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Background
Differences in gene expression are likely to underpin much of human diversity, includ-
ing psychiatric disorders such as schizophrenia (SCZ). SCZ is a severe, complex, and 
heritable psychiatric disorder with a worldwide prevalence of 1%, characterized by 

Abstract 

Background:  Common and complex traits are the consequence of the interaction 
and regulation of multiple genes simultaneously, therefore characterizing the intercon‑
nectivity of genes is essential to unravel the underlying biological networks. However, 
the focus of many studies is on the differential expression of individual genes or on 
co-expression analysis.

Methods:  Going beyond analysis of one gene at a time, we systematically integrated 
transcriptomics, genotypes and Hi-C data to identify interconnectivities among indi‑
vidual genes as a causal network. We utilized different machine learning techniques 
to extract information from the network and identify differential regulatory pattern 
between cases and controls. We used data from the Allen Brain Atlas for replication.

Results:  Employing the integrative systems approach on the data from CommonMind 
Consortium showed that gene transcription is controlled by genetic variants proximal 
to the gene (cis-regulatory factors), and transcribed distal genes (trans-regulatory fac‑
tors). We identified differential gene regulatory patterns in SCZ-cases versus controls 
and novel SCZ-associated genes that may play roles in the disorder since some of 
them are primary expressed in human brain. In addition, we observed genes known 
associated with SCZ are not likely (OR = 0.59) to have high impacts (degree > 3) on the 
network.

Conclusions:  Causal networks could reveal underlying patterns and the role of genes 
individually and as a group. Establishing principles that govern relationships between 
genes provides a mechanistic understanding of the dysregulated gene transcription 
patterns in SCZ and creates more efficient experimental designs for further studies. This 
information cannot be obtained by studying a single gene at the time.

Keywords:  Bayesian causal network, Mendelian randomization, Data integration, 
Transcriptomic, Cis/trans-regulatory factors, Schizophrenia
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abnormalities in thought and cognition. Recent studies on SCZ, which comprise linkage 
scans and their meta-analyses, candidate gene association analysis, differential expres-
sion analysis and genome-wide association studies, investigated genes/markers and 
chromosomal regions for SCZ [1–5]. These studies showed that SCZ disorder involves 
changes in multiple genes [6, 7]. Fortunately, recent technologies of high-throughput 
sequencing provide opportunities to develop new tools for understanding the functional 
status of genes from a systemic perspective [8, 9] and uncovering the underlying SCZ 
processes.

Co-expression network analysis is one of the approaches that aim to infer gene func-
tion from genome-wide gene expression data. However, this kind of networks reveals 
groups of co-activated genes based on pairwise correlations, they do not normally confer 
information about causality or distinguish between regulatory and regulated genes [10]. 
In addition, they face limited success at gene functional inference due to finding many 
dependencies [11]. To reduce the dependencies, Bayesian networks can be constructed 
which are based on conditional probabilities and represent in/dependence properties 
between two genes after conditioning on the other genes in the study. Therefore, Bayes-
ian networks are more informative and sparser compared to co-expression networks, 
especially in large-scale omics data. Although Bayesian networks can be directed, the 
directions may not be robustly identified. In order to find robust directions, causal net-
works are suggested. A causal network is a Bayesian network augmented with Mendelian 
randomization principles that provide stable directionality [9] with causal interpretation.

Causal networks are established in the recognition of the hierarchical structure of the 
biological systems and provide a better understanding of the regulatory patterns. In addi-
tion, causal networks result in finding novel intervention targets and revealing underly-
ing pathways with reproducible results [12]. Studying transcriptomic-causal networks 
may lead to identification of differential gene regulation patterns, unveil the mechanisms 
that control the transcription of the SCZ-associated genes, and narrow down the search 
space for finding trans-regulatory elements. Considering all together, transcriptomic-
causal networks provide a mechanistic understanding of disease processes and facilitate 
more efficient experimental design for further studies [8], which cannot be obtained 
using common approaches in transcriptomic data analysis such as differential expres-
sion (DE) and transcriptome-wide association study (TWAS). We compare utilities of 
transcriptomic-causal network with DE and TWAS in the discussion.

To divulge underlying relationships of SCZ related genes, we use genotypes and Hi-C 
data and build a causal network over RNA-seq data from the dorsolateral prefrontal cor-
tex of the CommonMind Consortium (CMC) in the study of SCZ and use the data from 
the Allen Brain Atlas [13] for replication. We utilize some properties of the transcrip-
tomic-causal networks to provide a mechanistic understanding of gene transcription 
and SCZ processes in the brain. Our analysis reveals that highly connected genes in the 
network (degree ≥ 3) are less likely (OR = 0.5) to be affected by genetic variants. These 
genes are more often found regulated by or regulating other distal genes as trans-regula-
tory factors. Furthermore, utilizing machine learning approaches to extract information 
from the network, we identify genes that are differentially regulated in SCZ-cases versus 
controls and essential genes in human brain, which shows similar impact on the network 
in both cases and controls. In addition, by mapping the genes previously reported as 
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SCZ-associated genes on the network, we observe less than 10% of the SCZ-associated 
genes have high impacts on the networks. This result can be an explanation for the small 
effect of most SCZ-associated genes on the SCZ pathophysiology.

To the best of our knowledge, this approach of integrating DNA and gene expression 
and Hi-C data to analyze transcriptomic data systematically is a novel approach. In addi-
tion, extracting information from causal networks through statistical techniques and 
machine learning algorithms to compare case and control data is for the first time in the 
context of gene expression and systems approaches.

Data

RNA‑seq

Gene expression profiles (RNA-seq) from the dorsolateral prefrontal cortex of 258 cases 
with SCZ and 279 controls are available on CMC website (https​://www.synap​se.org/
CMC), and the details on QC and normalization can be found in [14]. Following data 
normalization, 16,423 genes (based on Ensemble models) were expressed at levels suf-
ficient (at least 1 CPM, count per million, in at least 50% of the individuals) for analysis, 
of which 14,222 were protein-coding. Covariates for RNA integrity (RIN), library batch, 
institution, diagnosis, age at death, genetic ancestry, post-mortem interval and sex 
together explained a substantial fraction (42%) of the average variance of gene transcrip-
tion and were thus employed to adjust the data for the analyses [14]. Moreover, we use 
RNA-seq data available in the Allen Brain Atlas [13] for replication. We select 25 white 
matter in control samples since degeneration in this tissue is related to reduce prefrontal 
cortex activation [15].

Genotype data

Samples were genotyped on the Illumina Infinium HumanOmniExpressExome array 
(958,178 single-nucleotide polymorphisms, or SNPs). These genotypes were used to esti-
mate the ancestry of the samples and to ensure sample identity across DNA and RNA 
experiments [14]. The original distribution of ethnicities in CMC includes 80.7% Cauca-
sian and 19.3% from other ethnicities. To prevent the study from being confounded due 
to different ethnicities, we include only Caucasians (209 and 206 samples in SCZ and 
control group respectively).

Hi‑C data

Hi- C data can be generated using Chromosome conformation capture techniques, 
which are a set of molecular biology methods used to analyze the spatial organization 
of chromatin in cells. These methods quantify the number of interactions between 
genomic loci that are nearby in 3-D space but may be separated by many nucleotides in 
the linear genome [16]. Hi-C data from [17] is used in this study. The Hi-C libraries were 
constructed from mid-gestation developing human cerebral cortex during the peak of 
neurogenesis and migration from two major zones: the cortical and subcortical plate, 
consisting primarily of post-mitotic neurons and the germinal zone, containing primar-
ily mitotically active neural progenitors.

https://www.synapse.org/CMC
https://www.synapse.org/CMC
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Overview of the method

Figure  1 provides a schematic representation of the approach. Each step is briefly 
explained in the following and detailed in the method section.

Step‑1: Building transcriptomic‑causal network

We integrate information from genotype, transcriptomics data, and Hi-C to construct 
transcriptomic-causal network, according to which the genetic variations affect gene 
expressions unidirectionally. We assess the quality of the fit by employing Hamming 
distance [18] and test the stability of the network using a permutation test.

Fig. 1  Schematic representation of our approach
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Step‑2: Mapping SCZ‑associated genes on the network

To extract information from the network with focus of SCZ, we map the SCZ-associ-
ated genes, previously reported in the literature, on the network.

Step‑3: Utilizing machine learning and statistical approaches to extract network properties

The causal network properties measure the impact of each gene individually (such as 
out-degree and in-degree) and genes as a group (such as modules) as well as pathways 
that represent how the effect of an intervention spreads across the system/transcrip-
tion network.

The out-degree of a gene refers to the number of downstream genes directly affected 
by the gene of interest, whereas in-degree of a gene refers to the number of upstream 
genes affected the gene of interest. Based on their connectivity, genes can be classified 
as broadcasters if they have non-zero out-degree and zero in-degree; receptors if they 
have non-zero in-degree and zero out-degree; and mediator if they have both non-
zero out- and in-degrees. For instance, RAB30 in Fig.  2a (closeup) is a broadcaster 
gene; ZNF770 is a receptor gene; TYGO1 is a mediator.

The effect of a gene can be propagated downstream until it reaches a receptor on a 
given path called pathway. Genes with a high number of out-degree and long path-
ways have a high impact on the network and hence are considered as “cores”. We 
define a module as a subnetwork that includes a core and genes highly influenced by 
the core directly or indirectly. The boundaries of the modules are made of receptor 
genes that prevent the effect of the core distributs beyond these genes.

Utilizing these properties, we investigate the relationship between connectivity of 
the genes in the network and other properties such as being SCZ associated, differ-
entially expressed, and loss of function intolerant. We also assess the impact of the 
cores on other genes in the corresponding modules using a linear regression model 
and cross-validation.

Step‑4: Identifying differential regulatory patterns between SCZ‑cases and controls, essential 

genes for the brain function and novel genes putatively related to SCZ

To estimate differential regulatory patterns between SCZ-cases and controls, we seek 
genes with a high degree of connectivity (degree ≥ 3) in the networks whose loss of 
connectivity might have a significant effect on brain function. Focusing on genes with 
more than one upstream effector and at least one downstream gene, we search for 
differential regulatory patterns by calculating the exclusive effect that is the effect of 
the mediator on its downstream gene after adjusting for its upstream genes. Non-
significant exclusive effect corresponds to the loss of mediator.

We next assess the impact of the core on the transcription of other genes within 
each module, through the linear prediction model, and compare SCZ-cases versus 
controls. The cores that are good predictors for the transcription of downstream 
genes in both cases and controls are considered to be essential for the normal brain 
function.
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By focusing on identified modules, we find new genes putatively related to SCZ 
using penalized linear regression and conditional analysis given the list of SCZ-asso-
ciated genes mapped on the network at Step-2.

Fig. 2  a Identified transcriptomic-causal network and a close-up. Each node represents a gene. Genes 
associated with SCZ are depicted in blue. b Distribution of the connectivity of the genes with genetic 
variants (left) and the genes without genetic variants (right) in the network. c Stability of the network after 
permutation of broadcaster genes (blue curve) and receptors genes (red curve). d Presentation of in-degree 
and out-degrees of genes associated with SCZ in the network. Single color bars in yellow or purple are 
corresponding to broadcaster and receptor genes respectively while bars with both colors are representing 
mediator genes. e Venn diagram groups SCZ-associated genes based on the type of studies that previously 
found their association (psych.cnv: Psychiatric study of copy number variation; SCZ.denovo.nonsyn: SCZ 
study of non-synonymous de novo mutations; SCZ.gwas: SCZ study of genome wide association studies; SCZ.
denova.lof: SCZ study of Loss-of-function de novo mutations)
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Step‑5: Functional annotation and gene interactions

We look at different databases: the UniProt KnowledgeBase [19] for basic functional 
annotation and the proteins coded for the various genes; the Human Protein Atlas [20] 
and the Entrez Genes resource [21] for the level of expression in the human brain and 
other relevant tissues; and STRING database [22] for possible protein–protein interac-
tions at different source of evidence. In addition, we perform over-representation analy-
sis (i.e. “enrichment analysis”) on our set of genes newly associated with SCZ, using 4 
different databases, KEGG pathways [23], Gene Ontology (GO) [24], Disease Ontology 
(DO) (https​://www.disea​se-ontol​ogy.org), and Reactome Pathway Database (https​://
react​ome.org) to investigate their potential biological functions.

Step‑6: Replication of the pairwise relationship in the network

Using linear regression over the Allan Brain atlas data, we estimate the level of associa-
tion between pairs of the genes in the networks and set the p-values cut off to 0.05 after 
adjusting for multiple testing based on false discovery rate (FDR).

Results
We focused on one of the co-expression modules in [14] with 1181 transcripts, the mod-
ule that includes the highest number of SCZ-associated genes, 104 SCZ-associated genes 
out of 1181. To have a mechanistic understanding of transcriptomic, we went beyond 
one-gene-at-a-time analysis and systematically integrated genetic, transcriptomic, and 
Hi-C data.

Transcriptomic‑causal network

We investigated interconnectivities among individual genes by utilizing principles of 
Mendelian randomization. To implement Mendelian randomization through instrumen-
tal variable technique and satisfy the assumptions, for each gene, we considered SNPs in 
40 kb upstream/downstream of transcription start/end site so that we included variants 
in genes, promoters, and other proximal cis-regulatory elements. Furthermore, we used 
Hi-C data [17] for reflecting the secondary structure properties of looped DNA within 
a nucleus and selected the SNPs in the regions of the genome that interact with a gene. 
Therefore, the selected SNPs allowed us to consider genetic variants that mediate the 
effects of cis-regulatory elements via both short- and long-range interactions. In each 
region, we extracted the information/variation and generated new genetic variables. For 
details, see the method section. In total 4,641 variables were generated as potential IVs 
to identify causal relationships over 1181 transcripts and construct the transcriptomic-
causal network.

Permutation

We performed a permutation analysis to examine the stability of the network. The sets 
of randomly selected genes for permutation are entirely from the receptor (Fig.  2c, 
red curve) or broadcaster genes (Fig. 2c, blue curve) since the impact of receptors and 
broadcaster genes are different in the network. For each permutation, we selected 10 
genes that all have the same number of  out-/in-degree. The stability of the identified 
connections is very high (above 96%), even for the case of permuting the broadcaster 

https://www.disease-ontology.org
https://reactome.org
https://reactome.org
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or receptor genes with out-degree or in-degree ≥ 4. The results also provided support-
ing evidence for identified directions when permuted broadcaster genes (Fig.  2c, blue 
curve) showed more influence on the connections in the network in comparison with 
the receptor genes (Fig. 2c, red curve).

Mapping the SCZ‑associated genes on the network

To extract information from the transcriptomic-causal network regarding SCZ, we 
mapped SCZ-associated genes on the network. In Fig. 2a, blue colored nodes are SCZ-
associated genes reported in previous studies (Additional file 1: Table 1). Mapping these 
genes on the network revealed underlying relationships among the genes. Figure  2e 
groups the SCZ-associated genes based on the type of studies that previously found the 
association (Additional file 1: Table 1). We measured the network properties and classi-
fied the genes as receptors, broadcasters, or mediators summarized in Fig. 2d for SCZ-
associated genes. Looking at the impact of SCZ-associated genes on the network based 
on their out-degrees, we observed that less than 10% of the SCZ-associated genes have 
high impact (out-degree ≥ 4). This result can be an explanation for the small effect of 
most SCZ-associated genes on the disease processes.

Furthermore, we measured out-degree and in-degree for each gene in the network 
and investigated their relationship with the number of genetic variants that affected the 
genes. In the network built by integrating genetic variants and 1,181 gene transcriptions, 
71 genetic variants showed significant effects on gene transcription levels. The distribu-
tions of degrees (the sum of in- and out-degrees) for the genes influenced and for those 
not influenced by any genetic variants are depicted in Fig. 2b. Both histograms showed 
a similar distribution pattern however the genes without the impact of any genetic vari-
ants have higher degree of connectivity. Therefore, we conjectured that transcriptions 
level of genes with high connectivity (degree ≥ 3) are less likely (OR = 0.5) to be influ-
enced by the genetic variants (cis-regulation), thus their transcription is rather regulated 
directly or indirectly by other genes, mostly from different chromosomes (trans-regu-
latory factors) (Additional file 2: Figure  1A and Aditional file 1: Table 2 lists the genes 
influenced by genetic variants, together with in/out-degrees).

We estimated the association of 1653 pairs of genes linked in the identified network 
from the replication set. Although, the sample size in the replication dataset was small, 
65% of the pairwise relationships were significant at 0.05 p-value cut off after FDR 
adjustment (Additional file 2: Figure 1B).

Differential gene regulatory patterns

To identify differentially gene regulatory pattern, we focused on the loss of mediators 
among the genes with more than one upstream effector. We identified 9 mediator genes 
lost their interactions with downstream genes in SCZ compared to controls. Among 
these, 3 genes (GABRA2, LRRTM2, PPM1E) are primarily expressed in human brain tis-
sue (Additional file 1: Table 3) (https​://www.prote​inatl​as.org). Figure 3a shows the exclu-
sive effect of these three genes on their downstream genes in the network and represents 
that the effects on downstream genes are not significant for SCZ-cases corresponded 
to loss of mediators. The subnetworks of these mediators depicted in Fig. 3b show the 
causal effect size of each transcription level on the downstream gene in controls.

https://www.proteinatlas.org
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Importantly, based on the STRING database [22], these interactions are validated at 
the protein level. More specifically, the corresponding proteins GABRA2, LRRTM2, 
and PPM1E interact indirectly with the proteins encoded by the downstream genes in 
our network (Additional file 1: Table 4) [19]. Therefore, these proteins may be impor-
tant for the normal brain function since their corresponding genes (mediators) lost 
their effect on the downstream gene transcriptional regulation in SCZ-cases.

Among the other genes with loss of mediators (Fig. 4), SORT1 and GNAL have the 
highest expression in the brain in comparison to other human tissues according to 
HPA [20]; ZNF692 and RALGPS2 have the highest expression in the testis; ZNF672 
and SNRNP48 are expressed in all tissues including the brain (Additional file  1: 
Table 5) (https​://www.prote​inatl​as.org). Based on the STRING database [22], the cor-
responding proteins produced by all these genes interact directly/indirectly with the 
proteins encoded by the downstream genes in the network over the control group 
(Additional file  1: Table  6). These genes (mediators) lost their impact on the down-
stream gene transcriptional regulation in SCZ-cases; therefore, we hypothesized 
these genes are implicated in SCZ.

Novel genes putatively related to SCZ and essential genes for the brain function

Identifying modules facilitates the discovery of essential genes for brain function and 
identifying novel genes related to SCZ. We predicted the transcription level of the 
downstream genes in the identified modules (Additional file  3: Modules) using the 
transcription level of the corresponding core in both groups, SCZ-cases and controls. 
The core that is good predictor for its downstream genes in both groups are hypoth-
esized as essential genes for brain functioning. Moreover, we discovered new genes 
putatively related to SCZ (Table 1) using the predicting model and conditional analy-
sis. We performed enrichment analysis on the set of identified novel genes related 
to SCZ, using 4 different databases, KEGG pathways [23], Gene Ontology (GO) [24], 
Disease Ontology (DO) (https​://www.disea​se-ontol​ogy.org), and Reactome Pathway 
Database (https​://react​ome.org). After adjusting p-values based on FDR correction, 
we selected genes with an adjusted p-value at level 0.05 for at least three of the data-
bases (GO, KEGG, DO, or Reactome). Table  2 shows that UNC5D, FBXO32, and 
RTF1 are enriched and have potential biological functions related to SCZ.

Table 1  Novel SCZ associated genes and  essential genes for  brain functioning identified 
through regression and conditional analysis

Hypotheses

Novel SCZ-associated genes Essential genes for brain function

Genes Modules Essential gene SCZ-associated genes controlled by essential genes

SEZ6L, RNF150 TENM3-Module TENM3 BTRC, RNF150, SEZ6L, GRIN3A, VAT1L, GRIA1, XKR4

UNC5D NRXN3-Module NRXN3 CNTNAP2, ARFGEF3

RTF1 MYH10-Module MYH10 ANK2, LMO7, LRRC4C, DLG2, RTF1, PTPRK

FBXO32 PEX5L-Module PEX5L DLG2, STARD13

https://www.proteinatlas.org
https://www.disease-ontology.org
https://reactome.org
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Other properties

We finally investigated the properties of loss-of-function mutation (LoF) intolerant 
and LoF tolerant genes in the network. We observed that 45% of the LoF intolerant 
genes have a high degree of connectivity (degree ≥ 4) which dropped to 27% for LoF 
tolerant genes (Fig. 5a). Therefore, probability of loss-of-function intolerant was posi-
tively correlated with the connectivity of the genes in the network similar to what Lek 
et al. [25] observed. In the network, we then explored the relationship of differentially 
expressed genes published by Hauberg et al. [2] with the degree of connectivity and 
found no difference as compared to the entire network (Fig. 5b).

Discussion
Despite transformative advances in technology, it remains difficult to assess where we 
are in understanding of a complete comprehension of the biological mechanisms [9]. 
One of the difficulties is that the research tools seldom provide insights into aspects 
of the overall picture of the system. The focus of the majority of analytical tools in 
use is still on a single dimension of data, rather than integrating data across different 
dimensions simultaneously/systematically to view processes more completely. While 
the technology to measure different levels of biology in large scale is being developed 

Table 2  Results of  overrepresentation analysis for  the  enriched Novel SCZ associated 
genes

Enrichment Pathway description  p-value p. adjust Gene symbol

KEGG FoxO signaling pathway 0.0324 0.0445 FBXO32

KEGG Axon guidance 0.0446 0.0446 UNC5D

GO protein phosphorylated amino acid binding 0.0115 0.0319 RTF1

GO RNA polymerase II complex binding 0.0119 0.0319 RTF1

GO RNA polymerase core enzyme binding 0.0137 0.0319 RTF1

GO basal transcription machinery binding 0.0162 0.0319 RTF1

GO basal RNA polymerase II transcription machinery binding 0.0163 0.0319 RTF1

GO RNA polymerase binding 0.0171 0.0319 RTF1

GO phosphoprotein binding 0.0186 0.0319 RTF1

GO single-stranded DNA binding 0.0253 0.0380 RTF1

Reactome FOXO-mediated transcription of oxidative stress, meta‑
bolic and neuronal genes

0.0081 0.0323 FBXO32

Reactome Netrin-1 signaling 0.0140 0.0323 UNC5D

Reactome E3 ubiquitin ligases ubiquitinate target proteins 0.0165 0.0323 RTF1

Reactome Formation of RNA Pol II elongation complex 0.0171 0.0323 RTF1

Reactome RNA Polymerase II Transcription Elongation 0.0171 0.0323 RTF1

Reactome FOXO-mediated transcription 0.0182 0.0323 FBXO32

Reactome Protein ubiquitination 0.0221 0.0323 RTF1

Reactome RNA Polymerase II Pre-transcription Events 0.0234 0.0323 RTF1

DO lateral sclerosis 0.0275 0.0813 FBXO32

DO amyotrophic lateral sclerosis 0.0383 0.0813 FBXO32

DO motor neuron disease 0.0462 0.0813 FBXO32

DO chronic obstructive pulmonary disease 0.0542 0.0813 FBXO32

DO obstructive lung disease 0.0755 0.0905 FBXO32
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at high pace, the algorithms and analytical methods do not progress at the same rate, 
and hence new algorithms and intellectual approaches must be devised to take advan-
tage of the availability of such wealth of data.

Fig. 3  a Effect of the mediators exclusively expressed in brain on the downstream genes. The forest plot 
represents 95% confidence intervals of the effect size in downstream gene transcription by the different 
mediator gene, red: mean effect size for SCZ-cases, blue: mean effect size for controls. Non-significant effect 
corresponds to loss of mediators. b Upstream genes and downstream genes for the mediators (GABRA2, 
LRRTM2, PPM1E) and their causal effects in controls. The arrows represent transcription activation (positive 
effect size). The line with capped end represents transcriptional repression (negative effect size). In cyan is the 
gene reported as SCZ-associated gene in previous studies. For all interactions, the estimate of the effect size 
(Est) and standard deviation (Std) are shown

Fig. 4  a Effect of the mediator genes essential for normal brain functioning on the downstream genes. 
The forest plot represents 95% confidence intervals of the effect size in downstream gene transcription 
by the different mediator gene, red: mean effect size for SCZ-cases, blue: mean effect size for controls. 
Non-significant effect corresponds to loss of mediators. b Upstream genes and downstream genes for the 
mediators (ZNF672, ZNF692, SORT1, SNRNP48, GNAL, RALGPS2) and their causal effects. The arrows represent 
transcription activation (positive effect size). The line with capped end represents transcriptional repression 
(negative effect size). In cyan there are the genes reported as associated with SCZ in previous studies. For all 
interactions, the effect size (Est) and standard deviation (Std) are shown
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In this study, we systematically integrated genotype, Hi-C, and RNA-seq data by using 
a novel causal network reconstruction algorithm and focused on understanding gene 
transcription regulation in the human brain in the context of SCZ. The integration was 
based on our observations that the transcription of a gene may be affected by genetic 
variants in cis-regulatory regions, but it can also be mediated by transcribed distal genes 
(trans-regulatory factors). We demonstrated that the properties of causal networks pro-
vide tools to improve our understanding of the brain functioning mechanism as well as 
tools for comparing the gene regulatory pattern between SCZ-cases and controls. We 
replicated the relation between genes identified based on data from the CMC consor-
tium using the RNA-seq dataset from the Allen Brain atlas. We showed that our network 
predictions either recapitulate known biology or can be prospectively validated, demon-
strating a high degree of accuracy in the predicted network.

Through investigating the network properties, we observed that genes with fewer con-
nections are more likely to be affected by genetic variants than those highly connected 
in the network, but the latter is more often found regulated by or regulating other dis-
tal genes as trans-regulatory factors. We concluded that genetic variation in the context 
of human brain tissue works as cis-regulatory elements for genes that are not so much 
involved in trans-regulatory interactions. This property may be general for gene regula-
tory networks across the tissues. In the network, we observed less than 10% of SCZ-
associated genes previously reported are high impact genes (out-degree ≥ 4). This result 
can be an explanation for the small effect of most SCZ-associated genes on the disease 
processes.

Our systematic-integrative approach elucidates the regulatory context for essen-
tial genes in the brain. Besides, the proposed approach is also able to identify the 
genes that are differentially regulated in SCZ-cases. Altogether this work presents a 
significant step towards the systematic understanding of the genetic mechanisms of 
schizophrenia and paves the way for designing new and more selective treatments 
that minimize undesired side effects. For instance, one of the identified differential 
regulated genes, GNAL, is a mediator between two SCZ drug targets (CHRM3 and 
CHRNA7). The protein coded by the upstream gene, CHRM3, is targeted by antip-
sychotic drugs against schizophrenia and bipolar disorder [26]. CHRNA7 down-
stream gene of GNAL is also considered a promising drug target for the treatment 

Fig. 5  a Histogram of high degree of connectivity (degree > 3) across LoF intolerant and LoF tolerant genes 
in the network. b Pie chart of frequency of genes regarding the degree of connectivity for entire network and 
for subset of differentially expressed genes
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of cognitive dysfunction in schizophrenia and improves memory and executive func-
tions in patients and healthy individuals. However, clinical trials with pro-cognitive 
drugs are challenged by large inter-individual response variations [27]. Identification 
of this differential regulatory pattern suggests that GNAL can be an alternative SCZ 
drug target since it encodes a G protein alpha subunit widely expressed in the cen-
tral nervous system.

The novel identified SCZ associated genes UNC5D, FBXO32, and RTF1 are 
enriched in pathways related to neural development. UNC5D is enriched in the ‘axon 
guidance pathway’ and Netrin-1 (a protein required during axon guidance) signal-
ing according to the KEGG pathway database. Interestingly, axon guidance impacts 
how white matter tract is formed by pre-target axon order in normal development, 
whereas abnormalities in white matter tract have been early reported in SCZ [28]. 
RTF1 is enriched in protein ubiquitination as divided by Reactome pathway data-
bases. Protein ubiquitination has been known to be of key importance in neural 
development and at maintenance of brain structure and function. In SCZ, the ubiq-
uitin–proteasome system is dysregulated [29]. Moreover, recently, in a pre-print, the 
proteasome dysfunction has been related to aggregation of  ubiquitinated proteins 
[30]. An enrichment for sclerosis-related as well as pulmonary disease is found in 
FBXO32, following the DO database. Not surprisingly, according to the KEGG data-
base, FBXO32 is enriched in the FOXO genes signaling pathway, which is present in 
many important cellular processes such as cell cycle, apoptosis, metabolism, oxida-
tive stress, immune regulation, etc. [31, 32].

The utilities of the transcriptomic-causal network are beyond single gene analysis, 
such as TWAS (see [33] and references therein) or differential expression analysis 
[34]. For instance, investigating different regulatory patterns between cases and con-
trols is possible through the transcriptomic-causal network but not with differential 
expression analysis or TWAS. The transcriptomic-causal network discovers the key 
drivers and represents the effect of a specific gene on the transcriptomic system, 
and therefore, provides possibility to better design experiments in future studies that 
cannot be elucidated by single gene analysis. The transcriptomic network analysis is 
a systematic analysis of genes (study of a set of genes simultaneously) regardless of 
being expressed by GWAS loci or altered by environmental factors and uses genetic 
information as a tool to identify causal relationships among genes based on the prin-
ciple of Mendelian randomization/instrumental variables. However, some studies 
such as TWAS aim to prioritize genes at GWAS loci [33], i.e., aim to find pathways 
from genetic variants to disease via genes through one-gene-at-a-time analysis.

Conclusions
Overall, the transcriptomic-causal network analysis which integrates genotypes, Hi-C 
and transcriptomic data systematically is complementary to experimental research to 
unveil the mechanisms that control the dysregulated gene transcription patterns in SCZ. 
The integrative systems approaches will allow the design of further experiments to target 
the relevant genes, either by editing them or drug targeting, without disrupting essential 
pathways for normal brain function and as a result minimizing undesired side effects.
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Method
An overview on application of Mendelian randomization/instrumental variable technique

To gain sufficient understanding and predict the behavior of a system, Mendelian ran-
domization technique that uses genetic variants as instrumental variables has recently 
gained attention. Instrumental variables control better for unmeasured confounders 
relative to other approaches such as regression, matching, and propensity score meth-
ods [35–37]. This feature leads to robust results with mechanistic understanding (i.e. 
causal interpretation) even in the presence of unmeasured confounders and reverse 
causations if the utilized genetic variants qualify as instrumental variables:

1	 Being robustly associated with a transcript of interest (exposure) that is a potential 
cause of an outcome transcript.

2	 Not being associated with any confounders (measured and unmeasured) of the two 
transcripts of interest

3	 Not being associated with the transcript outcome except through the transcript of 
interest.

These conditions are visualized in Fig. 6 on a small scale.
Genotypic features such as pleiotropy, the presence of linkage disequilibrium, 

genetic heterogeneity, lack of knowledge about the confounders, and population 
stratification; may violate the assumptions of instrumental variables and bring limi-
tations to the application of genetic variants [36]. These assumptions must be jus-
tified by background knowledge of the underlying biology. However, evaluating the 
assumptions adds to the credibility of the analyses, and there are some approaches 
toward this end. Some of the approaches aim to find a single genetic variant strongly 
correlated with the variable of interest. These approaches are limited to identify suf-
ficient numbers of instrumental variables for a large-scale data set [38] and possibility 
violate some of the assumptions due to the genotype features such as the pleiotropic 
effect. Our approach aims to hold the underlying assumptions through three main 
features as the following (Fig. 7):

1	 Extracting information from several single nucleotide polymorphism (SNP)/genes to 
create stronger genetic variables than a single SNP/gene.

2	 Generating independent variables and possibility of allocating multiple instrumental 
variables to a transcript to explain the variation of the transcript sufficiently.

Fig. 6  Schematic visualization of instrumental variable assumptions. IV stands for instrumental variable
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3	 Selecting IVs after assessing the independency of IVs and the outcome given the 
exposure to avoid violation of the assumptions, due to genetic variants’ properties 
such as pleiotropic effect.

These features of the algorithm account for the variation in transcripts that are free of 
confounding.

Generating instrumental variables

To investigate interconnectivity among transcripts and construct a transcriptomic-
causal network, we apply Bayesian networks and instrumental variables [39]. The chal-
lenge is finding IVs that satisfy the assumptions. The two approaches that find SNPs 
associated to genes strongly as IVs [39] or generating strong IVs through extracting 
information from entire genome [37] found almost no IVs. The result is consistent with 
the fact that gene expression is strictly controlled by the interplay of regulatory events 
at gene promoters and trans-regulatory elements. Therefore, we conclude that gene 
transcription is affected by genetic variations nearby (orientation, position, and dis-
tance). This result is also reported recently by [40]. To generate the IVs based on genetic 
variants nearby genes, we include variants in genes and their promoters as well as the 
variants that are reflecting the secondary structure properties of looped DNA within a 
nucleus. Therefore, we select the genetic variants in the regions of the genome that inter-
act with a particular gene based on genotype and Hi-C data with the aim of considering 
genetic variants that mediate the effects of cis-regulatory elements via both short- and 
long-range interactions.

To generate IVs and fulfill the underlying aforementined assumptions, we apply mul-
tiple correspondence analysis [41], which is a generalization of principal component 
analysis for categorical variables, over a set of variants nearby each gene, as defined 
above. Denoting genetic variants as (X1,X2,…,Xn) while each Xi represents an SNP with 
3 categories {0,1,2}, we define one indicator variable for each category and scale the new 
matrix for its grand total and name it Y. We then obtain factor scores based on the fol-
lowing singular value decomposition,

Fig. 7  Visualization 3 of main features of generated instrumental variables from multiple SNPs using 
exome and Hi-C data. The aim is to identify underlying relationship between the transcripts (Pink) using the 
instrumental variables (green)
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 where � is the diagonal matrix of eigenvalues, R = diag{r}, C = diag{c}, r and c are the 
vector of row total and column total of Y respectively.

Transcriptomic‑causal network

A causal network is a Bayesian network augmented with Mendelian randomization prin-
ciples implemented with IV techniques. The Bayesian network of p genes and genetic 
variants 

(

g1, g2, . . . , gp
)

 can be represented based on their joint probability as

 where Sgi is the set of upstream genes for ith gene and f
(

g1, g2, . . . , gp
)

∼ N (0,�) . The 
stability of the identified Bayesian networks in an observational study is established in 
Mendelian principles since the genetic inherited variation is the cause of phenotypic 
variation (here gene transcription) [42]. These stable Bayesian networks are called causal 
networks in observational studies [8, 36, 37] which is compatible with the structural 
equation model.

For quality of the fit, we employ Hamming distance [18] for different tuning parameter 
{0.01, 0.005, 0.001, 0.0005} and selected 0.001 as the tuning parameter that minimizes 
the average of Hamming distance. Furthermore, we design a permutation analysis to test 
the stability of the network and directionality. We repeat this permutation for different 
degrees of connectivity {1,…,5} separately and calculate the number of connectivity that 
changes in comparison with the identified network without permutation.

Differential gene regulation pattern

We use structural equation modeling to estimate the causal effect of each gene, Zi , for 
SCZ-cases and control group as

where Z =
{

Z1,Z2, . . . ,Zp

}

, � = diag
{

σ 2
i

}

,� is lower diagonal matrix, correspond-
ing to the effect of transcriptomics on each other. The non-zero entries are determined 
from the network in Fig. 2a to satisfy the assumptions of structural equation.

For the set of interaction with significant causal effect, we calculate the exclusive effect 
of each gene on its downstream genes and test if they are significant based on 95% confi-
dence interval. Comparing the significant ones in controls and cases, we aim to find a set 
of mediators that lost their interaction with their downstream in cases.

Predicting gene transcription level

Further analysis of transcriptomic-causal network narrows down the search space for 
identifying predictors for the transcript of the target gene (g). A subset of genes (S) that 
directly interact with g are the best predictors of g. Therefore, using the causal network, 
we select the best predictors and fit a regression model to predict the transcription level 
of g. Since the predictors may be correlated, we impose penalized term of norm 2 to our 
model such that the loss function of the model is:

R
− 1

2 (Y − rc)C− 1
2 = F�

1
2T

t

f
(

g1, g2, . . . , gp
)

=
∏

i

f
(

gi|Sgi
)

Z = (I −�)U ,UT ∼ Np(0,�)
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 where ν is the tuning parameter. To assess prediction performance, we use the cross-
validation technique. We train the penalized regression model using four-fifth of control 
set data and test the prediction performance of the model using left-out data. We calcu-
late the correlation between predicted and observed values as well as square predicted 
error. We repeat 200 times the entire procedure of fivefold cross-validation and report 
the average of correlation and mean square predicted error (MSPE) [43] and select the 
genes with the correlation above 0.6 and MSPE less than 0.3 as good predictors. In this 
step, the transcriptions are scaled for having unit standard deviations and producing 
comparable results.

Enrichment analysis

In this study, we use enrichment analyses such as GO based on hypergeometric distri-
bution. The analyses aim to determine whether any terms annotate a list of the gene at 
frequency greater than that expected by chance when

where N and M represent the total number of genes in the background and the number 
of genes within that distribution annotated to the terms of interest, respectively; n and k 
are the size of the list of significant gene and the number of genes within that list which 
are annotated to the term, respectively [44]. Then, the calculated p-values are adjusted 
for multiple comparisons based on false discovery rate.
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