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ABSTRACT Here, we report the draft genome sequences of three penicillin-resistant
Neisseria gonorrhoeae isolates. We include associated data on MICs and genetic relation-
ships to other N. gonorrhoeae strains collected from across the United States. Resistance
mutations known to contribute to reduced penicillin susceptibility are annotated in
each genome.

Penicillin resistance in Neisseria gonorrhoeae can be gained through two mecha-
nisms, inheritance of a plasmid-borne penicillinase (blaTEM-1) or acquisition of

chromosomal mutations. However, the complete suite of causative mutations
underlying chromosomal resistance has yet to be determined. Contributors have
been identified in a chromosomally mediated resistant N. gonorrhoeae strain
(CMRNG), FA6140, isolated from an infected individual in Durham, North Carolina,
in 1983 (1) and include (i) mutations in penA encoding a penicillin-binding protein
2 (PBP2) with a decreased penicillin acylation rate (2), (ii) a mutation in the mtrCDE
efflux pump (mtr) promoter that increases pump expression (3), and (iii) mutations
in the porin P1B allele that decrease porin-mediated influx of penicillin (4). An
L421P substitution in PBP1, encoded by ponA, also plays a role in decreased suscep-
tibility (5). To contribute to the understanding of mutations that reduce penicillin
susceptibility, we sequenced the genomes of three strains with different levels of
resistance.

N. gonorrhoeae strains 111, 114, and 151 were isolated from infected individuals in
Cincinnati, Ohio, in 1994 and were provided by Joan Knapp at the Centers for Disease
Control and Prevention (CDC). Bacteria were cultivated on GC agar base medium sup-
plemented with 1% Kellogg’s solution (6) at 37°C in 5% CO2. Susceptibility testing was
conducted as previously described (7); all isolates were resistant to penicillin, as deter-
mined using the Clinical and Laboratory Standards Institute cutoff of $2mg/ml (8),
with MICs from 4 to 32mg/ml (Table 1).

Cells were grown overnight on agar plates, and genomic DNA was purified using
the Thermo Fisher PureLink genomic DNA minikit following lysis in Tris-EDTA buffer
with 0.5mg/ml lysozyme and 3mg/ml proteinase K. Illumina Nextera XT-prepared
libraries were pooled and sequenced using a V3 600-cycle cartridge (2 � 300 bp) on
the Illumina MiSeq platform at the Rochester Institute of Technology Genomics Core.
For all analyses, default parameters were used except where otherwise noted. Paired-
end sequencing resulted in a total of 7.97 million reads across the three samples, and
after poor quality sequences were trimmed using Trimmomatic v.0.39 (9), a total of
7.46 million reads remained. SPAdes v.3.13.0 (10) was used for assembly, statistics were
reported using QUAST (11), and genes were annotated with Prokka v.1.14.5 (12)
(Table 1). We identified resistance mutations by alignment to FA6140 (GenBank
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accession number CP012027.1) and FA19 (CP012026.1) sequences using BLASTn. To
identify the phylogenetic placement of new genomes, we reconstructed the phylogeny
of 2,652 gonococcal strains isolated in the United States between 1983 and 2016 (13–16)
(Fig. 1). An alignment was created by mapping to NCCP11945 (NC_011035.1) (see

TABLE 1 Strain attributes, genome assembly overview, and identified penicillin resistance determinantsa

Attribute

Data for strain:

111 114 151
Collection location Cincinnati, Ohio Cincinnati, Ohio Cincinnati, Ohio
Yr 1994 1994 1994
Total length (bp) 2,089,477 2,092,033 2,196,466
No. of contigs 85 79 89
Coverage (�) 229.26 374.19 445.25
N50 (bp) 67,041 76,838 72,221
No. of coding domains 2,065 2,057 2,192
No. of tRNAs 50 50 48
GC content (%) 52.67 52.66 52.36
SRA accession no. SRR13215678 SRR13215677 SRR13215676
GenBank accession no. JAEEFU000000000.1 JAEEFT000000000.1 JAEEFS000000000.1
PEN MIC (mg/ml) 4 6 32
penAmutations D345a, F504L, A510V, A516G, P551S D345a, F504L, A510V, A516G, P551S D345a, F504L, A510V, A516G
porBmutations porB1b: G120K, A121D porB1b: G120K, A121D porB1a: WT
mtrRmutations WT WT A39T
mtr promoter mutations A-deletion A-deletion WT
ponAmutations L421P L421P WT
blaTEM No No Yes
a PEN, penicillin; WT, wild-type allele. All assembly statistics are based on contigs of$500 bp.

FIG 1 Maximum likelihood whole-genome-based phylogeny of 2,652 N. gonorrhoeae strains collected in the United States between 1983 and 2016. This tree
includes 1,102 isolates collected by the Gonococcal Isolate Surveillance Project (GISP) between 2000 and 2013 (13), 649 isolates collected by GISP between 2014 and
2016 (14), 897 isolates collected by the New York City Department of Health and Mental Hygiene between 2011 and 2015 (15), FA6140 (16), and the strains
published in this study. Of the newly sequenced strains, 111 and 114 are two of the nearest phylogenetic neighbors to FA6140, a strain that as yet has an unclear
mechanism of resistance to penicillin. The purple arrow indicates the position of FA6140 on the tree, and the blue arrows indicate the positions of the strains
sequenced in this study.
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reference 17), and Gubbins v.2.4.1 (18), RAxML v.8.2.12 (19), and iTOL v.5 (20) were used to
construct and visualize the tree.

Isolates 111 and 114 had penicillin MICs of 4 and 6mg/ml, respectively, and did not
harbor the b-lactamase gene, suggesting that they are similar to the CMRNG strain
FA6140. Indeed, out of the 2,652 strains in our cohort, these isolates were among the
nearest phylogenetic neighbors to FA6140 (Fig. 1), despite isolation 11 years later from
a distinct geographic location. The number of polymorphic sites from the FA6140 refer-
ence genome was 484 and 465 for 111 and 114, respectively. These isolates had the
same haplotype of known resistance determinants as FA6140 (Table 1).

Strain 151 had a penicillin MIC of 32mg/ml, and analysis confirmed the presence of
blaTEM-1, indicating that it is a penicillinase-producing strain. The assembly contained a
5,727-bp contig that differed by only two insertions from the top BLAST hit (GenBank
accession number MH140435.1), the African-type pJD5 gonococcal plasmid (21). In
addition, 151 had an mtrR A39T substitution, which increases the expression of mtrCDE
(22) (Table 1), and substitutions in penA (Table 1), but these are likely minor contribu-
tors to resistance in this strain.

Future comparative analyses of the CMRNG genomes reported in this announce-
ment may help to further illuminate the genetic basis of penicillin resistance in
gonococci.

Data availability. The accession numbers for genome assemblies and raw reads
are listed in Table 1 and available for download through GenBank and the SRA, respec-
tively. All code is accessible at https://github.com/wadsworthlab.
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