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Abstract: Blood biomarkers for dementia have the potential to identify preclinical disease and
improve participant selection for clinical trials. Machine learning is an efficient analytical strategy to
simultaneously identify multiple candidate biomarkers for dementia. We aimed to identify important
candidate blood biomarkers for dementia using three machine learning models. We included 1642
(mean 69 ± 6 yr, 53% women) dementia-free Framingham Offspring Cohort participants attending
examination, 7 who had available blood biomarker data. We developed three machine learning
models, support vector machine (SVM), eXtreme gradient boosting of decision trees (XGB), and
artificial neural network (ANN), to identify candidate biomarkers for incident dementia. Over a
mean 12 ± 5 yr follow-up, 243 (14.8%) participants developed dementia. In multivariable models
including all 38 available biomarkers, the XGB model demonstrated the strongest predictive accuracy
for incident dementia (AUC 0.74 ± 0.01), followed by ANN (AUC 0.72 ± 0.01), and SVM (AUC
0.69 ± 0.01). Stepwise feature elimination by random sampling identified a subset of the nine most
highly informative biomarkers. Machine learning models confined to these nine biomarkers showed
improved model predictive accuracy for dementia (XGB, AUC 0.76 ± 0.01; ANN, AUC 0.75 ± 0.004;
SVM, AUC 0.73 ± 0.01). A parsimonious panel of nine candidate biomarkers were identified which
showed moderately good predictive accuracy for incident dementia, although our results require
external validation.

Keywords: dementia; risk prediction; biomarkers; blood biomarkers; machine learning

1. Introduction

Dementia is a significant contributor to death and dependence worldwide, with an
estimated global prevalence of approximately 44 million people [1]. Early disease detection
and risk prediction are key to informing the future development of effective population-
level interventions for dementia prevention. Identification of dementia at the earliest
preclinical or prodromal stages will offer the greatest opportunity for disease modification.
Blood biomarkers for preclinical stages of dementia could also improve participant selection
for phase III clinical trials.
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There is a growing appreciation that in addition to neurodegeneration, there are a
number of pathways implicated in the pathophysiological changes underlying the early
development of cognitive decline and dementia, with data from genome-wide association
studies supporting a role for inflammation, vascular and endothelial injury, and lipid
processing, amongst others [2]. A modeling approach for preclinical dementia that incorpo-
rates multiple candidate biomarkers reflecting the diverse pathophysiological pathways
underlying dementia (e.g., inflammation, vascular injury, thrombosis, neurodegeneration,
metabolic signaling, lipid signaling), compared to individual blood biomarkers, is likely to
offer greater utility in predicting a person’s risk of dementia. Machine learning methods
offer an attractive analytical strategy to this end, as one can simultaneously and efficiently
evaluate multiple potential candidate biomarkers for dementia risk [3], and their potential
interactions, without needing to specify a priori the nature (e.g., directionality or linearity)
of the biomarker–outcome association.

The objective of this study was to identify candidate circulating biomarkers for demen-
tia at a preclinical stage, using a community-based sample of cognitively normal individuals
in the Framingham Heart Study (FHS) and employing three machine-learning-based meth-
ods, namely support vector machine (SVM), eXtreme gradient boosting of decision trees
(XGB), and artificial neural network (ANN).

2. Materials and Methods
2.1. Study Sample

The FHS is a community-based, prospective cohort study initiated in 1948 that in-
vestigates risk factors and incidence of cardiovascular disease (CVD) and dementia in the
community. Three generations of participants have been enrolled to date [4]. The Original
Cohort was enrolled from 1948 (n = 5209) with examinations completed at 2-year inter-
vals. From 1971, the children of the Original Cohort participants, and their spouses, were
invited to enroll in the Offspring or Second Generation Cohort (n = 5124). The Offspring
Cohort are examined at 4–8-year intervals, with 9 examinations completed to date. The
Third Generation Cohort was enrolled from 2002 to enhance our genotypic and phenotypic
understandings of CVD and other outcomes (n = 4095). This cohort consists of individuals
who have an Offspring Cohort parent, with examinations occurring at 4–6-year intervals.
The New Offspring Cohort was initiated in 2003 to provide additional familial data and
consists of parents of Third Generation Cohort participants who had not previously been
enrolled in the Offspring Cohort (n = 103). Given the greater ethnic diversity in the town
of Framingham since the Original Cohort was initiated in 1948, two cohorts have since
been instituted consisting of individuals of African American, Hispanic, Asian, Indian,
Native American, and Pacific Islander descent. The OMNI One Cohort was formed in 1994
(n = 507) and the OMNI Two Cohort in 2003 (n = 410). The Omni Two Cohort includes
some family members of OMNI One Cohort participants. Further details on FHS cohorts
have been published previously [5].

For the purposes of this investigation, we included Second Generation (Offspring)
Cohort participants who attended their seventh examination cycle (1998–2001, i.e., base-
line for the present investigation) and who had circulating biomarkers measured at this
examination, were aged 60 years or above, free of a diagnosis of dementia at baseline, and
had subsequent data available on dementia status on follow-up (n = 1772). We excluded
participants (n = 130) with missing data for more than half of the biomarkers under inves-
tigation and those aged < 60 years at baseline, due to the negligible number of dementia
cases in our cohort prior to this age. All participants provided written informed consent,
and the study was approved by the Institutional Review Board at the Boston University
Medical Center.

2.2. Outcome Measure

Our primary outcome measure was incident all-cause dementia occurring at any time
after examination cycle seven (baseline) up to December 2016. Dementia was diagnosed in
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line with the Diagnostic Statistical Manual of Mental Disorders (4th edition) criteria [6]. A
diagnosis of dementia was reached based on a detailed review of available neurological
examination records, neuropsychological assessments, MRI brain data, outpatient and
nursing home clinical records, family interview data, and any available autopsy data by a
Dementia Review Committee comprising at least one neurologist and one neuropsychol-
ogist. In brief, starting from examination cycle five, all participants were systematically
screened for the occurrence of new-onset dementia via yearly health status updates and
the Mini-Mental State Examination (MMSE). Starting from examination cycle seven, all
Offspring Cohort participants were invited to participate in neuropsychological testing
(in addition to the MMSE) and a brain MRI. The comprehensive neuropsychological test
battery consisted of the following components: logical memory (recognition, immediate
recall, and delayed recall), a widely used measure of verbal memory and subset of the
Wechsler Memory Scale (WMS); visual reproduction (recognition, immediate recall, and
delayed recall), based on the WMS visual reproduction subtest; paired associate learning, a
measure of ability to learn new information, a subset of the WMS; digit span (forward and
backward), a measure of both working memory and simple attention, based on the Weschler
Adult Intelligence Scale (WAIS); similarities, a measure of abstract reasoning, based on
the WAIS; Boston naming test, a measure of naming function; trail making tests A and
B, a measure of visual attention and executive function; finger tapping test, a measure of
motor speed and motor dysfunction laterality; Hooper visual organization test, a measure
of visuospatial function; and wide range achievement test (reading component). All tests
were administered by trained examiners using standardized protocols. Further details on
neuropsychological testing have previously been reported [7]. If at any point a FHS physi-
cian, a participant, or a participant’s family member is concerned about potential cognitive
impairment in that participant, or if the MMSE score is less than the education-adjusted
cutoff, five points lower than the participant’s prior highest score or three points lower
than the preceding examination score, more in-depth cognitive testing for that participant
is completed [8]. For participants with suspected cognitive impairment who do not meet
diagnostic criteria for dementia, additional yearly neuropsychological testing is performed
for ongoing surveillance.

2.3. Baseline Characteristics

We measured baseline demographic and clinical variables at the seventh examination
cycle (baseline), including age, sex, current smoking status (participant self-reported within
the previous 1 year), body mass index (BMI), use of antihypertensive medication, systolic
blood pressure (mean of two physician recorded measurements), history of diabetes mel-
litus (fasting blood glucose ≥ 7mmol/L, random blood glucose ≥ 11.1 mmol/L, or use
of insulin or oral hypoglycemics), apolipoprotein E4 (ApoE4) carrier status (a carrier was
defined as E2/E4, E3/E4, or E4/E4), prevalent cardiovascular disease (CVD, including
peripheral vascular disease, coronary heart disease, and congestive heart failure), prevalent
stroke, total cholesterol, and high-density lipoprotein cholesterol (HDL-C).

2.4. Measurement of Biomarkers

Circulating biomarkers were measured as part of the Markers for Vascular Cogni-
tive Impairment and Dementia (MarkVCID) initiative [9]. At the baseline clinical visit
(seventh examination cycle), fasting blood samples were obtained from the antecubital
vein of participants in the supine position, immediately centrifuged, and stored at −80 ◦C.
Plasma concentrations of each biomarker were subsequently measured from these frozen
samples. We included markers of neurodegeneration (Aß42/40 ratio, clusterin), inflam-
mation (CD14, sCD40L (also prothrombotic), GDF-15, CRP, ICAM-1, IL-6, MCP-1, MPO,
OPG, P-Selectin, TNF-α, TNFR-2), thrombosis (fibrinogen, PAI-1, sCD40L), cardiac function
(BNP), renal function (cystatin C), microvascular/endothelial injury (homocysteine, MMP-
9), neurotrophic factors (BDNF, IGF-1, IGFBP-1,2,3 and VEGF), adipokines (adiponectin,
leptin, resistin), lipids (APO-A1, APO-B, HDL-C, TC), hormone measures (FGF23), vitamins
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(vitamin B12, vitamin D), and metabolic factors (HbA1c, insulin) (Table 1). Biomarkers were
measured using the optimal assay available, including Quanterix Single Molecule Array
(Simoa, Norway), ELISA, Luminex and Meso Scale Discovery (MSD). Plasma total tau
(T-tau) was measured at examination cycle eight and analyzed using Quanterix Simoa assay.
All assays were performed in duplicate with excellent inter-assay coefficients of variation.
Performance characteristics of individual biomarker assays are provided in Table 1.

Table 1. List of blood-based biomarkers with assay performance characteristics.

Variable Min 25%
Quantile Median 75%

Quantile Max
Missing

Rate
(%)

Inter-
Assay

CV
(%)

Intra-
Assay

CV
(%)

LLOQ

Aß42/40 * 0.1 0.2 0.3 0.3 1.2 1 - - -

Adiponectin (ug/mL) 0.9 5.9 9 14.1 59.9 16.8 9.6 6.2 0.08

ApoA1 (pg/mL) 8.2 × 107 7.8 × 108 9.1 × 108 1.0 × 109 3.3 × 109 0.7 7.3 11.8 3.4 × 105

ApoB (pg/mL) 2.4 × 108 6.1 × 108 7.1 × 108 8.4 × 108 3.6 × 109 0.7 13.4 6.6 2.6 × 106

BDNF (pg/mL) 1713.7 1.7 × 104 2.3 × 104 2.9 × 104 5.6 × 104 8.2 7.6 4.8 312

BNP (pg/mL) 10.1 132 275 548.8 8530 1 7.2 10.3 9.7

CD14 (pg/mL) 7.66 × 106 1.44 × 107 1.65 × 107 1.92 × 107 4.24 × 107 0.3 14.5 3.6 5.8 × 104

CD40L (ng/mL) 0.1 0.5 1.1 3.3 29.5 0.2 14.1 4.9 0.005

Clusterin (pg/mL) 1.54 × 106 4.44 × 107 5.07 × 107 5.88 × 107 1.23 × 108 0.4 12.6 9.1 1.5 × 104

CRP mg/L 0.2 1.2 2.6 5.5 99.8 0.2 5.3 3.2 0.2

Cystatin C * (mg/L) 0.6 0.9 1 1.1 7 1.6 3.3 2.4 0.3

FGF-23 (pg/mL) 19 56 69 89 434 13.6 13.4 5.5 18.7

Fibrinogen (mg/dL) 204 343 387 436 763 0.4 4.4 1.1 90

GDF-15 (pg/mL) 249 602 770 1030 2.1 × 104 0.3 2.9 2.3 40

HbA1c (%) 1.7 5.2 5.6 6.1 14.6 10.1 <2.5 <2.5 0

HDL-C * (mg/dL) 17 40 50.5 63 136 0.1 2.8 0.9 17
Homocysteine *

(umol/L) 3.3 6.9 8.4 10.3 84.3 0.1 7 4.5 3.2

ICAM-1 (ng/mL) 29 217 247.1 290 1327.5 0.1 6 3.9 <0.4

IGF-1 (ng/mL) 24.3 84.8 105.1 129.6 377.3 8.9 4.5 3.4 23.5

IGFBP-1 (pg/mL) 1000 5545 1.0 × 104 2.0 × 104 1.7 × 105 2.4 5.4 2.5 979

IGFBP-2 * (pg/mL) 1.79 × 106 8.24 × 106 1.22 × 107 1.77 × 107 9.31 × 107 0.8 8.7 6 1.6 × 106

IGFBP-3 (pg/mL) 9.4 × 104 1.8 × 105 2.2 × 105 2.6 × 105 6.2 × 105 0.5 18 4.4 272

IL-6 (pg/mL) 0.6 2.1 3.2 4.8 104.4 0.4 9 3.7 <0.7

Insulin (pmol/L) 14.9 59.2 80.4 111.6 1296 1.2 6.1 3.9 12

Leptin * (pg/mL) 413 2290 5425 11875 129000 5.9 7 3.2 397

MCP-1 * (pg/mL) 34.5 267.1 328.4 398.3 2139.8 2 11.1 3.8 5.7

MMP-9 (pg/mL) 1.7 × 104 3.8 × 104 4.8 × 104 6.4 × 104 6.1 × 105 0.5 10 3.9 243

MPO (ng/mL) 4.9 27.4 38.9 58.7 332.1 3.1 NR 3.2 0.2

OPG (pmol/L) 0.6 5 6 7.1 26.9 0.3 NR 3.7 0.1

PAI-1 * (pg/mL) 4600 1.4 × 104 1.9 × 104 2.6 × 104 1.2 × 105 0.5 10.8 3.6 449

P-selectin (ng/mL) 2.5 29.4 37.3 46.8 194.9 0.2 NR 3.2 <0.5

Resistin (ng/dL) 1.2 10.3 13.2 17.3 110 16.2 11 4.6 0.2

TC (mg/dL) 83 174 197 219 357 0 1.5 0.7 20

TNF-a * (pg/dL) 0.3 1 1.3 1.7 20.9 22.7 11.3 7.6 0.1

TNFR-2 (pg/mL) 681.6 1814.8 2170.1 2665.2 8383.4 2.4 NR 2.3 0.2

VEGF (pg/mL) 15.3 162.9 288.6 459.7 1728.4 8.4 14.7 4.3 9.2

Vitamin B12 (pg/mL) 54.7 323.1 411.2 522.9 2931.2 0.1 10 8.5 34.6

Vitamin D (ng/mL) 3.1 14.8 19.4 24.2 58.5 45.8 8.5 NR 2.2

T-tau (pg/mL) 0.8 3.3 4.1 5 17 30.6 7.5 4.1 0.01

* The nine most informative biomarkers are highlighted in bold. Abbreviations: LLOQ, lower limit of quantifica-
tion; CV, coefficient of variation; NR = not reported (for some biomarkers, no inter-assay CV is reported as assays
were run at the same time/using the same plate); Aß42/40, ß-amyloid 42/ß-amyloid 40; Apo A1, Apolipopro-
tein A-1; ApoB, Apolipoprotein B; BDNF, brain-derived neurotrophic factor; BNP, brain natriuretic peptide;
CD14, monocyte differentiation antigen; CD40L, cluster of differentiation 40 ligand; CRP, C-reactive protein;
FGF23, fibroblast growth factor 23; GDF-15, growth differentiation factor 15; HbA1c, glycosylated hemoglobin;
HDL-C, high-density lipoprotein cholesterol; ICAM-1, intercellular cell-adhesion molecule-1; IGF-1, insulin-like
growth factor 1, pg/mL; IGFBP, insulin-like growth factor-binding protein; IL-6, interleukin-6; MCP-1, monocyte
chemotactic protein-1; MMP-9, matrix metallopeptidase 9; MPO, myeloperoxidase; OPG, osteoprotegerin; PAI-1,
plasminogen activator inhibitor 1; TC, total cholesterol; TNF-α; tumor necrosis factor-α; TNFR-2, tumor necrosis
factor receptor-2;VEGF, vascular endothelial growth factor; T-tau, total tau.
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2.5. Statistical Analysis

Biomarkers were inverse logarithmically transformed to approximate a normal distri-
bution and to facilitate cross comparisons between biomarkers. We excluded biomarkers
with missing data in more than half of participants (n = 5). For biomarkers with <50%
missing data, we performed multiple imputation using the chained equations approach
to impute missing values [10]. Baseline characteristics were compared between those
with and without incident dementia during follow-up, using the Wilcoxon Rank-Sum test
for continuous variables and Fisher’s exact test for categorical variables. p < 0.05 was
considered significant.

We evaluated three different machine learning methods in the current study, including
support vector machine, eXtreme gradient boosting of decision trees, and artificial neural
network. Support vector machine (SVM) involves constructing a hyperplane that separates
two different classes of feature vectors with a maximum margin; one class represents cases
and the other represents controls [11]. The eXtreme gradient boosting of decision trees
(XGB) is a tree boosting method with superior performance [12]. An algorithm integrates
many decision trees to improve predictive performance and new models are added to
correct existing model errors at each step. An artificial neural network (ANN) mimics a
human neuron network, with an input layer of neurons representing the descriptors in the
training set, and a summation layer of neuron outputs to obtain the estimated probability
density function for that class of neurons.

In our base machine learning models, adjusted for age, sex, survival time, and ApoE
E4 carrier status, we included all 38 available biomarkers.

We subsequently implemented stepwise feature elimination to remove any nonin-
formative biomarkers from the models (i.e., biomarkers with p > 0.05). One thousand
imputations were performed, and biomarkers that were consistently identified as signifi-
cant in more than 90% of permutations were selected as the most informative biomarkers.
We then evaluated the performance of the machine learning models using five-fold cross-
validation. In each cycle, four-fifths of samples was used to build the training model,
and the remaining one-fifth of samples was used for testing the model. This process was
repeated five times until all samples were used for testing once. Given that a different
threshold cutoff could result in a different number of positive and negative predictions,
we used the receiver operating characteristic (ROC) curve to summarize model predictive
performance. In addition, we calculated the specificity, precision, and overall accuracy
using different sensitivity cutoffs (presented in Supplemental Table S1). To further validate
the robustness of our analysis, we performed 1000 permutations. Results are presented as
means ± standard deviations (SD).

2.6. Sensitivity Analyses

The role of tau in the pathophysiology of Alzheimer’s disease (AD) and other demen-
tias is well recognized. As plasma t-tau was not measured at examination cycle seven, we
did not include it in our primary analysis. However, we completed a sensitivity analysis
including plasma t-tau measured at examination cycle eight (2004–2011), to determine
if addition of t-tau to the machine learning models of 38 plasma biomarkers resulted in
improved model performance. For the purposes of this analysis, we included those individ-
uals who were dementia-free, aged 60 years or above at the time of examination cycle seven,
attended examination cycle eight, had data available on circulating t-tau at examination
cycle 8 and the remaining panel of 38 biomarkers at examination cycle seven, and who had
data available on dementia status on follow-up (n = 1159).

In an additional sensitivity analysis, we built a predictive model using logistic regres-
sion analysis and compared the predictive performance of this model (AUC) with the three
machine learning models. All analyses were conducted using R statistical software v4.0.3.
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3. Results
3.1. Cohort Descriptives

The current investigation included 1642 eligible participants from the Offspring Cohort
(mean age 69 ± 6 years, 52.7% women) who attended the seventh examination cycle.
Descriptive characteristics of the participants are presented in Table 2. Participants were
followed for a mean (SD) of 12 ± 5 years during which 243 (14.8%) were diagnosed with
incident dementia. Individuals who developed dementia were more likely to be female,
older, have a lower Mini-Mental State Examination (MMSE) score, have a higher baseline
systolic blood pressure, and a history of cardiovascular disease and diabetes mellitus.

Table 2. Baseline descriptives.

Dementia
(n = 243)

No Dementia
(n = 1399) p Value

Women 144 (59.3) 721 (51.5) 0.03

Age, years 72 ± 6 68 ± 6 <0.001

MMSE (median, IQR) 28 (27–29) 29 (28–30) <0.001

Current smoker 22 (9.1) 118 (8.4) 0.75

Body mass index (BMI), kg/m2 27.6 ± 5.0 28.1 ± 5.1 0.14

Total cholesterol, mg/dL 195 ± 38 199 ± 36 0.11

HDL cholesterol, mg/dL 52 ± 17 53 ± 17 0.25

Prevalent CVD 62 (25.5) 250 (17.9) 0.005

Prevalent stroke 17 (7.0) 57 (4.1) 0.06

Hypertension treatment 125 (51.4) 599 (42.8) 0.01

Diabetes 14 (5.8) 151 (10.8) 0.01

Systolic blood pressure, mmHg 136± 20 132 ± 20 0.001
Baseline characteristics were measured at examination cycle 7 and are presented separately for individuals who
subsequently developed dementia during follow-up, and those who remained dementia-free. Values are reported
as mean ± standard deviation for continuous variables and n (%) for categorical variables.

3.2. Biomarkers Predictive of Dementia

In our sample, 43 plasma biomarkers were measured at examination cycle seven, of
which 38 were available in more than half of the participants and eligible for inclusion in our
machine learning models. Of the three machine learning models evaluated, XGB showed
the strongest predictive accuracy for incident dementia (AUC = 0.74 ± 0.01), followed by
ANN (AUC 0.72 ± 0.01), and SVM (AUC 0.69 ± 0.01) (Figure 1a).
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Figure 1. (a) Prediction of dementia using 38 biomarkers. (b) Prediction of dementia using the 9 most
informative biomarkers.

Using stepwise-elimination-based feature selection, we identified a subset of nine
highly informative biomarkers for predicting dementia risk that were consistently selected
in more than 90% of permutations (Table 1). When we rebuilt the machine learning models
using these nine biomarkers, all three updated models showed improved predictive perfor-
mance: XGB demonstrated the highest predictive accuracy (AUC 0.76 ± 0.01), followed by
ANN (AUC 0.75 ± 0.004), and SVM (AUC 0.73 ± 0.01) (Figure 1b). In a sensitivity analysis,
addition of plasma tau to the machine learning models of these nine biomarkers resulted in
no appreciable change in the AUC: XGB (AUC 0.76 ± 0.01), ANN (AUC 0.75 ± 0.004), and
SVM (AUC 0.72 ± 0.01). In a second sensitivity analysis using logistic regression modeling,
the logistic regression model did not perform better (AUC 0.72 ± 0.01) compared to the
three machine learning models.
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4. Discussion

In this community-based cohort, we identified important candidate biomarkers for
dementia risk prediction incorporating a panel of 38 potential candidate markers and
utilizing three different machine learning methods. The XGB model demonstrated the
strongest predictive accuracy for incident dementia. A parsimonious subset of nine candi-
date biomarkers were identified, which together provided the highest predictive accuracy
for dementia risk, demonstrating moderately good accuracy.

In our investigation, XGB and ANN showed moderate predictive accuracy for inci-
dent dementia with an AUC of greater than 0.70 in models incorporating all 38 available
biomarkers. Using stepwise feature elimination, we identified a subset of nine most infor-
mative biomarkers for inclusion in a more parsimonious model. In analyses confined to
these nine biomarkers, all three machine learning models showed improved predictive
accuracy (AUC of 0.76 for XGB), likely due to the reduced noise-to-signal ratio when only
the most informative biomarkers were included.

A number of studies have proposed various blood multimarker panels for the screen-
ing and diagnosis of dementia and for predicting conversion from mild cognitive impair-
ment (MCI) to dementia [13–33]. A study of machine learning approaches in patients
with MCI identified increased levels of plasma AB42, t-tau, and p-tau181 in those with
AD dementia compared to MCI and controls [34]. Indeed, many of the biomarkers identi-
fied in our sample overlap with those included in previous panels, e.g., Aß42/40 [14,35],
TNF-α [13,15,16,18,31], PAI-I [16], leptin [16], IGFBP-2 [28,31,33], MCP-1 [32], and homo-
cysteine [28]. While many prior studies have shown promising diagnostic accuracy in
differentiating individuals with dementia from normal controls, subsequent validation
attempts have proved challenging, which has limited the development of multimarker
panels to date [20,36–38]. Promisingly, a recent study replicated 6 of 13 identified protein
biomarkers in an external cohort [33]. Our study adds to the existing literature, by iden-
tifying a multimarker panel of nine promising candidate markers in cognitively normal
individuals at baseline in a community-based setting.

The majority of the biomarkers we identified in this investigation have previously been
associated with cognitive functioning and/or dementia. Aß42/40 has been established as
a promising blood biomarker for dementia screening [39–41]. In addition, we identified
two inflammatory biomarkers associated with incident dementia, tumor necrosis factor-α
(TNF-α) and monocyte chemotactic protein-1 (MCP-1). TNF-α is thought to play a role
in the development of ß-amyloid and tau pathology [42], with some early phase clinical
trial data suggesting a potential cognitive benefit of TNF-α inhibitors in patients with AD
dementia [43,44]. MCP-1, a member of the chemokine family and a marker of glial cell
activation, has been associated with ß-amyloid pathology in murine models of AD demen-
tia [45]. Elevated levels of MCP-1 have also been associated with amnestic difficulties and
lower medial temporal lobe volumes in patients with mild cognitive impairment and AD
dementia [46]. We also identified a number of vascular and metabolic markers associated
with dementia, many of which have previously been associated with dementia, cognitive
impairment, or dementia brain pathology, including homocysteine [47], plasminogen acti-
vator inhibitor-1 (PAI-1) [48], cystatin C [49], and leptin [50,51], although results for leptin
have been conflicting [52]. High-density lipoprotein cholesterol (HDL-C) was also identi-
fied as one of the most informative biomarkers in our analysis. A previous study reported
an association between elevated levels of high-density lipoprotein cholesterol (HDL-C) and
reduced dementia risk (after adjusting for ApoE E4 genotype) [53], although a subsequent
meta-analysis failed to detect an association [54]. In addition, our machine learning models
identified insulin-like growth factor-binding protein-2 (IGFBP-2) (a neurotrophic factor
thought to inhibit the neuroprotective effects of the insulin-like growth factor signaling
system in the brain) as an important predictor of dementia risk, consistent with findings
from prior studies [28,33,55].

Our study has some important limitations. Our sample size was modest; however, we
included carefully phenotyped individuals who were closely followed for the development
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of incident dementia over a relatively long duration using stringent surveillance criteria. We
were unable to account for time to event in our machine learning analyses and thus we can-
not comment on the predictive value of this panel of biomarkers for time to risk of dementia.
Our goal was instead to utilize machine learning approaches to identify a core set of po-
tential biomarkers implicated in the complex biological pathways underpinning dementia.
The participants included in this study were exclusively adults of European descent. Thus,
our findings may not be generalizable to other ethnicities/age groups. Biomarker data were
missing for a number of participants, requiring use of multiple imputation. However, the
proportion of individuals with missing biomarker data was relatively small for the majority
of included biomarkers (data for 28 (75%) biomarkers were missing in <5% of participants).
We did not have data available on other identified markers of dementia at examination
cycle seven to include in our analyses, e.g., phosphorylated tau species such as p-tau181
and p-tau217, neurofilament light chain (NFL), or glial fibrillary acidic protein (GFAP).
However, the addition of tau (measured at examination cycle eight) to our models did not
materially alter the predictive performance of the models. Admittedly, total-tau is a less
specific biomarker for AD dementia compared to phosphorylated tau species. Our study
does not establish a causal relationship between individual biomarkers and risk of incident
dementia. Our diagnosis of dementia was based on clinical criteria rather than biomarker-
based definitions (e.g., amyloid or tau deposition using cerebrospinal fluid analysis or brain
positron emission tomography imaging), although our approach is more consistent with
routine clinical practice in which CSF and PET data are not readily available. Finally, our
results will require external validation in other cohorts (e.g., community-based cohorts
in other countries and clinic-based cohorts of patients presenting with minor cognitive
symptoms), as well as those with greater representation across other ethnicities.

5. Conclusions

Machine learning is an efficient strategy to predict the synergistic effects of multiple
biomarkers which might be related to dementia in a nonlinear way. In our community-
based cohort, our three machine learning models showed moderately good predictive
accuracy in identifying individuals at high risk of developing dementia, with XGB demon-
strating the greatest predictive accuracy. A parsimonious subset of nine biomarkers showed
promise in predicting dementia in cognitively healthy adults in a community setting, al-
though our results will require replication in other cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11091506/s1, Table S1: Performance of machine learning
models under different sensitivity cutoffs.
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