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Abstract

Biclustering has emerged as an important approach to the analysis of large-scale datasets. A biclustering technique
identifies a subset of rows that exhibit similar patterns on a subset of columns in a data matrix. Many biclustering methods
have been proposed, and most, if not all, algorithms are developed to detect regions of ‘‘coherence’’ patterns. These
methods perform unsatisfactorily if the purpose is to identify biclusters of a constant level. This paper presents a two-step
biclustering method to identify constant level biclusters for binary or quantitative data. This algorithm identifies the
maximal dimensional submatrix such that the proportion of non-signals is less than a pre-specified tolerance d. The
proposed method has much higher sensitivity and slightly lower specificity than several prominent biclustering methods
from the analysis of two synthetic datasets. It was further compared with the Bimax method for two real datasets. The
proposed method was shown to perform the most robust in terms of sensitivity, number of biclusters and number of
serotype-specific biclusters identified. However, dichotomization using different signal level thresholds usually leads to
different sets of biclusters; this also occurs in the present analysis.
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Introduction

Recent advances in biotechnology have generated massive

amounts of data to understand biological processes, discover new

targets and new drugs, predict toxic potential of unknown

compounds, or identify pathogens in outbreak source tracking. A

dataset can be expressed in a two-way table with rows representing

the measured attributes and columns representing samples.

Cluster analysis is a commonly used data mining technique to

explore the relationships among attributes and among samples and

to identify patterns and structures between the attribute and

sample relationships. Cluster analysis and data mining of binary

data matric also arise in many scientific applications, such as

document-term data in bioinformatics, species characteristics in

systematic biology, and genotyping and gene expression data in

genomics. For example, in document clustering, each document

can be represented as a binary vector where each element

indicates whether a given word/term was present or not [1]. In

gene expression data, the intensity levels were converted to binary

data to detect transcriptional change of Saccharomyces cerevisiae

under various environmental conditions. The binary values are

noisy indicators of the presence or absence of mRNA in a

Saccharomyces cerevisiae cell [2].

Clustering techniques provide a global analysis of samples by

grouping samples with similar attributes in the same cluster, and

samples with dissimilar attributes are in different clusters or vice

versa. However, cluster analysis does not provide information for

understanding local relationships between samples and attributes.

In many applications, discovery of a subset of attributes that are

associated with a subset of samples is of primary concern. In gene

expression experiments, functionally related genes may exhibit a

similar pattern in only a subset of samples, not in all samples. An

interest of the study is to identify those co-expressed or co-

regulated genes that are associated with the certain subsets of

samples. A biological indication of those co-regulated genes is that

they may play similar functional roles in cells due to their closely

correlated expression patterns. In an un-weighted network analysis

methodology focuses on genes with high correlations and only the

directions of expression changes (up or down) are considered in the

analysis instead of the magnitudes [3,4]. Identification of these

genes helps in searching for their upstream transcriptional

regulator associated with experimental conditions. In pharmacov-

igilance, the Adverse Event Reporting System (AERS) database,

which consists of over 8,000 drugs and over 10,000 adverse events

reported, is the primary database designed to support the FDA’s

post-marketing safety surveillance program for all approved drugs

and therapeutic biologic products. The goal is to identify which

sets of drugs are associated with which sets of adverse events.

Because of the frequency of reports is not necessarily informative

regarding the number of individuals taking the drug, a pre-

determined threshold cutoff is used to dichotomize the signals and

noises [5–7]. In food safety surveillance, serotyping of isolates are

used for identification and characterization of Salmonella isolates in

outbreak investigations. The Pulsed-field Gel Electrophoresis

(PFGE) has been used as the ‘‘golden standard’’ to confirm an

outbreak of a disease and determine its possible source [8]. In

PFGE analysis, the fingerprint of an isolate is characterized by the

presence or absence at designated band locations. A goal is to
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identify the subset of band locations that can characterize the

serotype of outbreak isolates.

Biclustering has been developed to identify submatrices in a

two-way data matrix in which rows and columns are correlated

[9–28]. Biclustering techniques identify subsets of attributes that

exhibit ‘‘coherence’’ patterns with a subset of samples. The data

matrix consists of a collection of submatrices (biclusters), each

representing an association between a set of attributes and the

corresponding set of samples. Many biclustering methods have

been proposed, each method was developed to subject a specific

mathematical formulation and focus to identify specific bicluster

patterns. Most if not all bicluster algorithms were developed to

detect regions of ‘‘coherence’’ patterns. However, the ‘‘coherence’’

of a bicluster can be defined in several ways, and most of them are

defined as a submatrix having additive correlation on column,

row, or both of them. Madeira and Oliveira [29] discerned four

different categories of biclusters: 1) constant biclusters, biclusters

with a constant value, 2) biclusters with constant values on either

columns or rows, 3) biclusters with coherent values, and 4) finally

biclusters with coherent evolutions. Therefore, it cannot be

expected that a single method is well suited for all scenarios. A

recent comparative study showed that there were significant

differences in performance among biclustering methods, depend-

ing on the problem that was examined [16]. The BicAT toolbox

[17], freely available at http://www.tik.ee.ethz.ch/sop/bicat,

provided several biclustering algorithms for different biological

applications [29–32].

Prelic et al. [16] proposed Bimax for bicluster analysis of binary

data (identifying constant level biclusters). For the analysis of gene

expression data, the model assumes two possible states in the data,

a gene is either ‘‘on’’ (change- signal) or ‘‘off’’ (no change- non

signal) with respect to a control or reference condition. The Bimax

method used the midrange to dichotomize gene expression data

into signal and non-signal groups. Genes showing no change,

including those in the background region, would be classified as

non-signals. This modeling approach will reduce the number of

false identifications considerably. Bimax was shown to have the

best performance compared to five other prominent biclustering

algorithms. Alternatively, Kluger et al. [21] proposed the Spectral

method using the singular value decomposition (SVD) approach,

and Carmona-Saez et al. [22] proposed the nsNMF (non-smooth

non-negative matrix factorization) method for biclustering of gene

expression data. Neither method requires specifying the number of

biclusters, but rather requires pre-specifying the rank of factors to

represent the data matrix. The SVD and NMF methods identify

local regions where the attributes and samples are correlated and

do not target specific patterns of correlation. Recently, Zhang et

al. [33] extended the NMF to binary matrix factorization (BMF).

Like Bimax, this approach requires dichotomizing the gene

expression data matrix into binary matrix. The biclustering results

from NMF and BMF may not be reproducible in different runs.

The use of the SVD or NMF for bicluster analysis will be referred

to as the matrix factorization approach. Rodriguez-Baena et al.

[34] proposed the BiBit algorithm, based on a fast bit-pattern

processing technique; BiBit performed similar to Bimax, but used

significantly less computation time.

In a binary matrix, ‘1’ and ‘0’ encode the presence and absence

of a signal, respectively. The number of 0 s (non-signals) is often

much larger than the number of 1 s (signals). For example, the

proportion of the signal in the AERS data is less than 0.10. In gene

expression data matrix, many genes, including the background

intensities, exhibit no difference in expression among samples. The

interest is to find the biclusters that contain (almost) one. The use

of methods that are developed to detect regions of coherence

patterns to identify constant biclusters in a binary matrix can be

inefficient, as compared to the biclusters algorithms that are

developed for binary matrix such as Bimax as discussed above.

However, the Bimax often identifies many small biclusters when

the proportional of signal is very low. (More discussions are given

in the next section.) Furthermore, many biclustering algorithms

require specification of several parameters such as random seed,

minimal numbers of column and row, number of clusters,

tolerance threshold in the cluster, etc. Different initial specifica-

tions may produce different bicluster results; therefore, the

interpretation of the bicluster results often requires additional

post-analysis techniques for validation and visualization.

Motivated by these issues, this paper proposes a two-step

method for bicluster analysis of quantitative and binary data. The

proposed method only requires pre-specified two parameters: 1) a

threshold cutoff to dichotomize signals and non-signals for

analyzing quantitative data, and 2) a threshold proportion to

allow some non-signal data in the biclusters. The first step uses

matrix factorization techniques to uncover the bicluster structures

in the data matrix. The second step presents an edging algorithm

to determine the bicluster regions. The edging algorithm is

developed for binary data. The quantitative data can be

dichotomized before or after the matrix factorization. The

proposed methods are evaluated and compared with other

biclustering methods for two synthetic and two real datasets.

Methods

This section reviews several biclustering methods considered in

this paper. Biclustering methods can be categorized as the three

groups: model-based, categorical state, and matrix-factorization

algorithms. The model-based methods assume specific bicluster

structures and use some optimization methods to identify the

biclusters. The categorical state methods categorize data into

different states and develop algorithms to identify the biclusters

having the same state. The matrix-factorization methods identify

biclusters from the ordered data matrix according to the column and

row vectors in the factorized matrices. Furthermore, we develop two

matrix factorization algorithms coupled with an edging algorithm to

identify biclusters and present a statistical test for significance of

binary biclusters based on the Bernoulli model in [35].

Model-Based Biclustering Methods
Most of the model-based biclustering methods assume some

patterns of linear correlation between columns and rows in the

bicluster, i.e. the bicluster can be modeled as the sum of row,

column, and background effects, which can be estimated by row

means, column means, and overall mean, respectively. Cheng and

Church [18] first proposed several greedy row/column deletion/

addition algorithms to identify the biclusters having smaller mean

square residuals than the tolerant error d. If the elements of data

matrix X are Xij, the mean square residual (MSR) for a bicluster (I,

J) can be obtained by

MSR~
1

Ij j Jj j
X

i[I ,j[J

(Xij{riJ{cIjzmIJ )2, ð1Þ

where riJ~
1

Jj j
X
j[J

Xij , cIj~
1

Ij j
X
i[I

Xij , and mIJ~
1

Ikj j Jkj j
X

i[I ,j[J

Xij .

Lazzeroni and Owen [25] assumed the data having different

structural layers and proposed an approach to identify similar

biclusters which are in the different layers of the model. The

elements in k-th layer were equal to the sum of the row (rik),

Biclustering of Binary Matrix

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue | e716808



column (cjk), overall (mk), and background (mk) effects, and the data

were modeled as

Xij~m0z
XK

k~1

(mkzrikzcjk)rikkjk, ð2Þ

where rik and kjk were the indicator functions for the

membership of biclusters. They developed an iterative

approach with each cycle updating the parameters to

minimize the sum of square errors to identify the biclusters.

Mirkin, Arabie and Hubert [26] studied a model assuming

that rik, cjk, and m0 were 0 and mk was the maximum value in

the bicluster, and developed biclustering algorithms based on

difference of the sums of squared-residuals between original

submatrix and itself added with a single row/column. The

biclusters identified by their algorithms have the elements

close to mk’s, and the biclusters can be adjusted by the

criterion for sum of squared residuals.

In addition to modeling linear correlations, product correlations

in bicluster were also studied [27], and the data were expressed as

X~
Xp

i~1

liz
T
i zc~LFzc, ð3Þ

where L, Z, and c were sparse matrix of prototype, sparse

matrix of factor, and additive noise. It assumed that the sparse

matrices were distributed as Laplace distributions, and the noise

was normally distributed. The EM algorithm was applied to

estimate the parameters to identify the biclusters. The constant

biclusters can be expressed as additive models having no column

and row effects, that is rik = 0 and cjk = 0 in equation (2).

Alternatively, they can be described as multiplicative models

having constant multipliers on row and column, that is li and zi

are constants in equation (3). Although some extended versions

[19,20] from Cheng and Church method [18] outperform the

several existing novel methods in some scenario, these methods

would not perform well on the large sparse binary matrix where

the number of signals is small. In a binary matrix, unlike the

quantitative data, there are only two values, 0 and 1. The 0 s

can be viewed as background or noise. The model-based

biclustering methods would identify many non-signal biclusters

when the number of non-signals is large.

Categorical State Methods
In genomic studies, the genes can be characterized as

categorical responses, such as up-regulation, down-regulation, or

unchanged (Bimax [16], BiBit [34], and xMotif [24]). In xMotif,

the data were categorized into several statistically significant states,

and an iterative search method using different random seeds was

proposed to identify the biclusters. Bimax was developed for

binary data, and the data matrix was first dichotomized as a binary

matrix. A divide-and-conquer algorithm was developed to identify

the biclusters in which the elements were all signals. This method

performs well when there are much more signals than non-signals

in the data matrix. The primary assumption for these methods is

that the observed data are without random variations and errors.

These methods required that each bicluster consists of only the

data of the same categorization. Therefore, for the binary data, the

methods do not allow any non-signal data in the biclusters. When

there are non-signal data in a large bicluster, these methods will

identify several small biclusters which are subsets of the large

bicluster.

Matrix-Factorization Methods
The SVD and NMF matrix factorization methods have also

been proposed to identify the biclusters. The Spectral method [21]

was a SVD-based algorithm; it applied the k-means technique to

detect the change points to identify the biclusters. Carmona-Saez

et al. [22] applied nsNMF, a variant of NMF, to search the

biclusters.

One important issue, which was not fully addressed in the use of

matrix factorization approach, is that it requires a companion

segmentation algorithm to separate the signal and non-signal

regions. Segmentation algorithms have been proposed to build up

a bicluster region [21–23] by identifying row and column change

points. These algorithms can fail to identify some biclusters

occurred in the overlapped regions, in which there may not have a

change point in the singular vectors. Figure 1 shows a data matrix

where rows and columns are ordered according to the magnitudes

of the singular vectors of the second principal component; the two

plots shown above and to the right of the ordered data matrix are

the corresponding values of the singular vectors. In these two plots,

the row (right) and column (above) each has a clear change point,

and therefore the bicluster structure in the lower right corner can

easily be identified. However, the bicluster structure in the upper

left may not be identified because the row change point may not

easily be identified. Figure 2 is a plot of the same matrix after the

data have been dichotomized using the two-means clustering

algorithm. The boundaries between the signal and noise regions in

Figure 2 are much more apparent than those in Figure 1.

Furthermore, most of the aforementioned methods use different

types of greedy algorithm which usually results in different

bicluster sets when different random seeds are used; in addition,

these methods require specification of several parameters such as

minimal size, number of biclusters, and criterion for goodness-of-

fit/badness-of-fit. These methods do not perform satisfactorily in

our study especially for the synthetic data of simple structure

(details in Result section). Therefore, we propose an alternative

biclustering method based on the matrix factorization described

below.

Let X denote the p6n data matrix (assuming n is smaller than p

for simplicity). In SVD, the matrix X is expressed as X = ADBT,

where A is the p6n orthonormal column matrix; D the n6n

diagonal matrix, and B the n6n orthonormal matrix. The

columns in A and B are eigenvectors of the matrices XXT and

XTX, and called the left singular vectors and right singular vectors.

The diagonal entries (li) of D are the square roots of the

eigenvalues of XXT. Writing ai and bi for i-th left and right

eigenvectors respectively, and li for i-th eigenvalue, the SVD can

be also written as

X~
Xrank(X )

i~1

liaib
T
i ð4Þ

in [36] where rank(X) is the rank of X. The first f,rank(X) terms of

these summations provide a bilinear approximation for the matrix

X<RC, where R has size p6f with each of the f columns

representing a sample basis, and C has size f6n with each of the f

rows representing an attribute basis. The valued of f can be

obtained from a specified proportion of the explained variance,

which is the ratio of the sum of f largest eigenvalues to the sum of

all eigenvalues. We set it to be minimum value of p and n. The

columns in R and rows in C can be defined as the principal

components on sample and attribute respectively, and these

principal components can be derived from SVD such as

R = Ap6fDf6f
1/2 and C = Df6f

1/2Bf6n
T. In NMF, the X, R and C
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are constrained to be non-negative matrices, and the matrix can

be estimated by the objective function based on Poisson likelihood

[22].

The element xij of X can also be expressed as

xij~ricjzeij , ð5Þ

where ri is the i-th row vector of R corresponding to the f sample

bases, cj is the j-th column of C corresponding to the f attribute

bases, and eij is a residual. In this representation, for a given l-th

component, the rows can be ordered by ril (the l-th value of ri), and

the columns by clj (the l-th value of cj). The ordered X is denoted as

Xl (l = 1,.., f). That is, the matrix Xl is ordered such that the high

and low values are likely to appear in the corners. For a simple

case with one bicluster having a larger constant value, a column in

R and a row in C denoted as r.l and cl. can well explain X such

that r.lcl. has a minimum square error to approximate X. If SVD is

applied, l1a1b1
T will sufficiently approximate X. The larger values

in X will be more likely to appear in the upper-left and lower-right

corners of the matrix X ordered according to the values of r.l and

cl.. Similarly, if there are several biclusters, these patterns also can

be found in some ordered X according to the different r.l and cl.

on row and column. In SVD, r.l and cl. can be pal and qbl where

pq = ll but the constant p and q do not affect the order, i.e. we only

Figure 1. A synthetic data matrix ordered according to magnitudes of the singular vectors of second principal component. The two
figures above and to the right of the ordered data matrix are the plots of the corresponding values of the singular vectors.
doi:10.1371/journal.pone.0071680.g001

Figure 2. The plot of the same synthetic data matrix after data
are dichotomized. The boundaries between the signals (red) and
non-signals (green) are apparent.
doi:10.1371/journal.pone.0071680.g002
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need to order X according to al and bl. For example, for a data

matrix

X~

8:77 8:91 10:69 8:18

12:01 9:12 12:58 7:70

6:01 8:25 6:50 7:63

10:94 8:44 9:83 8:44

9:85 8:52 8:55 6:85

2
6666664

3
7777775
:

The SVD of X is given by

X~ADBT

~

{0:46 0:16 0:66 {0:09

{0:52 {0:56 0:28 0:19

{0:35 0:81 {0:02 0:10

{0:47 {0:09 {0:45 {0:75

{0:42 {0:04 {0:54 0:61

2
666666664

3
777777775

40:23 0 0 0

0 3:63 0 0

0 0 1:86 0

0 0 0 0:92

2
666664

3
777775

{0:54 {0:52 {0:66 {0:05

{0:48 0:50 {0:07 0:71

{0:55 {0:38 0:75 {0:03

{0:43 0:57 {0:05 {0:70

2
666664

3
777775

T

:

The ordered data matrix is

7:63 8:25 6:01 6:50

6:85 8:52 9:85 8:55

8:18 8:91 8:77 10:69

8:44 8:44 10:94 9:83

7:70 9:12 12:01 12:58

2
6666664

3
7777775
:

It can be seen that the high values are located in the lower-right

corner. In gene expression data, the over-expressed regions will be

in the upper-left or lower-right corners. The next step is to

determine the bicluster regions for each Xl (l = 1,.., f) which is

dichotomized as a binary matrix Bl using a cutoff threshold h,

which can be estimated by the 2-means clustering algorithm or

midrange. An edging algorithm to construct biclusters for binary

data is described below.

Assume each element in a binary data matrix Bl represents the

presence or absence of a signal. Similar to the model based

method of Cheng and Church [18], the proposed approach to

constructing biclusters requires pre-specifying a tolerance thresh-

old d. A d-bicluster is defined as a maximal dimensional submatrix

such that the proportion of the non-signals in the bicluster is less

than d. That is, a d-bicluster is a maximal submatrix covering at

least (1-d) proportion of signals, given minimum numbers of rows

and columns. In other words, a d-bicluster is a (r6c) submatrix

where the proportion of 0 is less than d and it is not a proper subset

(submatrix) of any other d-bicluster. A d-bicluster in this paper is

set at least a (262) submatrix. The algorithm for finding d-

biclusters is described as follows.

Segmentation algorithm to determine bicluster structure in

upper-left corner of Bl:

Algorithm: Segmentation

Input: A p6n binary matrix Bl

Output: A bicluster ul

01: ulr262 submatrix in the upper-left corner of Bl

02: while (number of row for ul) ,p and (number of column for

ul) ,n

03: pcr proportion of 1 in adjacent column to ul

04: prr proportion of 1 in adjacent row to ul

05: if pc.0.5 or pr.0.5

06: if pc.pr

07: ul merge adjacent column

08: else

09: ul merge adjacent row

10: end if

11: else

12: break

13: end if

14: end while

15: qrproportion of 0 in ul

16: if q.d
17: ul is empty

18: end if

19: return ul

The possible bicluster located in lower-right corner of Bl can be

obtained by the same algorithm using reversely reordered Bl on

row and column. Note that the emerging submatrix after Step 14

could be expandable even if q.d. However, this submatrix will be

rejected after completion of merging in Step 18 if q.d. An

alternative approach is to check the proportion of non-signals after

each step of merging. However, this alternative approach could

lead to early stop merging and the identified biclusters could be

smaller than true biclusters, especially for the starting 262

submatrices, even if there is only one non-signal, q = 0.25 and

d,0.25. On the other hand, the proposed approach of checking

proportion of non-signals after completion of the merging would

result in larger biclusters (step 18).

After completion of the segmentation, a collection of submatrices

of candidate d-biclusters is obtained. Each submatrix is then

evaluated and compared with other submatrices. If a submatrix is a

subset of another submatrix, then this submatrix will be deleted, and

if two submatrices have the same rows or the same columns, they

will be merged row-wise or column-wise. The final collection of

matrices is the set of d-biclusters. The segmentation algorithm has

the time complexity of O(min(n, p)(n+p)). In conjunction with time

complexity of SVD O(min{pn2,p2n}), the overall time complexity of

the proposed algorithm is O(min{pn2,p2n}). Obviously, the

computational time complexity is dominated by the SVD algorithm,

and it could have high computational cost if p is large.

The choice of d will affect the number and the size of the

constructed biclusters; a larger d results in more and larger

biclusters. The biclusters constructed using a smaller d will be a

subset of biclusters using a larger d. If there is no prior knowledge

about the number of biclusters, a larger d value can be specified to

identify more biclusters. In summary, d is the maximum

proportion of the non-signals allowed in the bicluster, and it

Biclustering of Binary Matrix
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represents the quality of biclusters constructed; a value between 0

and 0.3 is suggested.

Non-negative matrix factorization (NMF) is an alternative

approach to uncovering bicluster structures [22]. Both SVD and

NMF require specification of the number of factorization compo-

nents (ranks) f. It should be noted that the matrix factorization

algorithms, for example, the SVD-based algorithms [21,23] or

NMF-based algorithms [22,33,37], are not designed to identify all

biclusters; the algorithms can identify at most 2f biclusters because

only the two diagonal corners in each ordered X are screened. For

SVD, f is set to be n, the rank of the data matrix X. The method to

estimate f for NMF was discussed in [22]. The edging method as

described is developed for binary data. Since the SVD analysis is

applicable to either quantitative or binary data, the dichotomization

of quantitative data can be applied before or after the SVD. It

should be noted that dichotomization before the matrix factoriza-

tion could distort or enhance the signals in data matrix, which could,

respectively, introduce the ambiguity or certainty of association

structure. We conducted a small simulation, the results indicated

that the two strategies appear to be compatible; however, a

dichotomization before the matrix factorization performed poorly

in sensitivity when the signal and non-signal were close.

SVD-Bin(d) denotes the algorithm using SVD first to screen

potential biclusters and then dichotomizing the data matrix to

construct the biclusters by the edging algorithm with the threshold

d. Bin-SVD(d) denotes the algorithm dichotomizing the data first

and then applying SVD to identify potential biclusters followed by

the edging algorithm to construct biclusters. Thus, the proposed

two-step method leads to six algorithms: SVD-Bin(d), Bin-SVD(d),

and NMF-Bin(f, d), and Bin-NMF(f, d) for quantitative data, and

SVD(d) and NMF(f, d) for binary data. However, NMF is not

applicable to matrices having rows or columns of all 0’s, and no

data analysis will be performed.

Statistical Significance Test for Binary Biclusters
Koyutürk et al. [35] proposed a significance test for binary

biclusters. If there is no association in the data matrix, each

element can be assumed to be an outcome of independent

Bernoulli trial with success probability q, which can be estimated

by k/(np) where k is the number of 1’s in the data matrix. The sum

of the elements in an nr6nc submatrix follows a binominal

distribution with parameters nrnc and q. The p-value of statistical

significance test for an nr6nc bicluster is given by

PrfBin(nrnc,q)§kbcg~PrfBin(nrnc,q)

§nrncq(1z(
kbc

nrncq
{1))g,

ð6Þ

where kbc ($nrnc(1-d)) is the number of the 1’s in the bicluster. In

general, it is difficult to numerically compute a very small p-value

when q is small and/or nrnc is large. In these cases we used

Chernoff’s bound [38]

PrfBin(nrnc,q)§nrncq(1ze)gƒe{nrncqe=3 for ew0 ð7Þ

to obtain the upper limit of the p-value from (6) which is

PrfBin(nrnc,q)§kbcgƒe
{nrncq(

kbc
nrncq{1)2=3 ð8Þ

if kbc.nrncq. The inequality for kbc is usually true in bicluster

analysis because only those biclusters which have more signals

than the expected value are informative.

For each bicluster identified, a p-value or its upper bound was

calculated. Since many biclusters would be identified, the

Bonferroni correction [39] was used to control the overall type I

error. The level of significance was set at 0.05/k, where k is the

number of biclusters identified.

Results

The two-step method was applied to two synthetic datasets and

two real datasets. The synthetic datasets contained different

overlapping and non-overlapping structures for illustrative pur-

pose. The first real dataset was the Saccharomyces cerevisiae gene

expression dataset [40] evaluated by the Bimax algorithm [16],

and was used to demonstrate the difference between the proposed

method and Bimax algorithm for a biclustering analysis of gene

expression data. The data analyzed (analysis algorithms) in this

paper are available in the R package biclust, which is extracted

from BicAT toolbox [17]. The second real dataset was a Salmonella

isolate dataset [41] genotyped by the Pulsed-Field Gel Electro-

phoresis with DNA band sizes representing the presence and

absence of a feature in a location.

Synthetic data
Both synthetic datasets consisted of a data matrix of size

100620. Four bicluster regions R1, R2, R3, and R4 with the sizes

of 1068, 1569, 2065, and 1063, respectively, were considered.

The first analysis considered quantitative data generated from

normal distributions. The background data were generated from

the normal random variable N(6, 0.82). The four regions R1, R2,

R3, and R4, were generated from the normal distribution N(12,

1.52), N(11, 1.22), N(11, 12), and N(10, 12), respectively. The first

three biclusters, R1, R2, and R3, contained overlapping regions.

R2 shares three columns with R1 and two columns with R3

(Figure 3). The four biclusters were colored as red, green, pink and

blue in rows, and colored as red, brown, green, orange, pink and

blue in columns. The brown and orange represented the

overlapped columns of the biclusters. The simulated data were

randomly permuted by column and row to ensure that the

simulated data was more similar to real data. Figure 4 is the

permutated data.

The Bin-NMF algorithm was not performed since there were

rows and columns of all 0’s. Note that deletion of those rows and

columns to perform Bin-NMF could bias the results in the

comparisons. The SVD-Bin(d), Bin-SVD(d), and NMF-Bin(f, d)

algorithms and several well known biclustering methods were

applied to this dataset to compare their performance. The

methods considered were Bimax [16], CC [18], xMotif [24],

Spectral [21], Plaid [25], and FABIA [27]. The first five methods

are available in the R package biclust, and FABIA is available at

http://www.bioinf.jku.at/software/fabia/fabia. html. The default

parameters were used in the analysis. In addition, the number of

the biclusters k considered for Bimax(k), CC(k), xMotif(k), and

FABIA(k) were from 4 to 8; these numbers were close to the true

number of biclusters in order to have better performance for these

biclustering methods. For Plaid, the number of biclusters was

automatically determined in the algorithm. For Spectral, the

number of principal components f was set from 3 to 5 using the

independent and bistochastization rescaling algorithms. The two

rescaling algorithms have a similar performance, only the results

from the independent rescaling algorithm were reported, denoted

as Spectral(f). The 2-means clustering algorithm was used to

dichotomize the data for SVD-Bin(d), Bin-SVD(d), NMF-Bin(f, d),

Bimax and xMotif. The tolerance threshold d for SVD and NMF

was set at 0.3, 0.2 and 0.1.
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One hundred simulated datasets were generated in the

performance assessment, where each dataset was randomly

generated from the same structure and distributions. For each

simulated dataset the following performance measures were

calculated: sensitivity (the proportion of correct identifications of

signals in the bicluster regions out of the total number of signals),

specificity (the proportion of the non-signals, which were not

identified as signals, out of the total number of non-signals), perfect

identification (all signals and all four biclusters were correctly

identified), and the number of biclusters identified. Table 1 shows

the results of performance measures which are the averages of 100

simulated datasets. The results show that NMF-Bin(4, d), NMF-

Bin(5, d), Bin-SVD(d) and SVD-Bin(d) have the best overall

performance. For these algorithms, d= 0.2 slightly outperforms

d= 0.1 in sensitivity; however, d= 0.1, which is a more stringent

selection criterion than d= 0.2, has better perfect identification

and the number of clusters identified, as expected. When using

same d, Bin-SVD performs better than SVD-Bin in sensitivity but

not in specificity. NMF-Bin performs better than SVD-Bin. Bimax

and Spectral both have good specificity but poor sensitivity. CC

and xMotif do not seem to perform well. Plaid does not require

specifying the number of clusters and has similar performance

behaviors as Bimax, good specificity and average sensitivity. For

those published algorithms, FABIA appears to perform the best, as

compared to 11 bicluster algorithms [27].

The second analysis considered binary data with the same four

bicluster regions R1, R2, R3, and R4 in the data matrix. The

background data was generated from a Bernoulli random variable

with probability 0.95 for the non-signal and 0.05 for the signal; the

bicluster regions were generated with probability 0.95 for the

signal and 0.05 for the non-signals. Since the data were binary

outcomes, only the SVD(d) and Bimax algorithms were evaluated.

Table 2 shows the results of performance measures from the

averages of 100 simulated datasets. The results are consistent with

the results in Table 1, SVD(d) generally has much higher

sensitivity than Bimax. Also, the binary data appear to have

lower sensitivity and lower proportion of perfect identification than

the corresponding estimates obtained from the quantitative data

(Table 1).

The binary synthetic data can be considered as dichotomized

quantitative data in which the biclusters have same proportions of

signals and noises which will lead to 5% misclassification rates of

the non-signals in background and signals in biclusters. This noise

level is higher than the level in the quantitative synthetic data

which have average misclassification rates 0.0075% in background

and 3.21% in biclusters. We can find the influence of different

noise levels by comparing results of Bin-SVD(d) in Table 1 with

the results of SVD(d) in Table 2 because Bin-SVD(d) after

dichotomization is identical to SVD(d). It shows that the

performance for the quantitative (noisier) data in each evaluation

Figure 3. Heatmap of the original synthetic dataset biclustered in Figure 1. There are 4 biclusters colored as red, green, pink and blue in
rows and columns; the brown and orange columns represent the overlapped columns of the biclusters.
doi:10.1371/journal.pone.0071680.g003
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metric is better than the binary synthetic data. In summary, the

higher noise level will result in poor performance especially for

small d, and thus d should not be too small when the data are

noisy.

Saccharomyces cerevisiae dataset
The Saccharomyces cerevisiae data set consisted of 419 probesets

over 70 conditions (samples) available at R package biclust (http://

cran.r-project.org/web/packages/biclust/index.html), and the da-

ta set was also analyzed in Bimax [16]. This dataset was analyzed

to illustrate an approach to evaluate performance of dichotomized

quantitative data. The NMF-Bin algorithm was not performed

since this dataset consisted of negative gene expression level. Only

the Bin-SVD, SVD-Bin, Bin-NMF, and Bimax algorithms were

evaluated. For comparing with the Bimax algorithm, the data were

dichotomized using the midrange which was used in Bimax.

Accordingly, the data matrix was represented by a binary matrix

with 1 and 0 representing the presence and absence of signals,

respectively. Recall that a d-biclustering algorithm aims at finding

all maximal-dimensional submatrices in which the proportion of

the non-signals is less than d. Since the true biclusters of the data

matrix were unknown, the performance was evaluated in terms of

its ability to bicluster the observed signals in the data matrix. An

ideal algorithm has high sensitivity, high specificity, and a small

number of biclusters.

The biclustering results and processing times are summarized in

Table 3. Bin-SVD(d) and SVD-Bin(d) appear to have similar

performance for d= 0.2 and 0.1. Bin-SVD(0.3) has much higher

sensitivity together with a larger number of biclusters identified than

Bin-SVD(0.3). Bin-NMF appears to perform much better than Bin-

SVD and SVD-Bin for d= 0.2 and 0.3. This analysis illustrates that

d can be used as a guidance criterion to identify sufficient number of

biclusters. The sensitivity from the Bimax method was poor for this

dataset. The analysis was performed for k = 5–200 (data not shown).

It appears that increase the number of biclusters has little

improvement in the sensitivity and the specificity stays at 1. Bimax

appeared to identify many small perfect biclusters containing signals

only. The fourth column shows the number of significance biclusters

(p,0.05/k, where k is the number of biclusters identified), and

SVD-Bin(0.3), Bin-SVD(0.3) and Bin-NMF(0.2) identify 6, 8,and 2

insignificant biclusters, which result from their small size with

tolerated non-signals. The Bimax spent least processing time and

the Bin-NMF consumed most time because the NMF is more time-

consuming than the others.

The biological interpretation of the biclusters identified can be

evaluated using FuncAssociate (http://llama.mshri.on.ca/

funcassociate_client/html/), GoTermFinder (http://www.

yeastgenome.org/cgi-bin/GO/goTermFinder.pl), and/or Gene

Ontology (http://www.geneontology.org/). An example of this

evaluation can be found in [16,20,22,27,34].

Figure 4. Heatmap of the randomly permuted synthetic data from Figure 3. This reflects the real data collected from an experiment.
doi:10.1371/journal.pone.0071680.g004
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The Salmonella PFGE dataset
PFGE is a technique used for the separation of large DNA

molecules by applying an electric field that periodically changes

direction to a gel matrix. Standard methods for serotype

identification of isolates are expensive and time-consuming

[42,43]. PFGE is currently considered as the ‘‘gold standard’’

technique used in subtyping of pathogenic bacteria. The Salmonella

dataset consisted of 698 Salmonella enterica isolates collected from

food producing animals, facilities and clinical diagnostic samples.

The 698 isolates consisted of 4 serotypes: Heidelberg (n = 322),

Javiana (n = 150), Newport(n = 91), and Typhimurium(n = 135).

Each of the 698 isolates was characterized by the presence of

about 15–20 distinct bands from a total of 71 bands of different

sizes coded as 1 and 0, representing the presence and absence at

Table 1. Performance of SVD-Bin(d), Bin-SVD(d), NMF-Bin(f, d), Bimax(k), CC(k), xMotif(k), Spectral(f), and FABIA(k) on a quantitative
synthetic dataset where d is the tolerance threshold, f is the number of factorization ranks, and k is the number of clusters.

Sensitivity Specificity
Proportion of perfect
identification Number of clusters

SVD-Bin(0.3) 0.961 0.984 0.02 6.67

SVD-Bin(0.2) 0.952 0.996 0.11 5.37

SVD-Bin(0.1) 0.915 1.000 0.25 4.41

Bin-SVD(0.3) 1.000 0.980 0 8.98

Bin-SVD(0.2) 0.999 0.994 0.03 7.08

Bin-SVD(0.1) 0.975 0.998 0.20 5.40

NMF-Bin(3,0.3) 0.874 0.996 0 3.67

NMF-Bin(4,0.3) 0.986 0.997 0.43 4.71

NMF-Bin(5,0.3) 0.988 0.995 0. 14 5.41

NMF-Bin(3,0.2) 0.871 0.999 0 3.53

NMF-Bin(4,0.2) 0.983 0.999 0.62 4.36

NMF-Bin(5,0.2) 0.978 0.998 0.29 5.1

NMF-Bin(3,0.1) 0.852 1.000 0 3.42

NMF-Bin(4,0.1) 0.960 1.000 0.58 4.13

NMF-Bin(5,0.1) 0.948 1.000 0.46 4.31

Bimax(4) 0.387 1.000 0 4

Bimax(5) 0.423 1.000 0 5

Bimax(6) 0.475 1.000 0 6

Bimax(7) 0.508 1.000 0 7

Bimax(8) 0.544 1.000 0 7.92

CC(4) 0.544 0.110 0 3.75

CC(5) 0.546 0.109 0 3.82

CC(6) 0.546 0.109 0 3.82

CC(7) 0.546 0.109 0 3.82

CC(8) 0.546 0.109 0 3.82

xMotif(4) 0.056 0.225 0 3.44

xMotif(5) 0.069 0.231 0 3.45

xMotif(6) 0.057 0.217 0 3.52

xMotif(7) 0.072 0.227 0 3.5

xMotif(8) 0.067 0.221 0 3.52

FABIA(4) 0.862 0.988 0.01 3.99

FABIA(5) 0.828 0.982 0.07 4.44

FABIA(6) 0.794 0.975 0.01 5.11

FABIA(7) 0.707 0.959 0.02 5.86

FABIA(8) 0.713 0.950 0 6.69

Spectral(3) 0.005 0.996 0 0.48

Spectral(4) 0.001 0.996 0 0.53

Spectral(5) 0.000 0.991 0 1.84

Plaid 0.508 0.913 0 4.76

The results are the average over 100 simulated datasets.
doi:10.1371/journal.pone.0071680.t001
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the designated locations, respectively. Since the data were binary

outcomes, only the SVD(d), NMF(d), and Bimax(k) algorithms

were evaluated.

The PFGE data of 698 isolates consisted of four serotypes,

whereas the samples in the synthetic and Saccharomyces cerevisiae

datasets did not have group memberships. This PFGE dataset was

evaluated in two aspects: overall performance and serotype-

specific performance. The overall assessment did not consider the

serotype information in the evaluation (Table 4); most of the

biclusters identified are statistically significant except for SVD(0.3)

which contains 3 insignificant biclusters. The results from SVD,

NMF, and Bimax are consistent with the results in Tables 2 and 3.

SVD and NMF have much higher sensitivity and slightly lower

specificity than the Bimax method. Similar to the results from the

Saccharomyces cerevisiae data, Bimax appeared to identify many small

biclusters.

Tables 5 and 6 show the serotype-specific performance for

SVD(0.2) and Bimax (100), respectively. The tables show the

largest 10 biclusters identified and summarized by the serotype

clusters. Ten largest biclusters in Table 5 included four Heidelberg

and four Javiana biclusters, and one Newport and one Typhimur-

ium bicluster. SVD(0.2) appeared to identify Heidelberg and

Javiana reasonable well. In Table 6, the largest 10 out of the 100

biclusters included eight Typhimurium, and one Javiana and one

Newport bicluster. Nine of the 10 biclusters shared two bands. A

bicluster consisting of only two or three bands may not be useful to

characterize a serotype. It is worth mentioning that the specificity

in the overall assessment for Bimax(100) is 1 (Table 4); but the

most of specificities are less than 1 in Table 6. This implied that

those 100 biclusters identified consisted of signals of mixed

serotypes.

The proposed method has better sensitivity and specificity for

serotype identification than Bimax algorithm, and generally

discovered more specific bands. In this method, both majority

groups of the serotypes Heiderlberg and Javiana contain four

biclusters, and each bicluster can be viewed as a subtype. The

bands identified in each bicluster are overlapping. For example,

there are 16 unique bands identified for the majority group of

Heidelberg, but the total number of bands for the 4 clusters is 30.

The commonly shared bands can be considered as the marker

bands to distinguish Heidelberg from other serotypes. The non-

overlapping bands exhibit the diversity among the PFGE patterns

of Heidelberg isolates.

Discussion

Bicluster analysis is specifically developed to identify which

subsets of attributes are associated with which subsets of samples.

A major difference between cluster analysis and bicluster analysis

is that in cluster analysis each attribute or sample is assigned to one

and only one cluster, while in bicluster analysis an attribute or

sample can be part of more than one bicluster or of no bicluster.

In contrast with classification, bicluster analysis does not use the

predefined class labels in identifying the local relationships

between the attributes and samples. Each bicluster represents a

specific sample-by-attribute relationship. Each set of samples

corresponds to a set of sample specific attributes. The bicluster

analysis is capable of providing an analysis for identifying

subclasses or finding new classes (Table 3). In addition, bicluster

analysis can be used as a preliminary analysis for determining the

classes for supervised analysis.

Most variants of Biclustering are NP-complete problems [29]

which require nondeterministic polynomial time for computation

and whose faster algorithms are unknown, and most of the existing

methods were developed using data mining strategies. Theoretical

proofs of an algorithm could be infeasible. Evaluation and

comparisons of biclustering algorithms are commonly based on

synthetic data or/and real data which masked the class labels in

bicluster analysis [10–14,16,22–24,27–28]. Alternatively, some

directly analyzed real data and evaluated the identified biclusters

based on certain performance metrics [9,18,21,26], or presented

the analysis result [25].We used both synthetic datasets and real

data to evaluate and compare the different algorithms.

Biclustering methods generally require specifying the number of

biclusters k or the number of factorization ranks f (Table 1). The

method, such as CC, requires pre-specifying the number of

biclusters, identifies one bicluster at a time at the given threshold

d.The biclusters are successively extracted until the pre-specified

number of clusters are identified, if the biclusters exist. This

Table 2. Performance of SVD(d) and Bimax(k) on a binary synthetic dataset, where d is the tolerance threshold and k is the number
of clusters. The results are the average over 100 simulated datasets.

Sensitivity Specificity
Proportion of perfect
identification Number of clusters

SVD(0.3) 0.995 0.9669 0 10.13

SVD(0.2) 0.9599 0.9844 0.01 6.07

SVD(0.1) 0.8354 0.9967 0.02 4

Bimax(4) 0.2499 0.9972 0 4

Bimax(5) 0.2849 0.9964 0 5

Bimax(6) 0.3063 0.9959 0 6

Bimax(7) 0.3317 0.9952 0 7

Bimax(8) 0.3561 0.9946 0 8

Bimax(9) 0.3714 0.9942 0 9

Bimax(10) 0.3874 0.9938 0 10

Bimax(20) 0.5144 0.9898 0 20

Bimax(50) 0.7541 0.9801 0 50

Bimax(100) 0.8831 0.9698 0 95

doi:10.1371/journal.pone.0071680.t002
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algorithm stops only when the pre-specified number of clusters has

been identified. To cover a sufficient number of biclusters in the

data matrix, the specified number is usually large. Also, some

algorithms based on ‘‘masking’’ and random number of genera-

tion, the identified biclusters might not be reproducible and could

reduce the identification of overlapping biclusters.

The matrix factorization methods, such as FABIA, and SVD-

and NMF-based algorithms, extract quality biclusters from the

candidate biclusters identified. As discussed, the existing published

edging algorithms can fail to identify some biclusters occurred in

the overlapped regions (Figure 1) on either row or column. The

matrix factorization methods order the data matrix well because

the extracted vectors aim to minimize the fitting errors orthog-

onally or non-orthogonally. We developed a novel edging method

for the values of the ordered data but not the spectrums

(eigenvectors). In the synthetic data analysis, it outperformed not

Table 3. Performance of SVD-Bin(d), Bin-SVD(d), Bin-NMF(f, d), and Bimax(k) on the Saccharomyces cerevisiae dataset where d is the
tolerance threshold, f is the number of factorization ranks, and k is the number of clusters.

Sensitivity Specificity
Number of
clusters (k)

Number of
significant clusters Processing Time

SVD-Bin(0.3) 0.167 0.990 26 20 0.734

SVD-Bin(0.2) 0.082 0.997 14 14 0.657

SVD-Bin(0.1) 0.013 1.000 5 5 0.322

Bin-SVD(0.3) 0.410 0.957 56 48 1.825

Bin-SVD(0.2) 0.085 0.996 19 19 0.441

Bin-SVD(0.1) 0.015 1.000 4 4 0.228

Bin-NMF(70,0.3)* 0.653 0.955 55 55 8.443

Bin-NMF(70,0.2)* 0.269 0.991 21 19 8.466

Bin-NMF(70,0.1)* No bicluster is found 5.073

Bimax(5) 0.027 1 5 5 0.007

Bimax(10) 0.036 1 10 10 0.007

Bimax(15) 0.083 1 15 15 0.010

Bimax(20) 0.084 1 20 20 0.008

Bimax(50) 0.094 1 50 50 0.009

Bimax(100) 0.168 1 100 100 0.011

Bimax(200) 0.175 1 200 200 0.011

*The number of the factors in NMF is the rank of the data matrix f = 70.
doi:10.1371/journal.pone.0071680.t003

Table 4. Performance of SVD(d), NMF(f, d), and Bimax(k) on the PFGE dataset consisting of the 4 serotypes, Heidelberg (n = 322),
Javiana (n = 150), Newport (n = 91), and Typhimurium (n = 135), for a total of 698 isolates with 71 bands.

Sensitivity, based
on observed data

Specificity, based
on observed data

Number of
clusters

Number of
significant cluster Processing time

SVD(0.3) 0.632 0.961 38 35 1.042

SVD(0.2) 0.439 0.980 14 14 0.379

SVD(0.1) No bicluster is found 0.193

NMF(71, 0.3)* 0.425 0.997 19 19 16.833

NMF(71, 0.2)* 0.478 0.991 16 16 12.974

NMF(71, 0.1)* No bicluster is found 15.496

Bimax(4) 0.029 1 4 4 0.009

Bimax(5) 0.029 1 5 5 0.009

Bimax(6) 0.038 1 6 6 0.009

Bimax(7) 0.040 1 7 7 0.009

Bimax(8) 0.040 1 8 8 0.008

Bimax(9) 0.043 1 9 9 0.008

Bimax(10) 0.048 1 10 10 0.008

Bimax(100) 0.104 1 100 100 0.014

*The number of the factors in NMF is the rank of the data matrix f = 71.
doi:10.1371/journal.pone.0071680.t004
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only the spectral clustering but also the other existing methods

when there are overlapping biclusters on either row or column.

As discussed, this approach needs a method to determine the

boundary of the biclusters based on a tolerance constraint/

assumption. Although the NMF method was shown to perform

well in some cases in Table 1, this method also has the issue of

reproducibility in that it can generate different sets of biclusters

due to different initial conditions, and the biclusters identified

earlier from the high rank components are not necessarily superior

to those identified later. Carmona-Saez et al. [22] recommended

an additional evaluation to select more stable and representative

biclusters. In the SVD factorization, the principal components are

ranked according to similarity data patterns. The biclusters

extracted from high rank components are generally superior to

those identified from lower rank components. Finally, the matrix

factorization approach is based on the locality assumption which

assumes that the projection planes can sufficiently reflect the local

correlations structures. The insignificant components or low rank

components may lead to small biclusters or no bicluster identified.

The smaller submatrices might be filtered out either in Step 5 or

having higher p-values. On the other hand, there could have some

small biclusters that meet the d and p-value criteria; thus, the

proposed method averagely identified more biclusters than the

true number of biclusters (see Table 1). An approach to identifying

biclusters from those insignificant or low rank components is to

incorporate a deletion step by removing the rows or columns with

fewer signals so that the identified biclusters will have proportion-

ally more signals. However, the deletion step may lead to over

removal resulting smaller biclusters when applying to the

significant or high rank components.’’

Based on the analyses of the synthetic data and Salmonella

example dataset, the proposed method is capable of identifying the

overlapping biclusters, either on columns or on rows; and those

overlapping rows or columns can be interpreted as the commonly

regulating attributes or samples. In addition, the proposed method

has better sensitivity and specificity for serotype identification than

Bimax algorithm, and discovered more specific bands in the

analysis of Salmonella PFGE fingerprints. The method will be

helpful for the biologists to identify and understand characteristics

of various Salmonella serotypes, and provides an approach to

discovering new subtypes. The distinct band numbers and

locations can be useful for serotype prediction and classification.

The overlapping bands could be interpreted to simultaneously

regulate the sub-serotypes.

The paper proposes a method to identify constant level

biclusters. The method searches all candidate biclusters such that

the proportion of contamination in the bicluster is less than a pre-

specified threshold d. The specification of d is an important

component in the proposed method, and we suggest that d can be

specified based on prior knowledge or observed experimental data.

Alternatively, if the ratio (1-d)/q, which measures how the

biclusters contain larger proportion of signals than the whole data

and should be larger than 1, is defined by the interest of the

practitioners, the value of d can be determined.

In summary, the proposed method is non-parametric and does

not rely on assumptions of models or distributions such as [25,28].

The proposed method is shown to be more effective than the

commonly used methods for identifying constant level biclusters,

and it also requires fewer input parameters which would be better

for the users who do not have much prior knowledge in

biclustering. Finally, the SVD and NMF algorithms used in this

paper are the typical algorithms available in software R. The

methods we have developed are applicable in any size data if the

SVD, NMF and other matrix factorization methods work

successfully. In this paper, we focuses on the performance

(sensitivity, specificity, accuracy and statistical significance) of the

bicluster identification, the efficiencies of speed and memory are

not considered. Our procedures are available on request.
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Table 5. The ten largest biclusters out of 14 biclusters
identified by SVD(0.2).

Majority Sensitivity Specificity Isolates Bands log10p

Heidelberg 0.9845 0.8883 359 16

cluster 1 0.9783 0.9814 322 12 #22402.38

cluster 2 0.9068 1 292 9 #21545.73

cluster 3 0.0807 0.9362 50 4 #2106.22

cluster 4 0.0776 0.9707 36 5 #2124.87

Javiana 0.6067 0.8595 168 8

cluster 1 0.4267 0.8796 130 2 #2146.11

cluster 2 0.1933 0.9818 39 3 #269.97

cluster 3 0.0733 0.9982 12 4 #242.18

cluster 4 0.02 0.9964 5 3 26.75

Newport 0.0879 0.9951 11 3

cluster 1 0.0879 0.9951 11 3 #212.37

Typhimurium 0.0296 0.9982 5 2

cluster 1 0.0296 0.9982 5 2 25.03

doi:10.1371/journal.pone.0071680.t005

Table 6. The ten largest biclusters identified by Bimax(100).

Majority Sensitivity Specificity Isolates Bands log10p

Typhimurium 0.8148 0.8686 184 5

cluster 1 0.3801 0.9539 90 2 #2166.96

cluster 2 0.3416 1 55 3 #2153.05

cluster 3 0.4144 0.9942 78 2 #2144.70

cluster 4 0.3908 0.9904 73 2 #2135.42

cluster 5 0.2429 0.9315 72 2 #2133.57

cluster 6 0.3026 0.9904 51 2 #294.61

cluster 7 0.2535 0.9773 48 2 #289.05

cluster 8 0.2482 0.9792 46 2 #285.34

Newport 0.2967 0.9489 58 2

cluster 1 0.2328 0.9451 58 2 #2107.60

Javiana 0.2 0.9672 48 2

cluster 1 0.2482 0.9792 48 2 #289.05

doi:10.1371/journal.pone.0071680.t006
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