G(2)/M.

[117]

Gastric cancer AGS Inducing G2/M arrest and apoptosis. [118]

Endometrial 

cancer

KLE Inducing G2/M arrest and apoptosis. [119]

Table 2 Anti-Cancerous Activities of WA in vivo

Cancer Animal Model Administration Dose  
and Method

HED (mg/kg) Refs

Breast cancer MDA-MB-231 xenograft in nude mice i.p. 8 mg/kg for 2.5 weeks 0.65 mg/kg [13]
p.o. 5mg/kg 5 days a week for 4 

weeks

0.41mg/kg [20]

i.p. 5–20 mg/kg 3 times a week for 

6 weeks

0.41–1.63mg/kg [120]

i.p. 100 μg 5 days a week for 7.5 
weeks

8.13μg [121]

i.p. 4mg /kg 5 days a week 0.33mg/kg [28]

4T1 mouse mammary carcinoma model i.p. 4 mg/kg every other day for 1 

month

0.33mg/kg [19]

i.p. 5–10 mg/kg every other day for 
2 weeks

0.41–0.81mg/kg [122]

i.p. 1,4,8mg/kg 3 times a week for 

4 weeks

0.08, 0.33, 0.65mg/kg [123]

N-methyl-N-nitrosourea (MNU)-rat 4–8 mg/kg 0.33–0.65mg/kg [124]

Cervical cancer CaSki xenograft in nude mice i.p. 8 mg/kg on alternate days for 6 

weeks

0.65mg/kg [34]

(Continued)
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Table 2 (Continued). 

Cancer Animal Model Administration Dose  
and Method

HED (mg/kg) Refs

Ovarian cancer A2780 xenograft in nude mice i.p. 2 mg/kg every other day for 12 
days

0.16mg/kg [45]

i.p. 2 mg/kg every other day for 4 
weeks

0.16mg/kg [38]

A2780 xenograft in NOD.Cg mice i.p. every 3 days at 2 mg/kg or 6  
mg/kg for 5 weeks

0.16mg/kg [42]

A270 intraperitoneal tumors in nude mice i.p. 2 mg/kg every third day for 3 
weeks

0.16mg/kg [44]

Prostate 
cancer

PC-3 xenograft in nude mice Intratumor injection 5 mg/kg 5 
days a week for up to 4 weeks

0.41mg/kg [56]

i.p. 4–8 mg/kg for 7 days 0.33–0.65mg/kg [125]

Transgenic Hi-Myc mice i.p. 0.1mg/mouse 3 times/week for 

5 weeks

0.41mg/kg [55]

Ptenloxp/loxp: PB-Cre4 (Pten-KO) Mice p.o. 3 and 5 mg/kg for 45 weeks 0.24 and 0.41 mg/kg [49]

C57BL/6-Tg [TRAMP] 8247Ng/J p.o. 3 and 5 mg/kg for 39 weeks 0.24 and 0.41 mg/kg [126]

pCMV/DU-145 or AKT/DU-145 xenograft in 
Balb/c mice

p.o. 4mg /kg for 4 weeks 0.33mg/kg [57]

Colorectal 
cancer

HCT-116 xenograft in nude mice i.p. 2 mg/kg every 2 days for 32 
days

0.16mg/kg [62]

p.o. 5 mg/kg 5 days per week for 4 

weeks.

0.41mg/kg [63]

C57BL/6 and APCMin/+ mice azoxymethane/ 

dextran sodium sulfate (AOM/DSS) model

p.o. 4mg/kg 5 days/week for 12 

weeks

0.33mg/kg [127]

p.o. 3mg/kg 5 days/week for 10 

weeks

0.24mg/kg

Pancreatic 

cancer

Panc-1 xenografts in nude mice i.p. 3 mg/kg every other day for 7 

weeks

0.24mg/kg [73]

i.p. 3–6 mg/kg 2 times a week for 4 

weeks

0.24–0.49mg/kg [69]

i.p. 3–6 mg/kg every other day for 
45 days

0.24–0.49mg/kg [68]

Hepatocellular 
cancer

HepG2-xenografts and DEN-induced-HCC in 
C57BL/6 mice

4 mg/kg daily for 5 weeks 0.33mg/kg [128]

Lung cancer H441-L2G xenografts in NOD/SCID mice 2 mg/kg for 6 weeks 0.16mg/kg [76]

PC9 xenografts in BALB/c nude mice 2 mg/kg 3 times per week 0.16mg/kg [129]

CL1-0 AK4 and A549-GL cells xenografts in 

NOD-SCID Gamma mice

i.p. 4 mg/kg 3 times a week for 4 

weeks

0.33mg/kg [79]

Thyroid cancer DRO 81–1 xenografts in nude mice i.p. 8 mg/kg every day for 21 days 0.65mg/kg [130]

(Continued)
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The Reported Direct Binding Target of WA in Cancers
Identifying the specific targets of compounds plays a crucial role in elucidating their mechanism of action and in drug 
development. Active natural compounds often act on multiple targets. Several studies have identified candidate targets of 
WA through computer calculations and molecular simulations (Table 3). BCR-ABL,143 ACE2,144 Mortalin (mtHsp70) 
and Nrf2145 were proposed as potential targets of WA based on these approaches. Furthermore, Clesham et al utilized the 
Connectivity Map (CMAP) database and identified c-MYB as a potential target of WA in acute myeloid leukemia.97

Additionally, a few articles have demonstrated that vimentin, Hsp90, and annexin II proteins directly bind to WA 
using WA-biotin analogs (Table 3). Paola BM et al revealed a covalent bonding between the C3 or C6 electrophilic 
carbon centers of WA and Cys328 of the vimentin A-helix. Moreover, hydrogen bonding was observed between the C1 
position oxygen atom and Gln324 of the vimentin A-helix, as well as between the C4 hydroxyl group and Asp331 of the 
vimentin A’-helix.146 Yanke et al identified that WA-biotin binds to the C-terminus of Hsp90.69 Additionally, both Falsey 
RR et al and Gabriel Ozorowski et al demonstrated that WA directly binds to annexin II protein.147,148 However, Falsey 
RR et al found that WA binds covalently to the N-terminal domain of annexin A2, not Cys133. Furthermore, Jessica et al 
reported WA binds to mFAM72A with micromolar affinity in HeLa and HEK293T cells using biolayer interferometry.149

Table 2 (Continued). 

Cancer Animal Model Administration Dose  
and Method

HED (mg/kg) Refs

Oral cancer HSC-4 xenografts in NOD-SCID mice i.p. 2 mg/kg 3 times per week for 
13 weeks

0.65mg/kg [88]

DMBA-induced hamster buccal pouch 

carcinogenesis/ oral squamous cell carcinoma

p.o. 20 mg/kg 1.63mg/kg [89,131,132]

Uveal 

melanoma

92.1 xenograft in nude mice i.p. 8–12 mg/kg every day for 21 

days

0.65–0.98mg/kg [93]

Skin cancer TPA skin cancer model Topical application of 20 mg 5 

times per week for 14 weeks

1.63mg/kg [133]

Hematologic 

tumor

A20 allograft in Balb/c mice 12 mg/kg every other day for 2 

weeks

0.98mg/kg [96]

Notch1-mutant T-ALL xenograft in NRG mice 10mg/kg [134]

Neuroblastoma IMR-32 xenograft in nude mice Intratumor injection 4 mg/kg daily 

for up to 20 days

0.33mg/kg [101]

Glioblastoma U87 xenograft in nude mice Injection 5 mg/kg into the tail vein 
every day for 27 days

0.41mg/kg [103]

Sarcoma Sarcoma xenograft in Swiss albino mice i.p. 10 mg/kg for 7 days 0.81mg/kg [135]

S-180 xenograft in Swiss or DBA/2 mice 10 or 30 mg/kg 0.81 or 2.44 mg/kg [109]

Mesothelioma AB12 xenograft in Balb/c mice. i.p. 5 mg/kg for 17 days 0.41mg/kg [111]

Melanoma B16F1 melanoma xenograft in C57BL mice i.p. 15 mg/kg daily, 5 days a week 
for 3 weeks.

1.22mg/kg [114]

i.p. 2.5 mg/kg every other day 0.20mg/kg [136]

i.p. 40 mg/kg 0.33mg/kg [137]

Ehrlich ascites 

carcinoma

Xenograft in Inbred Swiss albino mice i.p. 5–30 mg/kg 0.41–2.44mg/kg [138]

i.p. 10–60 mg/kg 0.81–4.88mg/kg [139]
Injection of 25–60 mg/kg 2.03–4.88mg/kg [140]

Abbreviation: HED, human equivalent dose.
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Molecular Mechanism of the Antitumor Effect of WA in Various Cancers
The complete understanding of the mechanisms underlying WA’s antitumor activity remains elusive; nevertheless, it 
appears to involve multiple effects, such as inducting cell cycle arrest, apoptosis, autophagy, ferroptosis, and suppressing 
invasion, metastasis, angiogenesis, and cancer stem cells.150–152 In light of this, we conducted a comprehensive review of 
the molecular mechanism of the antitumor activity of WA in various cancers (Figure 2).

Inducing Cell Cycle Arrest
In various cancers, including human breast cancer cells, ovarian cancer cells, cervical cancer cells,34,46 uveal melanoma 
cells,93 human head and neck cancer cells,117 and GBM cells,104,105 WA has been reported to induce G2/M phase arrest. 
The process of WA-induced G2/M arrest involves multiple cell cycle-related proteins, such as cyclin-dependent kinase 1 
(Cdk1), cyclin B1, cell division cycle 25C (Cdc25C) and Cdc25B. In MCF-7 and MDA-MB-231 cells, WA treatment led 
to a concentration-dependent and time-dependent decrease in the expression levels of Cdk1, Cdc25C and Cdc25B, 
ultimately inducing G2/M arrest.153 Moreover, overexpression of Cdc25C in breast cancer cells partially prevented the 
G2/M arrest induced by WA.153 Similarly, WA treatment downregulated Cdc25C and induced cyclin B1 in GBM and 
ovarian cancer cells CaOV3 and SKOV3.34,105 Consistent with Stan’s findings,153 WA-treated CaSki cells showed an 
accumulation of cyclin B1, downregulation of Cdk1, decreased complex formation between cyclin B1 and Cdk1,34 and 
induction of the Cdk inhibitor p21.125 Additionally, clues for G2/M arrest induced by WA emerged from the observation 
of mitotic spindle disruption microtubules.109

Table 3 The Direct Target Proteins of WA in Cancers

Compound Experimental 
Methods

Target 
Proteins

Binding sites and Mechanism Refs

WA Molecular docking 

Molecular dynamics 

simulations

BCR-ABL Interacts at both catalytic and allosteric sites of the ABL. Acts as both catalytic 

and allosteric inhibitor of the ABL.

[143]

ACE2 Significantly inhibits the ACE2 expression. [144]
Mortalin 

(mtHsp70)

The amino acids directly interacting with WA are GLU448, LEU450, GLN479, 

THR449, PHE472, GLU483, ALA475. 

Inhibition of Mortalin (mtHsp70).

[145]

Nrf2 The amino acids directly interacting with WA are ILE559, VAL420, VAL606, 

VAL467, CYS368, THR560, CYS513. 

Inhibition of Nrf2 protein.

[145]

Screening CMAP 

database

c-MYB Induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB 

target gene expression

[97]

Using WA-biotin analogs Vimentin Binds to the vimentin by covalently modifying its cysteine residue, which is 

present in the highly conserved α-helical coiled coil 2B domain. 

Covalent bonding between Cys328 of the vimentin A-helix and the C3 or C6 
electrophilic carbon centers of WA. 

Hydrogen bonding between Gln324 of the vimentin A-helix and the C1 

position oxygen atom, and Asp331 of the vimentin A′-helix and the C4 
hydroxyl group. 

Causes aggregation of vimentin filaments.

[146]

Hsp90 Binds to C-terminus of Hsp90. 
Inhibits Hsp90 chaperone activity through an ATP independent mechanism.

[69]

Annexin II A covalent bond between Cys133 of annexin II and C3 or C5 of WA. 

Disrupts the actin cytoskeleton in an annexin II–dependent manner.

[147]

Using mass spectrometry 

and single-site mutants

Annexin II 

(AnxA2)

WA-AnxA2 interaction to the N-terminal domain of AnxA2 where WA binds 

covalently to Cys9.

[148]

Using biolayer 
interferometry

mFAM72A Binds mFAM72A with micromolar affinity. 
To be a FAM72A inhibitors

[149]
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Inducing Apoptosis
Apoptosis, a form of programmed cell death, is a common mechanism employed by antitumor drugs. In human cells, 
there are two well-characterized pathways that trigger apoptosis. One is the intrinsic pathway, which is induced by 
mitochondrial changes. The activation of caspases is regulated by mitochondrial Bcl-2 family proteins.154,155 Another is 
the extrinsic pathway, activated by death domain-containing receptors, such as CD95, TNF receptors and TNF-related 
apoptosis-inducing ligands.

Inducing apoptosis is the primary anti-tumor effect of WA, observed in breast cancer,13 prostate cancer, leukemia,156 

melanoma,113 and head and neck cancer. WA induces the generation of the reactive oxygen species (ROS) in many 
cancer cells, leading to increased expression of Bak and Bax, which in turn induces mitochondrial apoptosis. 
Additionally, WA triggers Bak and Bax protein activation by reducing laminin and integrin gene expression.14 In CRC 
cells, WA induces apoptosis through ROS-mediated mitochondrial dysfunction and the JNK pathway.61 Tang’s study 
revealed that WA triggered intrinsic apoptosis in GBM cells via the ATF4-ATF3-CHOP axis.103 Another study demon-
strated that WA induced apoptosis by inhibiting the AKT/mTOR pathway. Silvia’s research indicated that by knocking 
down Bim and FOXO3a levels in breast cancer cell lines, WA-induced apoptosis was significantly attenuated in vivo.13

Moreover, it has been documented that WA enhances TNFα-related apoptosis-inducing ligand-induced apoptosis 
(TRAIL) by decreasing the expression of c-FLIPL and c-FLIPs (cellular FLICE-like inhibitory protein), the negative 
regulators of apoptosis.157–160 In Seon’s study, WA induced cell apoptosis by inhibiting the phosphorylation of Axl and 
STAT3 induced by the growth inhibition specific protein 6 (rhGas6).161 The inhibition of STAT3 (on Tyr705) phosphoryla-
tion also results in inhibition of Janus-activated kinase 2 (JAK2) activity. Furthermore, WA causes apoptosis by down-
regulating STAT3-regulated genes, including Bcl-2, Bcl-xL, survivin and cyclin D1, in human renal carcinoma Caki cells.59

Figure 2 Mechanisms and signaling pathway of WA on cancer inhibition.
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Inhibiting Proliferation
Additionally, WA has demonstrated the ability to inhibit tumor cell proliferation through various mechanisms. For instance, in 
human endometrial carcinoma, WA inhibits tumor cell proliferation by blocking the phosphorylation of TGF-β-dependent 
Smad2 and the expression of other TGF-β-related proteins.119 In the case of myeloma cells, WA inhibits proliferation through 
ROS-mediated intrinsic apoptosis.162 Moreover, WA has been reported to inhibit proliferation in chronic myeloid leukemia by 
targeting BCR-ABL oncogenic signaling.143 Furthermore, WA exerts its inhibitory effects on proliferation by regulating c-MYB 
target gene expression. This occurs through the induction of c-MYB protein ablation, resulting in reduced viability, impaired 
colony formation, and hindered progression of acute myeloid leukemia cells.97 Additionally, combined with blocking SGs by 
targeting G3BP1, WA-induced oxidative stress combined with blocking SGs by targeting G3BP1 results in reduced survival of 
prostate cancer.50

Inducing Autophagy
Physiologically, autophagy is a cellular process responsible for degrading macromolecules and organelles and has been 
shown to contribute to cell death.163,164 Inducing autophagy is an important anti-tumor mechanism of WA. In three WA- 
treated prostate cancer cell lines (22Rv1, PC-3 and LNCaP), autophagy induction was confirmed through the results of 
transmission electron microscopy and Western blot analysis. The key autophagy markers, including LC3BII, SQSTM1, 
Atg7 and Beclin-1, were robustly increased in WA-induced cancer cells. Moreover, GABARAPL1 was found to be 
involved in the cytoprotective autophagy induced by WA in prostate cancer cells.48

Additionally, WA inhibits the expression of β-catenin and p-GSK-3β proteins, leading to autophagy.165 Recent studies 
have shown that WA induces autophagy in both a spontaneously immortalized and nontumorigenic normal human 
mammary epithelial cell line (MCF-10A) and human breast cancer cells (MCF-7 and MDA-MB-231). Furthermore, WA 
induces autophagy in MDA-MB-231 xenograft mice.15

Inducing Ferroptosis
Ferroptosis is characterized by uncontrolled lipid peroxidation of cell membranes, resulting in membrane damage and cell 
death.166,167 Recent studies have reported that WA can induce a form of nonapoptotic cell death known as ferroptosis in cancer 
cells. This induction is attributed to the excessive activation of heme oxygenase-1 (HMOX1) by WA, which elevates intracellular 
labile ferrous iron (Fe2+) levels, consequently leading to the accumulation of toxic lipid radicals and triggering ferroptosis.101 

Additionally, WA has been found to induce ferroptosis through directly targeting and inhibiting glutathione peroxidase 4 (GPX4), 
which plays a critical role in detoxifying membrane hydrogen peroxide.168 Notably, according to Emilie, due to considerable 
overlap in ferroptosis and apoptosis kinome activity, WA induces mixed ferroptosis and apoptosis in multiple myeloma cells.169

Suppressing Cancer Stem Cells
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that possess self-renewal and differentiation 
capabilities, and they are believed to play a significant role in tumor initiation, growth, metastasis, and therapy 
resistance.39 WA has demonstrated properties in suppressing CSC as well. Kakar et al reported the role of WA in 
suppressing putative CSCs in ovarian cancer.38 They observed a remarkable 70–80% reduction in tumor metastasis and 
growth of cancerous cells. WA significantly inhibited the expressing of CSC markers, including CD24, CD44, CD117, 
CD34 and Oct 4, and downregulated the Hey 1, Notch 1, and Hes 1 genes. Similarly, Jade et al demonstrated that WA 
effectively inhibits the growth of lung CSCs, the formation of lung cancer spheroids, and decreases side population 
cells.76 Additionally, Kim and Singh reported that FoxQ1 is a target of WA for inhibiting breast CSCs in vivo.11 

Moreover, Mayuko et al found that WA is a potent inhibitor of CSC stemness, leading to cellular senescence primarily 
via the induction of p21Cip1 expression.170 Therefore, WA holds promise for providing potential therapeutic benefit in 
various cancers by suppressing CSCs through diverse pathways, making it a promising candidate for further investigation 
as a potential therapeutic agent for different types of cancer.
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Inhibiting Cancer Metastasis and Angiogenesis
Epithelial mesenchymal transition (EMT) is a biological process in which cells lose their epithelial characteristics and 
acquire mesenchymal properties, facilitating the migration and invasion of tumor cells. Studies have demonstrated that 
WA decreases cellular mobility by countering EMT, such as decreasing Slug (SNAI2) and Twist expression, while 
increasing the adhesion molecule E-cadherin expression.63,170,171 In human non-small cell lung cancer (NSCLC) cells, 
WA suppresses TGFβ1- and TNFα-induced EMT and inhibited cell adhesion, invasion and migration of H1299 and A549 
cells. Moreover, WA inhibits EMT by preventing the nuclear translocation and phosphorylation of Smad2/3 and nuclear 
factor kappa B (NF-κB) in H1299 and A549 cells.77 Additionally, Chen et al reported that WA inhibits the migration of 
lung cancer cells by downregulating miR-27a and miR-10b, which regulate the expression of Bax and E-cadherin.78 

Furthermore, WA suppresses the AK4-HIF-1α signaling axis and acts as a potent antimetastatic agent in lung cancer.79 In 
MMTV-neu mouse and breast cancer xenografts, WA increases E-cadherin expression and reduces vimentin 
expression.16 Moreover, at a concentration of 700 nM, WA suppresses breast cancer metastasis and relapse by inhibiting 
the urokinase-like plasminogen activator (uPA) protease, which promotes cell migration and proliferation by remodeling 
the extracellular matrix.17,18 Another study demonstrated that 3-azido-WA upregulates TIMP-1 and E-cadherin expres-
sion in prostate cancer cells.135 As a vimentin inhibitor, WA suppresses the migration and invasion activity of 
glioblastoma cells by inhibiting vimentin.172 Additionally, WA interacts with vimentin and heterogeneous nuclear 
ribonucleoprotein hnRNP-K to downregulate the expression of proteins involved in tumor cell metastasis, such as 
MMPs, VEGF, N-cadherin, and u-PA.173

Furthermore, WA exerts potent anti-angiogenic activity in vivo.174 In the Ehrlich ascites tumor model, WA exerts its 
anti-angiogenic activity by reducing the binding of the transcription factor specificity protein 1 (Sp1) to VEGF.175 S Saha 
et al demonstrated that WA has a favorable binding affinity with vascular endothelial growth factor (VEGF), leading to 
decreased angiogenesis.176 In another study, WA reduces macrophage infiltration and inhibits the expression of protein 
tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, 
thereby suppressing tumor invasion and angiogenesis.177 WA can also directly interact with the hnRNP residue domain 
through hydrogen bonding and hydrophobic interactions, disrupting the binding between RNA-binding protein hnRNP-k 
(hnRNP-k) and single-stranded DNA (ssDNA). This inhibits hnRNP-k from binding to ssDNA and subsequently lowers 
the downstream effects of hnRNP-k, including the expression of VEGF, PERK, and MMP2, thus suppressing the 
migration and invasion of HT1080 fibrosarcoma cells.178 Moreover, a recent study found that WA treatment down-
regulates the secretion of many angiogenesis proteins in HCC.74 According to Bilal’s findings, 3-azido WA dose- 
dependently suppresses the expression of p-ERK and p-AKT, which may play a significant role in inhibiting angiogenesis 
in mouse.179 By reducing Akt signaling and MMP-9 expression, WA also decreases the invasion and migration 
capabilities of CasKi cells.35

Synergistic Combinations
Since the first approval of synergistic combination drugs in the 1940s, the number of approved synergistic combination 
has experienced significant growth. The ideal synergistic combination can improve clinical efficacy, reduce drug toxicity, 
and delay or prevent the development of drug resistance. As a highly effective antitumor agent, WA has been studied in 
combination with several other drugs.

In one combination of WA and cisplatin, WA produced ROS, while cisplatin caused DNA damage, suggesting that 
lower doses of cisplatin combined with suboptimal doses of WA could achieve the same effect.40 Kendra’s study 
demonstrated the combinatorial of sulforaphane and WA showed synergistic effects on epigenetic modifiers and cell 
proliferation in breast cancer cells.180 Cohen et al reported that a synergistic combination of WA and sorafenib caused 
G2/M arrest in anaplastic and papillary thyroid cancer cells.87 Abdullah et al reported that the combination of WA and 
5-FU executed PERK axis-mediated endoplasmic reticulum (ER) stress-induced autophagy and apoptosis by upregulat-
ing the expression of ER stress sensors, such as PERK, BiP, CHOP, eIF2α, and ATF-4.64 The combination also 
modulated ER stress and significantly induced antiproliferative effect and cell death in CRC cells.64 Additionally, the 
combination of cisplatin and pemetrexed with WA synergistically inhibited wild-type epidermal growth factor receptor 
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(EGFR) lung cancer cell viability. Moreover, WA further enhanced the cytotoxic effect of cisplatin in lung CSCs.76 The 
combination of WA with tumor treating fields (TTFields) showed obvious synergistic effects by significantly inhibiting 
tumor growth in glioma cells (GBM2, GBM39, U87-MG).106 WA and carnosol also exhibit a synergistic effect on 
pancreatic cancer cells through targeting pancreatic cancer stem cells by phosphorylating c-met and downregulating 
pluripotency maintenance genes (Oct-4 and Nanog).70

Reversing Drug Resistance
Over the past two decades, drug development in the field of oncology has predominantly focused on molecular targeted 
drugs. However, the rapid emergence of drug resistance due to target mutations has significantly reduced drug efficacy, 
making overcoming drug resistance a major challenge for current antitumor drugs. Multiple studies have found that WA 
has the ability to reverse drug resistance in various cancers.

Kunimasa et al demonstrated that the combination of WA and phloretin (a glucose transport inhibitor) led to 
a significant reduction in tumor size in gefitinib-induced drug- tolerant lung cancer, indicating that EGFR-resistant 
lung cancer could be effectively treated with a combination of WA and metabolism-targeting therapies.129 In sorafenib- 
resistant HCC cells (HepG2 and SNU449 cells), WA enhanced ferroptosis and increased Keap1 expression to counteract 
the effects of Nrf2 signaling activation on the ferroptosis-related protein xCT and EMT. Moreover, blockade of Keap1/ 
Nrf2 signaling facilitated sorafenib resistance and reversed WA-induced ferroptosis. Consequently, WA attenuated 
sorafenib resistance and metastatic potential by regulating Keap1/Nrf2-associated ferroptosis and EMT.181 In sorafenib- 
resistant HepG2 cells, WA induced a dose-dependent reduction in vimentin expression, followed by a reduction in 
ABCG2 expression and a decrease in cell viability, induced by the inhibition of vimentin in both parental and sorafenib- 
resistant HepG2 cells.182 WA also repressed the invasiveness of cyclophosphamide, vincristine, doxorubicin, and 
prednisone (CHOP) chemotherapeutic regimen-resistant DLBCL cells in collagen matrices.183 In GBM, WA could 
resensitize temozolomide-resistant GBM cells by depleting O6-methylguanine-DNA methyltransferase (MGMT) and 
inducing apoptosis through the AKT/mTOR pathway.107

Limitations of WA as a Potential Anti-Cancer Candidate and 
Corresponding Solutions
Despite the broad antitumor effects of WA, there were also some limitations, including potential toxicity, poor oral 
bioavailability, and low production.

Potential Toxicity
The toxicity of natural active compounds is often unavoidable, and WA is no exception. However, the toxicity of WA has 
been a subject of controversial and potential concern. As the main bioactive component of WS, there have been articles 
demonstrating the safety of WS extract in all tested groups.184,185 An acute and sub-acute toxicity study of oral WA also 
yielded similar results, showing that the LD50 of WA in mice was above 2000 mg/kg body weight.186 On the other hand, 
other studies found that WA exhibited certain toxic side effects in mice, with an LD50 of 54 mg/kg body weight.187,188 To 
address these toxicity concerns, researchers have explored structural modifications to obtain derivatives of WA with 
comparable but safer activity. For instance, the 2-thiophene ester-linked derivative of WA, ASR488, selectively inhibited 
bladder cancer cells while showing no toxicity to normal cells.189 Furthermore, a range of IC50 values for withanolides, 
as reported by Zhang et al, suggests the existence of various compounds within this class with potential anti-cancer 
activity, warranting further exploration and development.190 Notably, the ability of another WA derivate, ASR490, to 
inhibit the growth of colon cancer cell lines and xenotransplanted tumors without causing systemic toxicity is 
encouraging.191

Overall, these studies highlight the potential of WA as a source of lead compounds for the development of new anti- 
cancer drugs. However, further research in this area is essential to fully understand and address the potential toxicity 
concerns associated with WA and its derivatives.
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Poor Oral Bioavailability
In addition to the potential toxicity issues, another limitation of WA is its poor oral bioavailability. Saurabh by Saurabh 
et al and Tianming et al reported oral bioavailability values 1.8% and 32.4 ± 4.8%, respectively, in male rats.186,192 The 
poor oral bioavailability of WA limits its effectiveness as a drug for cancer prevention and treatment.

To address this challenge, Farrukh et al proposed an improvised implant formulation known as “coated” implants to 
enhance the bioavailability of WA.193 The method involves coating polycaprolactone implants with 20–30 layers of 
polycaprolactone solution containing 0.5–2% of WA dissolved in dichloromethane. When compared with the ineffective 
intraperitoneal administration of the same total dose of WA, the drug-eluting implant significantly inhibited the growth of 
human lung cancer A549 xenografts in athymic nude mice. Another study by Ramesh et al also explored the use of 
polycaprolactone implants embedded with WA for controlled systemic delivery, resulting in nearly 60% inhibition of 
lung cancer A549 cell xenografts in mice.141

Low Production
Although WA can be isolated from the leaves, berry (winter cherry) and root of WS, its content is relatively low. The data 
showed that the concentration of major active compounds known as withanolides, represented by WA, in the leaves 
typically ranges from 0.001% to 0.5% of the dry weight.194 Considering the broad pharmacological effects of WA and 
WS, the demand for the plant in the market continues to increase. According to data, approximately 9127 tons of dried 
plant material are required for the production of WA in India, while the annual yield is around 5905 tons.195 Clearly, the 
current cultivation of the plant cannot meet the market demand. Therefore, increasing the production of withanolides in 
the plant has become a significant focus of attention.

Currently, there are various methods to increase withanolides production in plants. Firstly, concerning plant cultiva-
tion, it has been reported that compared to Kunapa jala, farmyard manure, and inorganic fertilizer, the application of 
Pancha gavya can increase withanolides production in plants.196 There also are some new technologies to be developed 
to increase the production of withanolides in plants by optimizing conditions to enhance the accumulation of effective 
metabolites or secondary metabolites. Studies have shown that inducers such as 100 ppm salicylic acid, 50 ppm jasmonic 
acid, and 100 ppm chitosan can be sprayed on the leaf surface,197 short-term UV-B radiation (less than 3 hours),198 or 
low concentrations of WcAgNPs to improve root organogenesis,199 all of which promote the synthesis of withanolides 
compounds in plants. Endophytes can also be used to regulate the expression of withanolides biosynthetic genes in plant 
leaves and roots,200 overexpress squalene synthase (SQS)201 or cycloartenol synthase,202 or use treatments involving 
ultrasound, vacuum infiltration, and thiol compounds (l-cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l) to promote the 
integration and expression of the gusA gene in transgenic plants,203 thereby increasing withanolides content in the 
transgenic plants. In addition, researchers have established a multiple shoot culture system of WS using single shoot 
apices as explants,204 and examined the withanolides production from adventitious root cultures,205 hairy roots,206 and 
cell suspension of WS,207,208 all of which aim to provide theoretical basis for efficient withanolides production in the 
industry.

Overall, the use of polycaprolactone implants embedded with WA shows promise as a potential therapeutic approach 
for the treatment of cancers. However, further research is needed to determine its safety, effectiveness, and production in 
humans before it can be used as a clinical treatment.

Conclusions and Outlook
The exploration of various plant extracts for their potential anti-tumor properties has been extensive. Among these 
extracts, WA, the primary bioactive component of the Ayurvedic herb WS, is a promising anti-tumor agent. While some 
studies have identified potential target proteins of WA, such as vimentin and heat shock proteins, the exact mechanism of 
action of WA and its comprehensive effects on cancer cells remain active areas of research. Understanding the systematic 
effects of WA on cancer cells is crucial for its development as an anti-tumor agent. A critical aspect in the development 
of WA as an anti-tumor agent is assessing its toxicity and safety. While animal studies have shown that WA is well- 
tolerated, further research is required to thoroughly evaluate its toxicity and potential side effects in humans. Safety is 
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paramount in the development of any therapeutic agent. Moreover, to enhance its therapeutic effectiveness, innovative 
approaches to improve the bioavailability of WA are needed. Methods like drug-eluting implants and other delivery 
systems show promise in enhancing the delivery and targeting of WA to cancer cells.

In conclusion, WA holds immense potential as an anti-tumor agent, and its pharmacological properties have shown 
significant antitumor efficacy in various cancers. As research in this field continues to progress, we expect a better 
understanding of the precise mechanisms of WA’s action, its toxicity profile, and advancements in delivery strategies. 
These efforts will contribute to establishing WA as a potent and safe candidate for cancer treatment, opening new 
possibilities for clinical applications and improving the overall outlook in the fight against cancer.
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