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Abstract

Linear Mixed models (LMMs) that incorporate genetic and spatial covariance structures have been used for many
years to estimate genetic parameters and to predict breeding values in animal and plant breeding. Although the
theoretical aspects for extending LMM to generalised linear mixed models (GLMMs) have been around for some
time, suitable software has been developed only within the last decade or so. The GLIMMIX procedure in SAS® is
becoming popular for fitting GLMMs in various disciplines. Applications of GLMMs to genetic analysis have been
limited, probably because of the complexity of the models used. This is particularly so for Proc GLIMMIX because,
unlike ASReml software, it is not specifically tailored for analysis of breeding data and some pre-procedure coding
is necessary. Binary data that fits the GLMM framework is commonly encountered in breeding experiments, such
as when evaluating individuals for resistance by observing the presence or absence of disease. Bacterial canker
(Psa) caused by Pseudomonas syringae pv. actinidiae is a serious disease of kiwifruit in New Zealand and other
kiwifruit-producing countries. Data from a progeny test trial was available to identify parents with high breeding
values for resistance. We successfully applied the GLIMMIX procedure for this purpose. Heritability for resistance was
moderate, and we identified two parents and their family as having high potential for Psa resistance breeding.
There are several potential pitfalls when using GLMMs with binary data and these are briefly discussed.
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Introduction

Pseudomonas syringae pv. actinidiae (Psa) is a pathogenic
bacterium of kiwifruit (Actinidia spp.). The virulent form
Psa-V is now well established in New Zealand following
its first detection there in November 2010 (Everett et al.
2011). From a biological perspective, Psa-V is the causal
agent of a number of disease symptoms, including leaf
spots and necrosis, flower wilting, cane dieback, and
branch and trunk cankers, often leading to vine death in
the case of susceptible cultivars (http://www.kvh.org.nz/).
The disease has been very damaging to the New Zealand
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kiwifruit industry: the cost in net present value is expected
to be between 310-410 million NZ$ over five years (Greer
and Saunders 2012). Large losses were due mainly to the
complete susceptibility of the diploid A. chinensis yellow-
fleshed kiwifruit cultivar ‘Hortl6A’. In comparison, the
green-fleshed A. deliciosa cultivar ‘Hayward’ shows a de-
gree of resistance that allows the disease to be managed
by orchard practices. Breeding for a Psa-resistant yellow-
fleshed cultivar is a high priority for the kiwifruit industry
in New Zealand. To this extent, evaluating parents and
selecting those that show some degree of Psa resistance is
an integral part of all current breeding programmes.

As Actinidia species are generally dioecious, progeny
tests are the only way breeders can predict the breeding
values for fruit traits of males. Factorial crossing designs
are the norm, with about 25 full-sib female seedlings
per individual cross planted for phenotypic evaluation.
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Tetraploid (4x) A. chinensis have been reportedly showing
higher resistance to Psa than diploid (2x) populations
(Gea et al. 2012; Montefiori 2013) and currently form the
core population for breeding resistance to Psa in yellow-
fleshed kiwifruit. A progeny trial involving crosses between
four female and nineteen tetraploid male parents was
planted in 2008. Following the Psa outbreak of 2010, these
vines have been scored for disease severity and this data is
the main focus of analyses in this study to understand
the genetic architecture of resistance to Psa in kiwifruit.

Different methods and scales of measurement have been
used to record the progress of Psa disease (Gea et al. 2012)
at the individual vine level. Susceptibility to Psa does not
show a clearly observable phenotypic progression. Thus,
none of the different disease score monitoring scales has
managed to record an ordinal progression of the disease
through several scoring levels to enable the assumption to
be made that the underlying scale is continuous. Quantita-
tive genetic analyses that aim to estimate genetic parame-
ters assume the scale of measurement to be continuous.
Because of the non-ordinal nature of the disease-scoring
scale in this study, we converted Psa score data to a binary
scale (0 = no disease 1 = disease). Binary data are often pre-
sented as sample proportions for purposes of analyses. Is-
sues of variance heterogeneity and non-normality in the
sample proportions are traditionally handled using data
transformations, such as angular transformation.

Estimation of variance components and best linear
unbiased predictions (BLUPs) of genotype random ef-
fects on continuous traits by fitting linear mixed models
(LMMs) to familial data is well established. Statistical
models with complex variance structures that account
for pedigree as well as spatial trends within a field layout
have been extensively applied to such data to assess if
the trait of interest has a significant genetic component
and is heritable (Piepho et al. 2008). However, for trans-
formed proportional data the use of LMMs can be limiting
and results can be unreliable, particularly when sample
sizes are variable and small. Furthermore, in case of some
transformations such as the angular, model predictions
back-transformed to the original proportional scale are not
necessarily bounded in the interval [0, 1]. The empirical
logit and probit transformations do not suffer from this
problem. When estimating genetic parameters, such as the
heritability, of binary traits, parameterisation is better han-
dled on an underlying unbounded continuous liability scale
in which it is most interpretable (Lee et al. 2011).

The generalized linear models (GLMs) of McCullagh
and Nelder (1989) extended linear models (LM) to data
that follow probability distributions other than Normal,
but which still belong to the exponential family of distribu-
tions, such as the Poisson and binomial. The GLM applies
only when the data are uncorrelated. The generalized linear
mixed models (GLMMs) extend this by incorporating
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correlations among responses, which is accomplished by
including random effects in the linear predictor and/or
by modelling correlations directly (Schabenberger 2005).
Piepho (1999) provide a good discussion with illustrated
examples of the analyses of disease incidence data from de-
signed experiments using GLMM. Originally developed for
members of the exponential family, GLMMs have been ex-
tended to a much broader range of applications by using
quasi-likelihood estimation methods (Littell et al. 2006).
Thus, GLMMs are the logical choice for fitting variance
components to binary familial data.

Our primary goal in this study was to conduct an in-
depth analysis of a Psa progeny test dataset of tetraploid
A. chinensis parents and provide reliable estimates of
additive genetic and environmental variance components
and narrow-sense heritability in relation to susceptibility
to Psa. For reasons explained above, we used GLMM
methodology applicable to binary/binomial distributed
data. The fundamentals of GLMM were developed some
time ago, but its implementations in widely available
statistical software happened much later. The R Ime4
package (Bates et al. 2014) was first uploaded in 2003,
and the SAS® (SAS Institute Inc. 2013) Proc GLIMMIX
became a standard procedure in V9.2 in 2008, although
a production version was released in 2005. ASReml
(Gilmour et al. 2009) is a specialised standalone software
package for breeding data which uses the average infor-
mation (AI) algorithm and sparse matrix methods for
fitting LMMs. GenStat uses the same algorithm for its
REML estimation. ASReml-R is the implementation of
ASReml in R (Butler et al. 2009). While ASReml soft-
ware can fit GLMMs, the fitting of GLMMs in ASReml-
R appears to be limited. The GLIMMIX procedure in
SAS® is becoming popular for fitting GLMMs in various
disciplines and there are a few examples of its application
in plant and animal breeding (Fikret 2011, Maxa et al.
2009). We have not come across applications of Proc
GLIMMIX for progeny testing where pedigree informa-
tion on parents is incorporated into the analysis. Unlike
ASReml, Proc GLIMMIX is not specifically developed for
analyses of breeding data; therefore some tweaking is ne-
cessary, depending on available data and analysis objec-
tives. Our secondary goal, therefore, was to demonstrate
the application of Proc GLIMMIX for fitting models that
incorporate familial resemblances among and between
parents and progeny, which is the case with the Psa pro-
geny testing dataset presented in this study.

Materials and methods

Genetic material and field design

Actinidia chinensis taxa can be either diploid (2x =58)
or tetraploid (4x =116). Families included in this study
came from a factorial mating design where four female
parents (labelled GU, GZ, GO & GT) were crossed to 19
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male parents (numbered 28:46). This is the standard
notation used in kiwifruit breeding in New Zealand, with
females in a cross named by two letters, males by
numerals and the family by concatenating the two labels.
Some crosses were untried or unsuccessful: female GO,
with the exception of crosses to males 32 and 33; male 32,
apart from the cross to female GO; and female GU to
male 33. For fitting the GLMM, we left out parents GO
and 32 to provide a nearly balanced factorial crossing
structure (3 females x 18 males) for the dataset with only
one missing cross (GU x 33). Of the 55 full-sib families,
53 were retained in the subset that excluded one female
and one male parent. All the parents used in crosses were
tetraploid. The field experimentation was carried out at
the Te Puke Research Centre in the Bay of Plenty (37.8°S
176.3°E), the major kiwifruit-growing region in New
Zealand. On average about 36 seedlings from each full-sib
family were field planted in spring (October) 2008 in a
randomised block design with three replicates; each repli-
cate comprised three consecutive rows except for the last
replicate which had an additional row to accommodate
extra seedlings of 8 families. The experimental layout,
therefore, was not balanced. The family sizes varied from
24 to 50 depending on seed availability. The 10 rows in
the experimental block ran in a south—north direction
and contained posts spaced at 4 m within a row and with
3 m between rows. Progeny testing trials are usually
planted at higher densities than commercial orchards. The
experimental unit (plot) here was the bay between two
posts within a row, where 12 unsexed seedlings of any one
family were planted as a twin row, with seedlings alternat-
ing on either side of the trellis wire at six positions (a:f)
placed at 60-cm intervals. There was a 40-cm distance
between the seedlings in each twin row. A hedge of shelter
trees was present on the west and south side about 4 m
away from the experimental block. There were 19 bays
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(numbered 0:18) down each row of seedlings, with the
first and last bays containing only two planting positions
(a and b). Only half the seedlings planted were expected
to be female, but both females and males can be assessed
for Psa symptoms. Control plots of the A. chinensis culti-
vars ‘Hort16A’ and ‘“Zesy003’ were included as end of row
guards within the experiment.

Figure 1 shows a pedigree diagram of the four female
and 19 male parents generated by the R ‘kinship2’ package
(Sinnwell et al. 2011). The coefficient of coancestry is a
measure of the relatedness between two individuals that
have a common ancestry (Falconer and Mackay 1996). In
population genetics the genetic covariance between re-
lated individuals is written as a function of the relevant
genetic variances weighted by a coefficient which reflects
relatedness. The general formula for genetic covariance
between two individuals P and Q in terms of the additive
and dominance genetic variances is Cov(B Q) = V4 + uVp;
and for diploids r=2fpo u =facfep +fanfec, where fpq is
the coancestry of P and Q etc,, and A & B and C & D are
parents of P and Q respectively (Lynch and Walsh 1998).
Considering the additive effects only, the coefficients r,
computed pairwise, for a set of individuals form the addi-
tive or numerator relationship matrix A, which we used
later to fit the GLMM. Given the pedigree records of par-
ents and their progeny, we used the INBREED procedure
in SAS to calculate A.

Data

Psa symptoms were first detected in commercial kiwifruit
orchards in Te Puke in November 2010. Psa is a systemic
disease, with varying symptoms appearing in different
parts of the vine as the disease progresses. This made
it difficult to develop a single plant disease severity
scale which was truly ordinal. During initial observa-
tions we recorded the key vine symptoms as: presence/

30 33 38 41 42 44 45
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Figure 1 Pedigree of Actinidia chinensis parents used in crosses to form full and half-sib progeny families. Individuals with a coloured border
are the parents used in this study (19 males and four females). The female parent 13 with unknown parentage is not included in the pedigree chart.
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absence of leaf spots, short dieback at the ends of the
canes, cane dieback, cankers and oozing. Based on this,
we defined a quasi-ordinal visual assessment scale (0 — 8)
as follows: 0=no symptoms, 1, 2, 3 =leaf spotting and
damage at increasing intensity, 4 = oozing, with a qualifier
to the score based on which plant part is involved: s —
shoot, d - main leader and b — bud. 5, 6, 7, 8 =vine died
and removed. The decision to remove plants with a Psa
score higher than 4 was made to reduce inoculum levels
and followed the recommendations of Kiwifruit Vine
Health, the industry body charged with managing the dis-
ease. Monitoring the movement and progress of disease
through the block was carried out fortnightly using the
scale described, in 2010 and subsequent seasons. A
preliminary analysis of the trends in disease score over
time has been reported by Gea et al. (2013). For the
genetic analysis that follows, we decided to take a point in
time in monitoring when the disease had spread well
within the block, but when there was still some variation
in scores that would allow estimation of variability in
disease score due to underlying environmental factors. On
this basis, we selected for analysis the measurement of
disease made in November 2012, i.e. 20 months after first
detection in the research orchard. The non-ordinal nature
of the measurement scale and the fact that a score of > 4
triggered vine removal justified the data being converted
into binary: 0 = score <3, and 1 otherwise. The threshold
score agreed with our observations that if symptoms were
restricted to leaf spots only, kiwifruit vines showed a
degree of resistance that was deemed adequate to avoid
systemic spread and vine death. Furthermore, this degree
of resistance is probably sufficient for control of disease in
the orchard by other management practices.

A heatmap is a graphical representation of data values
in a matrix by a colour scheme. Figure 2 shows a simple
heatmap of the binary (0/1) disease outcomes constructed
using the ggplot2 package (Wickham 2009) in R Core Team
(2013). The heatmap illustrates the spatial variability in dis-
eased (or healthy) vines across the rectangular experimental
area at the beginning of November 2012. A hedge effect,
which is common with other phenological and fruit traits,
is also evident with disease incidence, with fewer diseased
vines registered in the row closest to the hedge on the west-
ern side (left of figure) and in the more protected southern
bays. Rows, and bays across rows, were two factors included
when formulating the mixed model later on.

Model specification and fitting
The generalised linear mixed model for Bernoulli or bi-
nomial outcomes is of the form

g(E[y|u])
¢ m)=n

=y=X+2Zu (1)
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Figure 2 Heatmap representing Pseudomonas syringae pv.
actinidiae (Psa) scores of Actinidia chinensis (kiwifruit) seedlings,
assessed in November 2012 and categorised as a binary
outcome (present/absent), plotted on the field plan. The figure
is pointed upwards in north direction, and the hedges are located
on the south and western sides of the plan.

where y is the 7 x 1 vector of outcomes (0 or 1), g(.) is the
link function which relates outcome y to the linear pre-
dictor #, and g '(.) is the inverse of the link function. 8
and u are vectors of fixed and random effects respectively,
with the corresponding design matrices X (N x p) and Z
(N'x g), and y; is distributed according to any one of the
exponential family of distributions. The GLIMMIX pro-
cedure distinguishes between random effects in the linear
predictor (G-side) and/or modelling correlations among the
data directly (R-side) (Schabenberger 2005). The two types
of random effects specify the corresponding covariance
structures G and R of the mixed model. It is assumed that
random effects # have a normal distribution with mean 0
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and variance matrix G, ie. u# ~N(0,G). In the case of
GLMM, the distribution of data y is specified conditional
on random effects u. The variance of y is a function of the
mean for most distributions of the exponential family and
is given by Var(y|u) = A>>RA®®, where A here is a diagonal
matrix containing the variance functions (Schabenberger
2005) and R a working correlation matrix. By default, R
is an identity matrix, i.e. with a scale parameter value
equal to unity. In GLIMMIX, by including the statement
RANDOM _RESIDUAL_, the procedure can be forced
to estimate a dispersion parameter from the data.

For the Psa data, appropriate distributions in the case
of individual seedling and plot outcomes are y ~ Ber-
noulli () and X y ~ Binomial (n, i) respectively, where Pr
(y=1) =m. We used the logit link function in both in-
stances, i.e. log.(ir/(1 - ). The following is a detailed
specification of the GLMM used for Psa data where the
response variable is binomial. As described earlier, Psa
susceptibility scores were categorised as binary (0/1) at
the vine unit level. As such, our observations for each
plot (i.e. row x bay) consisted of the number of seedlings
that were diseased out of # total seedlings. The sample
sizes were small. Of the 169 plots, 149 had a full com-
plement of n =12 seedlings; for the remaining plots n
varied from 4 — 10. The resulting linear model for the
disease count ;) of the plot at the i row and jth bay
(or column), with the notation indicating it is the "
replicate sample plot of the family generated by crossing
the k™ female parent with the /”* male, is:

Tij(kir)

log, 1 =pu+B +R +Cj+an +Fu (2)

—TTij(kir)

where the row effect R~N(0,0%) and bay effect C,~N
(0,0’%) captures the environmental variation in the re-
sponse; ay,~N (0, Aai) is the mean additive genetic ef-
fect of the r-th replicate full-sib sample of k/-th parents
and A is the numerator relationship matrix between
family samples; Fy~N (0, ofp) is the family effect due to
non-additive and other causes; B,~N (0, 0%) is the repli-
cate block effect. All effects and corresponding variances
are on the logit scale.

Appendix A shows how to fit the binomial model dis-
cussed in this paper using SAS®, and a brief description
of the code is described below. The GLIMMIX proced-
ure requires the additive random effects parameter vari-
ables of design matrix Z to be generated outside the
procedure. For BLUP breeding value estimation in the
plot aggregate analysis, the genetic units of interest are the
family replicate samples of the progeny, and the parents.
We fitted what is generally called the ‘animal model’ to es-
timate the additive genetic variance. Replicate plots of a
given family are different samples of the same full-sib
family; hence the resemblance between sample means,
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given the two parents, is that of full-sibs. Writing the SAS
code to construct variables for additive random effects of
Z, we first used the GLMMOD procedure to generate
dummy variables z,,1,...,zy; xswhere N=number of
plots or vines depending on the model fitted, and x =
number of parents. Variables were numbered in the same
order as plots were arranged in the phenotype dataset, i.e.
bays within rows. Then, we added x additional variables
(z1, ---» z) with all elements equal to zero to represent the
additive random effects of parents who had no phenotypic
values, but who needed their breeding values to be pre-
dicted by the model. The coefficients of the covariance
matrix of random variables z; -z, , . n» Where y=num-
ber of ancestors of the parents, is given by the additive re-
lationship matrix A. This was constructed using Proc
INBREED as discussed in a previous section, followed by
manipulations as described below to form a SAS dataset
we named ‘Adata’. For this we first updated the A by delet-
ing from it the corresponding rows and columns for the y
number of ancestors of parents for which we were not
interested in estimating breeding values. Secondly, we
added in two numeric column variables named PARM
and ROW before columns Col1l-Col(x + N) of the updated
A to form ‘Adata’. Since we were interested only in the
additive variance, PARM had a value =1 for all rows in
‘Adata’, which were numbered 1 to N in the ROW
variable. Now, the GLIMMIX procedure statement for
estimating the additive genetic variance and breeding
values has the syntax: RANDOM Z1-Z(x + N)/TYPE =
LIN(1) LDATA = Adata SOLUTION. Other random ef-
fects shown in the specified model were simply coded
by a separate RANDOM statement. A similar applica-
tion in genomic selection using SAS Proc MIXED and
its LIN(1) structure is given by Piepho et al. (2012).

Fitting GLMMs can be computationally challenging.
The algorithm can fail to converge, particularly when the
dataset is large and the model is complex. This is often
the case with breeders’ field data where models can be-
come complex because of the inclusion of many random
effects with different types of covariance structures, such
as those for familial resemblances and spatial correlations.
In practice, compromises have to be made in the complex-
ity of the specified model to achieve convergence. Proc
GLIMMIX provides three types of residuals for diagnostic
plots: raw, studentized and Pearson. Where random
effects are involved, residuals can be obtained for the
marginal or the conditional model. We used these plots to
examine model assumptions and detect outliers.

Genetic parameters and BLUPs

For each random effect included in the model, Proc
GLIMMIX analysis provides an estimate of its variance
component, and corresponding BLUP estimates for all
levels of the factor. Estimated genetic and environmental
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variance components allow us to calculate heritability,
which is a key genetic parameter of the trait. The problem
with defining heritability in a consistent fashion is that dif-
ferent investigators may choose different selection units to
which the estimated heritability is applicable. Hence, even
with similar variance component estimates one could ob-
tain different heritability values. In plant breeding, the se-
lection unit can be an individual plant, a plot or even a
whole family. In this study, we estimated heritability in the
‘narrow sense’, i.e. the variance due to additive genetic ef-
fects only, given as a proportion of the total phenotypic
variance. The heritability on a plot basis was defined as:

2 _ o4 3
ot +o2+ok+0k+a2/n (3)

where variance components apart from o2 are as de-
scribed earlier and # is the harmonic mean of the seed-
ling count per replicate plot (= ~10). Unlike linear
models in GLMM, the variance is a function of the
mean, and as such the scale parameter is set to unity
and there is no separate estimate of residual variance
from the fitted model. The default link function for bi-
nomial data is logit, hence the residual error variance o2
on the logit scale is usually taken as fixed and approxi-
mated by the variance of the standard logistic distribu-
tion, which is 7°/3 (Gilmour et al. 1985). Binomial data
can be over-dispersed, i.e. the estimated variance of the
binomial random variable is greater than expected for
the distribution. In such situations a scale parameter ¢
can be specified in the model such that Var(y) = ¢ x Var
(#), and the scale parameter is estimated from the data.
If the scale parameter is significantly different from
unity, the residual variance of the above equation should
be set to ¢pm?/3.

As shown in Eq. 3, heritability is calculated as the ratio
of two linear functions of estimated variance components.
Together with variance parameters, Proc GLIMMIX out-
puts the estimated parameter estimate covariance matrix,
which is needed for the estimation of standard errors of
variance parameters and of heritability. The standard error
of heritability can be calculated by the Delta method
which uses approximations to the Taylor series expansion
to compute the variance of functions of random variables.
Details of the derivation and a SAS macro for the imple-
mentation of method are available in Appendix B.

The key BLUP values of interest in this study were the
breeding values of the parents. The GLIMMIX procedure
produces estimates of prediction variability for random
effects & as r(ii—u), which is the variance of prediction
error. Therefore, the standard error estimates of BLUPs
presented here do not account for variability of the random
effect parameter, . The BLUP estimates output by analysis
are on the liability scale (logit), which can be transformed
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to predicted probabilities after adding the estimate of the
intercept, /i and taking p = &™/(1+ €*™). The naive
back-transformation though is not unbiased for p. The
breeding values as such given as predicted probabilities to
disease susceptibility were used to compare parents.

Results

As seen in the pedigree (Figure 1), there were 19 ances-
tors of the 21 parents whose crosses were used in this
analysis. Assuming that founder vines had no inbreed-
ing, none of the female parents was inbred and of the 18
males (numbered 28-31 & 33-46), the male 31 had the
highest degree of inbreeding (F=0.25; its parents were
full-sibs of unrelated ancestors 17 and 4). Male parent
37 descended from a cross between the male vine 20
and its brother’s (17) daughter (GT), which resulted in
an F value of 0.125. Similarly, the male parents 41-46,
which were full-sibs and whose parents (23 and 22) were
half-sibs of the common female ancestor 4 (Figure 1),
had an F value of 0.125. The remaining 10 males had
no inbreeding. Relatedness between individuals as
measured by the coancestry coefficient (fyy) ranged
from 0 to 0.375 for the 21 parents. Female parent GU
had no known relationship to any of the individuals in
the pedigree (Figure 1). Similarly, GZ was unrelated to
GT and males 31, 37 and 41-46; as were the pair of
male full-sibs (28 and 29) unrelated to the set of full-
sibs 41-46. All other combinations of parents had
some relatedness, with GT and its progeny male 31 be-

ing the most related, fgr =3 (fGT‘GT +fGT,18) =3
(0.5+0.25) = 0.375, closely followed by the full-sib
male parent set 41-46 at f=0.3125. The INBREED
procedure produced the additive relationship matrices
(ARMs) for each of two levels of the dataset, i.e. indi-
vidual vine and family plot mean. After truncation, the
ARM for the 1882 phenotyped vines and their parents
was of dimension 1903. Similarly, the 169 plot aggre-
gates gave a matrix which was much smaller (190).
Because the mating design was a factorial and the
parents forming the crosses were not all unrelated, the
ARMs constructed were reasonably dense with a large
proportion of non-zero elements.

Given the relatedness matrices as calculated above,
Proc GLIMMIX fitted the generalised mixed model as
specified earlier to each of the individual and bay aggre-
gate phenotypic datasets. The two models are hereafter
called the Bernoulli and binomial, respectively. Both
models estimated family x replicate interaction variance
to be zero. Furthermore, the variance of the replicate
effect was estimated as zero in the Bernoulli model, and
very small and non-significant in the binomial model.
Models were re-fitted by dropping out both these effects.
Since rows were nested within blocks and both rows and
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bays were still in the model, we would not expect a loss of
information on variation due to spatial effects in this re-
duced model. The GLIMMIX procedure code was imple-
mented in SAS 9.4 (64 bit) installed on a laptop i5, 2.80
GHZ machine with 8 GB of RAM running the Windows 7
(64 bit) operating system. Both models achieved conver-
gence; the binomial model took only 5.42 s user CPU time
compared with the Bernoulli model with the much larger
dataset, which took 13 h and 8 min. The GLIMMIX pro-
cedure provided information about the fitted model in
terms of three statistics: — 2 Res Log Pseudo Likelihood,
Generalized Chi Square and the ratio of the latter to its de-
grees of freedom. This ratio was close to 1, 0.80 and 0.92
respectively, for the Bernoulli and binomial, indicating no
evidence for residual over-dispersion. Residuals are used to
check if data meets the assumptions of the model and to
detect any outliers and influential points. Plots of condi-
tional studentized residuals of the binary model are shown
in Figure 3. The BLUP estimator in mixed models has the
property of shrinkage towards the mean; therefore the
trend shown in the studentized residual v. linear predictor
plot (Figure 3, top left panel) is as expected. There is no
strong evidence of unusual observations, with only a few
data points falling just outside the +2 limits commonly
used as a rule of thumb for outlier detection. The condi-
tional residuals are studentized and therefore should follow
the standard normal distribution. The remaining plots in
Figure 3 appear consistent with this assumption.

Variance components estimated by the Bernoulli and bi-
nomial models are presented in Table 1. These estimates,
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given on the logit scale, were similar for both models except
for the family variance, which was more than twice as large
and marginally significant in the Bernoulli model and non-
significant in the binomial model. However, the family vari-
ance was low, particular when compared with the additive
variance, which indicated that non-additive effects are not
likely to be important in determining resistance to Psa.
The variance component due to the row effect was slightly
larger and marginally significant in the fitted Bernoulli
model. Spatial variation in Psa within the experimental
area, however, was largely due to the bay effect (Table 1),
which was statistically significant in both models. This is
consistent with what is seen in the heatmap (Figure 1),
where higher numbered bays in general had more disease.
The results presented from here onwards, unless stated
otherwise, are for the fitted binomial model. When pre-
dicted bay random effects were ranked (1-19) from the
smallest (lowest disease) to the largest, eight of the nine
leading ranks fell in the bottom half (bays 0-8) in Figure 2.
Similarly, the predicted random effect for row =1 was the
smallest, indicating it had the lowest Psa disease among
rows. It is well known from field observations that vines
closer to the hedge are less likely to exhibit Psa disease.
The tall hedge to the west (left in Figure 2) and south of
the orchard block may have provided some protection to
nearby vines. The predicted values for bays and rows were
therefore consistent with what is known of the spatial
variation in Psa within an orchard block.

Narrow-sense heritability estimates for Psa susceptibility
of the family means given on a logit scale as calculated by
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Figure 3 Plots of conditional residuals of the fitted binomial generalised linear mixed model (Eq. 2).
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Table 1 Estimates of variance component parameters and the narrow-sense heritability obtained by fitting generalised
linear mixed (GLMM) and linear mixed (LMM with empirical logit) models to Pseudomonas syringae pv. actinidiae (Psa)
incidence in a set of factorial full-sib families of Actinidia chinensis seedlings

Variance component Binomial GLMM - SAS Bernoulli GLMM -SAS LMM - SAS LMM - ASReml-R
Row, 07 0.074 + 0.060 0.095 + 0.061 0.053 +0.045 0.056 + 0.006
Bay, O% 0383 +0.169 0375+0.154 0361 £0.149 0.358 £ 0.039
Family, o% 0.039+0.096 0.108 + 0.081 0.069 +0.072 0.075 +0.008
Additive, o3 0.687 +0.190 0.732+0.201 1359+0.184 1.350+0.147
Residual 45E-7 +33E4 2.3e-4+25e-5
Heritability, h,zv 057+0.13 055+0.11 0.74 £0.08 0.73

The models were fitted using the GLIMMIX and MIXED procedures in SAS® respectively, and in ASREmI-R.

Eq. 3 are presented in Table 1. The values of narrow-sense
heritability were moderate and very similar for the two
models. In a similar genetic study on diploid A. chinensis
populations, Cheng (2014) recently reported resistance
measured by time-to-infection to be similarly heritable. In
a naturally infected environment, binary scoring
followed by modelling that incorporates spatial trends
should minimize any confounding effects on the resist-
ance measure itself and estimates derived thereafter
caused by spatial variation within the field. Other re-
searchers have also reported on inheritance of resistance
to bacterial diseases in plants caused by other Pseudo-
monas spp. Olczak-Woltman et al. (2009) reported a
broad-sense heritability estimate of 53% for resistance
to angular leaf spot in cucumber caused by P. syringae
pv. lachrymans. This estimate was based on resistance
measured by disease scores made on F, families. Simi-
larly, Sthapit et al. (1995) presented broad-sense herita-
bilities ranging from 0.72 — 0.84 for sheath brown rot in
rice caused by P. fuscovaginae, using F; families of three
crosses, and the analysis was based on% incidence. Re-
sistance is a notion that can be measured only indirectly
using different criteria, such as the% incidence and se-
verity scores. Heritability estimates will vary depending
on the type of measurement used as well as the scale of
the response variable analysed. As discussed earlier, our
estimate of heritability is presented on a logit liability
scale.

Estimated breeding values of the three female and 18
male parents, on the scale of probability of Psa incidence,
are presented in Table 2. The female parent GZ stands out
as providing the most resistance through transmission of
additive genetic effects to its progeny. The next in rank in
terms of resistance were male parents 37 and 42 (Table 2)
which were related with a coancestry value of 0.0625
(through the common ancestor 4, Figure 2), but were un-
related to the top ranked female GZ. This indicates that
independent genetic sources for Psa resistance may exist
among tetraploid A. chinensis genotypes. The most resist-
ant of the 53 full-sib families was GZ37 which had only
three diseased vines observed out of 48 vines in total

across all replicate plots (6.25%). This family also had the
largest predicted random effect for Psa resistance, which
accounted for any non-additive gene effects on family per-
formance. A prediction based on the average eBV of the
two parents and the family random effect provided an esti-
mate of 0.31 for Pr(Psa) for this family.

Table 2 Estimated breeding values (eBV) of parents given by
logit-backtransformed probabilities of Pseudomonas syringae
pv. actinidiae (Psa) incidence predicted by the binomial
generalised linear mixed models (GLMM) fitted to a set of
factorial full-sib families of Actinidia chinensis seedlings

eBV of Pr(Psa)

Parent® Mean 95% LCL 95% UCL Rank
GU 0.89 0.79 0.95 20.5
GZ 0.26 0.15 041 1
GT 0.74 0.60 0.85 13
28 0.85 0.65 0.94 17
29 0.83 0.61 0.94 16
30 0.70 045 0.87 9.5
31 0.69 045 0.86 8
33 0.78 0.53 092 14
34 0.88 0.69 0.96 19
35 0.89 0.73 0.96 20.5
36 0.81 0.59 0.93 15
37 049 0.25 0.73 2.5
38 0.73 048 0.89 12
39 0.86 0.69 0.95 18
40 0.60 0.35 0.80 5
41 0.67 041 0.85 7
42 049 0.24 0.74 25
43 0.70 044 0.87 9.5
44 0.57 0.31 0.79 4
45 071 046 0.88 11
46 0.63 0.37 0.84 6

®Letter codes are for female and numerals for male vines.
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Discussion
The methods used in this study show that fitting GLMMs
to binomial distributed data where disease status is cate-
gorised as 0/1 is a useful method to consider to obtain
genetic parameter estimates for disease incidence. The
GLIMMIX procedure in SAS is a useful tool for fitting
GLMMs where the dataset is small to medium scale. As
the scale grows, increasing memory is required and the
CPU time can extend to many hours, as was evident when
fitting the Bernoulli model in this study. Rescaling the data
by aggregating counts at the plot level and using a bino-
mial model instead made the convergence quicker, by as
much as four orders of magnitude. We attempted to fit a
GLMM that, in addition to the genetic covariance struc-
ture, included a spatial covariance. Spatial covariance
structures can be specified in Proc GLIMMIX by the
RANOM _RESIDUAL,_ statement with options such as /
TYPE = SP(EXP)(x y) where x and y here are the field co-
ordinates for rows and bays. In principle one could also
model spatial covariance on the G-side. The residual vari-
ance (R-side) would then correspond to a nugget effect. A
detailed account of the application of spatial covariance in
GLMMs with field experiments is given by Gotway and
Stroup (1997). Unfortunately, a model that included both
genetic and spatial covariances failed to converge. When
the data are normally distributed, two other procedures in
SAS can fit the simpler linear mixed models (LMMs):
Proc MIXED and Proc HPMIXED. The HPMIXED pro-
cedure uses sparse matrix algorithms and is particularly
useful for large-scale datasets, but lacks the option for a
linear coefficient matrix, needed for specifying an additive
covariance structure in BV estimation. The default estima-
tion method in Proc GLIMMIX for models containing
random effects is known as residual pseudo likelihood
(Wolfinger and O’Connell 1993) and, as the name sug-
gests, it is computed from the pseudo- rather than the
true-likelihood (Schabenberger 2005; Littell et al. 2006).
Our analyses show, the use of GLMMs is not fool-
proof, and there are several potential pitfalls. The failure
to account for overdispersion is probably the most com-
mon problem. Convergence problems may be an issue
and furthermore particularly with binary data GLMM fits
may be severely biased, particularly when sample size 7 is
small. A detailed analysis of the bias problem is given by
Engel (1998) and a good practical review and discussion of
bias and other problems in the application of GLMM is
given by Bolker et al. (2009). As the latter paper points
out for a GLMM to get maximum likelihood (ML) esti-
mates, one must integrate the likelihood over all possible
values of the random effects and this calculation is at best
slow, and at worst computationally infeasible. The same
authors point out that for these reasons statisticians have
proposed various ways to approximate the likelihood and
estimate GLMM parameters and these include pseudo-
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and penalised quasilikelihood (PQL), Laplace approxi-
mations, Gauss-Hermite quadrature (GHQ) and Markov
chain Monte Carlo (Hadfield 2010) algorithms. The PQL
algorithm, which we used in our analysis, is the simplest
and most widely used approximation (Bolker et al. 2009).
The psuedo likelihood algorithm, however, is prone to
biases when the binomial sample sizes (7) are small. Gauss
quadrature is more accurate to compute the likelihood
but slower and can only be used with GLMM having a
single random effect and hence could not help for the
models considered in this study.

Given the possibility of substantial bias in GLMM
parameter estimates, as an alternative approach for
comparison we fitted our model as a LMM using an
empirical logit transformation of the proportional data.
Piepho (2003) provides a good discussion of available
transformations for proportional data. Except for the
angular, most transformations fail when an observed
proportion is 0 or 1, but some functions may be modified
to account for such. We used the empirical logit transform-
ation, log((x +¢)/(1 —x+¢)) (Atkinson 1985), where x is
the observed proportion and ¢ a small constant = 0.5/n
when the data are binomial. The model was fitted using
Proc MIXED in SAS® as well as in ASReml-R. Compari-
son of variance component estimates between GLMM
and LMM (Table 1) appear to suggest that former
underestimated the additive variance for which the ran-
dom effects had a complex covariance structure, The
sum of variance component estimates in the LMM
(Table 1) agrees better with the total sample variance
value of 2.04 for the empirical logit transformed data.
The narrow-sense heritabilities estimated by LMM
were much higher than those of GLMMs (Table 1).

In a GLMM framework, the definition of heritability of a
binomial trait on the latent scale is problematic. The herit-
ability equation (3) implies that one can compute a “pheno-
type” on the latent scale which is not the case. So, any such
heritability estimate for GLMM (Table 1) is somewhat
hypothetical. In a recent application of GLMMs with
binomial data using ASReml 3.0 (Gilmour et al. 2009),
Bennewitz et al. (2014 discuss the issues in heritability esti-
mation for binary traits. As pointed out in the paper, the
challenge in defining heritability using GLMM is that part
of the nongenetic variation occurs on the observed scale,
whereas the genetic effects occur in the link scale. These
authors proposed an approximation for residual variance
given as a function of the values of linear predictor, overdis-
persion parameter and the sample size, n. Once calculated,
the individual residual variances are averaged across all sub-
jects and used in the heritability equation.

Polyploid genetics is complex, with pairing patterns
varying from polysomy to preferential to disomy and
the possibility of double reduction in allele segregation,
Estimators of even common population parameters
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become difficult to derive and often have to rely on large
assumptions compared with those needed when dealing
with diploids (De Silva et al. 2005; De Silva et al. 2006). In
this study of tetraploid A. chinensis, our calculation of
coancestry coefficients and estimation of the additive gen-
etic variance component thereafter were based on the as-
sumption of diploid inheritance. Autopolyploids such as
tetraploid potato generally show polysomic inheritance
compared with disomic inheritance in diploids and most
allopolyploids. Even in allopolyploids, preferential pairing
may not be perfect and some multivalent pairing is possible,
which often leads to distortions in allele segregation. Re-
cently, a detailed investigation of the pairing behaviour of
tetraploid A. chinensis has been reported by Wu et al
(2014). Where pedigree information is not available, mo-
lecular markers can be used to estimate pair-wise related-
ness coefficients, and suitable statistical methods are well
developed for diploids (Ritland 1996; Lynch and Ritland
1999). More recently, these estimators have been extended
to cover tetraploids, where the relatedness coefficient has
been expressed as: r = imi/z; (Huang et al. 2014), where

=0
A; is the probability that at any given locus, two tetra-
ploid individuals share i alleles identical-by-descent. This
and the derivations made by Kerr et al. (2012) suggest that,
in the absence of double reduction, r is independent of the
ploidy level. From a practical point of view this implies that
the use of the additive (A) matrix as calculated in this study
for genetic analysis of tetraploids should not give substantial
bias in the additive variance estimate.

Heritability is a key parameter in quantitative genetics be-
cause it determines the response to selection (Piepho and
Mohring 2007). The results of this study that showed a
moderate heritability for Psa resistance suggest that selec-
tion for Psa tolerance is possible and that the genes in-
volved are available in the Plant & Food Research (PFR) A.
chinensis breeding populations. The implications are rele-
vant to the choice of methodology used to select robust
parents with Psa tolerance. The ability to correlate bioassay
tolerance (Hoyte et al. 2013) with field performance will en-
sure speed and accuracy for disease resistance screening
and breeding of new cultivars. Carefully planned mating de-
signs will be needed to minimise inbreeding in order to sus-
tain a long-term breeding strategy, as the number of tolerant
parents is not large and Psa tolerance is just one of many im-
portant attributes needed for the selection of new cultivars.

Ethical standards
The authors declare that the experiments comply with
current laws of the country in which they were performed.

Appendix A
SAS® code for fitting the generalised linear mixed models
(GLMM) described in this paper.
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/*Creating design variables for plot random effects, PhenSum is the SAS
dataset with plot (N=169) sums of Psa scores (0/1)*/

Proc GLMMOD data=PhenoSum outdesign=zFam noprint;
class Plot;
model Psa = Plot / noint;
*Adding 21 additional design variables for parents;
data ZFam;
retain z1-z190;
set zFam;
rename coll-col169 = z22-z190;
array z{21} z1-z21;
doi=1to2l;
(i) =0;
end;
drop i Psa;
*Merging phenotype and random effect design variable datasets;
Data PhenoSumZFam;
merge PhenoSum ZFam;
RUN;
/*Calculating the additive relationship matrix A, there are 19 parents and
21 ancestors of parents, i.e. 209 in total including the 169 full-sib plots*/
Proc inbreed data=pedfam covar outcov=A noprint;
var Vine_Plot Mum Dad;
*Manipulating the A matrix to create SAS dataset ‘Adata’;
Data AData;
Row= _n ;parm=1;
*Excluding the first 19 columns and rows of ancestors of parents;
set A (keep=Col20--C01209);
if _n_ <20 then delete;
Row = Row - 19;
rename col20-col209 = coll-col190;
RUN;

*Fitting the GLMM for a binomial outcomes;
options fullstimer;
ods Graphics on / width=129mm height=99mm border=on imagefmt=EPS;
proc GLIMMIX data=PhenoSumZFam plots=studentpanel asycov;
class row bay Fam;
model Psa/n =/dist = Binomial
link = logit solution ddfm=none;
covtest / wald;
random Fam Row Bay /s;
random Z1-Z190/ Type = Lin(1) ldata=Adata solution;
ods graphics off;
RUN;
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Appendix B
Calculating the standard error of heritability using delta
method.

Let f=u/v, then the variance of the first order approxi-
mation of f{.) about their expected values y, and p, is
given by Lynch and Walsh (1998).

-G ) e

Proc IML;
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Now let @ = the estimated variance component vector,
(2, 1,) = the vectors of coefficients of the numerator and
denominator in the heritability equation, and X = the
parameter estimate covariance matrix. Then, (f,,4,) =

(l;é, l’vé), and (02,02,6(,,)) = (1,01, 1,01, I,0L,).
These estimated values are substituted in Eq. 4 to give

the variance of heritability. A SAS macro that imple-
ments the method is given below:

/*Enter the estimated, vc = variance component vector, cov=covariance matrix of variance parameters, lu,

lv = coefficient vectors of upper and lower linear functions of variance components of the heritability ratio,

n = harmonic mean plot sample size and r = number of reps*/

Ve={.,0p0r- }3
cov={....,

b
lu=1{,.,.,.};
v="{,,.}
n=.;

en=constant('PI")##2/(3* n);
/*Note if vc is dimension k then cov is a k x k matrix and lu and Iv
are k length vectors*/
%macro SERATIO (VC, COV, LU, LV);
var_u=LU*COV*LU;
var_v=LV'*COV*LV;
cov_uv =LU*COV*LV;
h2 = round((LU *VC) / (LV ' *VC+en),.01);

seh2 = round(sqrt(h2**2*(var w/(LU *VC)**2 + var_v/(LV'*VC)**2 2*cov_uv/((lu"*VC)*(Iv**VC)))),

.001);
Print h2 seh2;
%mend;

%SERATIO(vc, cov, lu, Iv);
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