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Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein and has been
implicated in multiple functions essential in cancer, including cell proliferation, apoptosis,
chemosensitivity, metastasis, and invasion. However, the biological role and clinical
behavior of ANXA1 in glioma remain unclear. In this study, RNA-seq (n � 1018 cases)
and whole-exome sequencing (WES) (n � 286 cases) data on a Chinese cohort, RNA-seq
data with different histological regions of glioblastoma blocks (n � 270 cases), and scRNA-
seq data (n � 7630 cells) were used. We used the R software to perform statistical
calculations and graph rendering. We found that ANXA1 is closely related to the malignant
progression in gliomas. Meanwhile, ANXA1 is significantly associated with clinical behavior.
Furthermore, the mutational profile revealed that glioma subtypes classified by ANXA1
expression showed distinct genetic features. Functional analyses suggest that ANXA1
correlates with the immune-related function and cancer hallmark. At a single-cell level, we
found that ANXA1 is highly expressed in M2 macrophages and tumor cells of the
mesenchymal subtype. Importantly, our result suggested that ANXA1 expression is
significant with the patient’s survival outcome. Our study revealed that ANXA1 was
closely related to immune response. ANXA1 plays a key factor in M2 macrophages
and MES tumor cells. Patients with lower ANXA1 expression levels tended to experience
improved survival. ANXA1may become a valuable factor for the diagnosis and treatment of
gliomas in clinical practice.
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INTRODUCTION

Gliomas are the most common malignant brain tumor in adults. According to the 2016 WHO
classification, glioma can be classified into five subtypes, namely, IDH-mutant lower-grade gliomas
(LGGs) with chromosome 1p/19q co-deletion, IDH-mutant LGGs without 1p/19q co-deletion, IDH
wild-type LGGs, IDH-mutant glioblastomas (GBMs), and IDH wild-type GBMs (Cancer Genome
Atlas Research,N. et al., 2015; Louis et al., 2016). Although there have been advances of surgical
resection followed by radiotherapy and chemotherapy with temozolomide (TMZ) in the past
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decades, patients with glioma still have poor prognosis, indicating
that the main challenges underlying therapeutic failure are rooted
in tumor heterogeneity (Jiang et al., 2016; Jiang et al., 2021).
Studies of inter-tumor heterogeneity based on bulk tumor
expression profiles found that GBMs exist in four subtypes,
namely, proneural (TCGA-PN), classical (TCGA-CL),
mesenchymal (TCGA-MES), and neural (TCGA-NE) (Verhaak
et al., 2010). Recently, single-cell RNA-sequencing (scRNA-seq)
has emerged as a critical technology to comprehensively depict
the cellular states within tissues, both in health and in disease. By
integrating single-cell RNA-sequencing (scRNA-seq) and other
omics data, Neftel et al. found that malignant cells in GBMs exist
in four cellular states that recapitulate 1) neural-progenitor–like
(NPC-like), 2) oligodendrocyte-progenitor–like (OPC-like), 3)
astrocyte-like (AC-like), and 4) mesenchymal-like (MES-like)
states (Neftel et al., 2019), in which AC-like and MES-like cell
types are enriched in TCGA-CL and TCGA-MES, and NPC- and
OPC-like cell types are enriched in TCGA-PN. Although these
findings shed much light on tumor heterogeneity, the
relationships between the tumor and tumor microenvironment
(TME) in glioma are still poorly understood.

As the first member of the annexin superfamily, annexin A1
(ANXA1) is a calcium-dependent phospholipid-binding protein.
Previous studies suggest that loss of function or expression of this
gene has been implicated inmultiple functions essential in cancer,
including cell proliferation, apoptosis, chemosensitivity,
metastasis, and invasion (Bai et al., 2020; Feng et al., 2020;
Xiong et al., 2021). Recently, Lin et al. investigated the
prognostic and immune role of ANXA1 in gliomas (Lin et al.,
2021). However, the systematic and comprehensive
transcriptome characterization of ANXA1 in gliomas is
unclear. In this study, we integrated bulk genomic and
transcriptomic profiles and scRNA-seq data to
comprehensively characterize ANXA1’s role in gliomas. Our
work provides an insight on ANXA1’s role in glioma, which
might translate to clinical application for future diagnosis and
therapy in glioma.

MATERIALS AND METHODS

Patients and Samples
All RNA-sequencing data of diffuse glioma patients were
obtained from two independent databases: the CGGA dataset
(Dataset 1, n � 325 cases) (http://www.cgga.org.cn) and the
CGGA dataset (Dataset 2, n � 693 cases) (Zhao et al., 2021).
To compare the gene expression patterns of tumor tissues and
normal brain tissues, we also collected 20 RNA-seq samples of
normal brain tissues from the CGGA database in this study. All
WES data of diffuse glioma patients from WHO II-IV were
obtained from the CGGA Network (Dataset 3, n � 286).
Clinical information of all patients was also collected from the
CGGA Network, such as WHO grade (WHO II-IV), histology
grade (oligodendroglioma, anaplastic oligodendroglioma,
astrocytoma, anaplastic astrocytoma, and glioblastoma,
abbreviated as O, AO, A, AA, and GBMs, respectively);
gender, age, and overall survival data; progression status

(primary and recurrent states); and molecular pathological
features (IDH mutation status, MGMT promoter methylation
status, and chromosome 1p/19q co-deletion status). This research
was approved by the Ethics Committee of Capital Medical
University, and all patients provided written informed consent.

To further explore ANXA1 expression in different histological
regions of GBM blocks, we obtained Ivy data from the Ivy
Glioblastoma Atlas Project–Allen Institute for Brain Science
datasets (Dataset 4, n � 270 cases) (Puchalski et al., 2018)
(http://glioblastoma.alleninstitute.org/). For this dataset, we
collected different histological regions that contain 1) cellular
tumor (CT), 2) infiltrating tumor (IT), 3) leading edge (LE), 4)
microvascular proliferation (MP), and 5) pseudopalisading
cells (PC).

The scRNA-seq data of diffuse glioma patients were obtained
from a previous study (Neftel et al., 2019) (https://singlecell.
broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-
of-adult-and-pediatric-glioblastoma). Of them, there are 6863
tumor cells, 754 macrophages, 219 oligodendrocytes, and 94
T cells (Dataset 5). For tumor cells, we also obtained four
types of cellular state annotations that recapitulate 1) neural-
progenitor–like (NPC-like), 2) oligodendrocyte-progenitor–like
(OPC-like), 3) astrocyte-like (AC-like), and 4) mesenchymal-like
(MES-like) states.

CGGA CNV Data Analysis
WES data were mapped to the human reference genome (hg19)
using the Burrows–Wheeler Aligner (BWA) tool (Li and Durbin,
2009) with default parameters. Then, SAMtools (Li et al., 2009)
and Picard (http://broadinstitute.github.io/picard/) were used to
sort the reads by coordinates and mark duplicates. Next, we used
the CNVkit software (Talevich et al., 2016) to estimate the CNA
status of well-known driver genes in gliomas, such as PTEN,
MET, EGFR, andCDKN2A/B. In this study, a copy number gain is
identified as log2 (ratio) larger than 0.5, while a copy number loss
is identified as log2 (ratio) less than 1.0.

Immune Proportion Analysis
For RNA-seq data, we estimated the abundance of member cell
types using the CIBERSORT method (Newman et al., 2015). We
uploaded gene expression profiles and ran CIBERSORT software
online (https://cibersort.stanford.edu/runcibersort.php) by
selecting LM22 (gene signature) and 1000 permutation
parameters. As result, we obtained the 22 kinds of cell
composition for each sample from gene expression profiles.

TCGA Molecular Classifications for Each
Sample
For RNA-seq data, we identified the TCGA subtypes for each
sample as previously described (Wang et al., 2017). In this
pipeline, ssGSEA was performed to obtain the scores of the
four signatures for each sample from gene expression profiles.
Since the scores of the four signatures were not directly
comparable, this pipeline was used to perform a resampling
procedure to generate null distributions for each of the four
subtypes (1000 permutations). Following this procedure, this
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method generated random ssGSEA scores for each subtype to
provide empirical p-values and scaled ssGSEA scores for the raw
ssGSEA scores of each sample. Finally, we assigned the TCGA
subtypes for each sample based on the p-values and scaled
ssGSEA scores.

Immunohistochemistry Analysis
The selected glioma samples were collected from the CGGA
tissue bank and were supervised by the Beijing Tiantan
Hospital Institutional Review Board (KY 2019-143-02). IHC
analysis was performed as previously reported (Hu et al.,
2018). Briefly, the slides were deparaffinized and boiled in
antigen-retrieval buffer. Then, the slides were blocked using
endogenous peroxidase with H2O2, subsequently blocking
non-special sites, and the slides were incubated with primary
antibodies against ANXA1 (Cell Signaling Technology #32934, 1:
400 dilution) overnight at 4°C. On the second day, the slides were
rinsed three times in PBS buffer and incubated with the secondary
antibody working solution (PV6000 Beijing Zhongshan Jinqiao
Biological Company) for 60 min at room temperature. Last, the
IHC images were captured using an Axio Imager 2 microscope
(Zeiss). The scores were calculated according to the intensity
score multiplied by the areas as follows: The intensity was defined
as follows: 0 for no staining, one for weak staining, two for
moderate staining, and three for strong staining. The area score
was determined as follows: 0 for less than 5% cells positive, 1 for
5–25% cells positive, 2 for 26–50% cells positive, 3 for 51–75%
cells positive, and 4 for greater than 75% cells positive.

Gene Set Enrichment Analysis
To investigate the biological functions of the ANXA1 gene, the
ANXA1 coexpressed genes were obtained and gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) was
performed. First, we downloaded the gene sets from the GSEA
website (http://www.gsea-msigdb.org/gsea), including the Gene
Ontology (GO) biological process, Kyoto Encyclopedia of Genes
and Genomes (KEGG), and cancer hallmark. Then, ANXA1
coexpressed genes were obtained by the Pearson expression
correlation analysis between ANXA1 and other genes. Finally,
we implemented the ClusterProfiler R package to reach this
process (Yu et al., 2012).

Statistical Analysis
The R statistical software (v4.0.3) (http://www.r-project.org) was
used for statistical calculations and graph rendering. The
prognostic value of ANXA1 was estimated by using the
Kaplan–Meier analysis and Cox proportional hazard model
analysis using the “survival” and “survminer” packages in R.
In this study, the Pearson correlation analysis was used to obtain
ANXA1 coexpressed genes. In particular, a positive correlation is
defined as a correlation coefficient larger than 0.6 and p-value < 0.
05, while a negative correlation is defined as a correlation
coefficient less than −0.6 and p-value < 0.05. The Wilcoxon
test and one-way ANOVA test were used for two and multiple
group comparisons, respectively. For all statistical methods, p < 0.
05 was considered as a significant difference.

RESULTS

Patient Characteristics
In this study, a total of 1,018 patients with gliomas aged
8–79 years (median ± sd, 42 ± 12 years) were included. The
majority of glioma patients were males (59%) and WHO IV
(38%), and there were 651 cases of primary gliomas. For these
patients, 617 case deaths were recorded, with the median survival
of NA (3470-NA), 1208 (1028-1657), and 378 (344-415) for
WHO II, WHO III, and WHO IV, respectively. All patients
with transcriptomic data were used to analyze ANXA1
expression, and 231 of patients were also performed with WES
to investigate genetic changes. The clinical and pathological
features of these patients are described in Table 1.

ANXA1 Is Associated With Malignant
Progression of Gliomas
To exploreANXA1’s role in gliomas, we examined its transcriptomic
level in different subtypes of gliomas in two batches of RNA-seq data
from the CGGA database. We found that the expression values of
ANXA1were significantly higher in GBMpatients than in those with
normal brain and lower-grade gliomas (WHO II and WHO III) in
Dataset 1 (p < 5e-5, Figure 1A). Our further results showed that the
ANXA1 expression levels were statistically more abundant in GBMs
than in other histology (p < 1e-2, Figure 1B). In addition, due to the
genetic and clinical differences between IDH-mutated gliomas and
IDH wild-type gliomas, we explored the role ANXA1 played in
gliomas with different IDH statuses. The ANXA1 expression was
highest in IDH wild-type and lowest in IDH mutation and 1p/19q
co-deletion in LGGs (all p ≤ 5e-5, Figure 1C left), while ANXA1
expression was higher in the IDH wild-type than in IDH mutant
gliomas in GBMs (p < 5e-11, Figure 1C right). There was a reduced
expression of ANXA1 in glioma with IDHmutation based on LGGs
and GBMs (all p < 5e-9, Figure 1D). It is well known that the
MGMT promoter methylation status is a key biomarker indicating
temozolomide (TMZ) chemotherapy sensitivity in gliomas. As a
result, we found that patients withoutMGMT promotermethylation
possessed a higherANXA1 expression level in GBMs, suggesting that
ANXA1may play a resistance role in TMZ therapy of GBMs (p < 5e-
3, Figure 1E). Notably, we also found that ANXA1 expression was
higher in recurrent LGGs (Figure 1F). The aforementioned results
are well validated in independent CGGA RNA-seq data (Figures
1G–L). Consistently, the immunohistochemistry (IHC) experiments
of glioma patients (WHO II–IV grade) showed that ANXA1was the
highest in WHO IV patients and lowest in WHO II patients (all p <
0.05, Figures 1M–N). Taken together, these results suggest that the
ANXA1 gene acts as an oncogene and may serve as a biomarker for
disease progression in gliomas.

ANXA1 Clinicopathological Features of
Glioma Specimens
To investigate the clinical value of ANXA1, we examined the
association between gene expression of ANXA1 and clinical
information, including primary/recurrent status, WHO grade,
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histology, age, gender, well-known molecular status, TCGA
subtype, survival, and therapy information. The evaluation of
the association between clinicopathological features and the
ANXA1 gene was conducted for 1,018 glioma patients from a
Chinese cohort. Gliomas in Dataset 1 were ordered by
increasing ANXA1 expression (Figure 2A). Our results
showed that primary gliomas and LGGs had lower levels of
ANXA1 expression (all p < 0.01), suggesting that ANXA1 may
play a positive role in malignant progression. Younger
patients with glioma had lower expression of ANXA1 (p <
2.14e-10). Gender of patients is not associated with ANXA1

expression. With regard to genomic alterations, IDH
mutation, 1p/19q co-deletion, and MGMT promoter
methylation indicated lower ANXA1 expression (all p <
0.01). Gliomas with lower ANXA1 expression are more
likely to belong to proneural (PN) and neural (NE)
subtypes and have a good prognosis, while gliomas with
high ANXA1 expression are more likely to belong to
mesenchymal (MES) and classical (CL) subtypes and have
poor survival (all p < 2.00e-16). Gliomas with chemotherapy
and/or radiotherapy tend to have a high ANXA1 expression.
The aforementioned results are well validated in independent

TABLE 1 | Clinical characteristics of the sample set according to ANXA1 expression status.

Characteristic CGGA_325 CGGA_693

Total (N = 325) ANXA1 high (N = 163) ANXA1 low (N = 162) Total (N = 693) ANXA1 high (N = 347) ANXA1 low (N = 346)

PRS type (%)
Primary 229 (70.5) 104 (63.8) 125 (77.2) 422(60.9) 175 (50.4) 247 (71.4)
Recurrent 92 (28.3) 55 (33.7) 37 (22.8) 271 (39.1) 172 (49.6) 99 (28.6)
Unknown 4 (1.2) 4 (2.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Grade (%)
WHO II 103 (31.7) 12 (7.4) 91 (56.2) 188 (27.1) 58 (16.7) 130 (37.6)
WHO III 79 (24.3) 39 (23.9) 40 (24.7) 255 (36.8) 100 (28.8) 155 (44.8)
WHO IV 139 (42.8) 108 (66.3) 31 (19.1) 249 (35.9) 188 (54.2) 61 (17.6)
Unknown 4 (1.2) 4 (2.5) 0 (0.0) 1 (0.1) 1 (0.3) 0 (0.0)

Histology (%)
Astrocytoma 56 (17.2) 13 (8.0) 43 (26.5) 119 (17.2) 48 (13.8) 71 (20.5)
Anaplastic astrocytoma 62 (19.1) 38 (23.3) 24 (14.8) 152 (21.9) 78 (22.5) 74 (21.4)
Anaplastic

oligodendroglioma
12 (3.7) 0 (0.0) 12 (7.4) 82 (11.8) 22 (6.3) 60 (17.3)

Anaplastic oligoastrocytoma 0 (0.0) 0 (0.0) 0 (0.0) 21 (3.0) 0 (0.0) 21 (6.1)
Glioblastoma 139 (42.8) 108 (66.3) 31 (19.1) 249 (35.9) 188 (54.2) 61 (17.6)
Oligodendroglioma 52 (16.0) 0 (0.0) 52 (32.1) 60 (8.7) 10 (2.9) 50 (14.5)
Oligoastrocytoma 0 (0.0) 0 (0.0) 0 (0.0) 9 (1.3) 0 (0.0) 9 (2.6)
Unknown 0 (0.0) 2 (1.8) 2 (0.9) 1 (0.1) 1 (0.3) 0 (0.0)

Age (years)
Mean ± sd 42.9 ± 11.96 46.7 ± 12.74 39.1 ± 9.74 43.2 ± 12.39 44.9 ± 13.38 41.7 ± 11.10

Gender (%)
Male 203 (62.5) 106 (65.0) 97 (59.9) 398 (57.4) 206 (59.4) 192 (55.5)

IDH mutation (%)
Mutation 175 (53.8) 40 (24.5) 135 (83.3) 356 (51.4) 134 (38.6) 222 (64.2)
Wild type 149 (45.8) 123 (75.5) 26 (16.0) 286 (41.3) 208 (59.9) 78 (22.5)
Unknown 1 (0.3) 0 (0.0) 1 (0.6) 51 (7.4) 5 (1.4) 46 (13.3)

1p/19q co-deletion status (%)
Co-deletion 67 (20.6) 3 (1.8) 64 (39.5) 145 (20.9) 30 (8.6) 115 (33.2)
Non–co-deletion 250 (76.9) 155 (95.1) 95 (58.6) 478 (69.0) 315 (90.8) 163 (47.1)
Unknown 8 (2.5) 5 (3.1) 3 (1.9) 70 (10.1) 2 (0.6) 68 (19.7)

MGMT promoter methylation status (%)
Methylated 157 (48.3) 69 (42.3) 88 (54.3) 315 (45.5) 154 (44.4) 161 (46.5)
Un-methylated 149 (45.8) 86 (52.8) 63 (38.9) 227 (32.8) 120 (34.6) 107 (30.9)
Unknown 19 (5.8) 8 (4.9) 11 (6.8) 151 (21.8) 73 (21.0) 78 (22.5)

TCGA subtype (%)
CL 71 (21.8) 68 (41.7) 3 (1.9) 140 (20.2) 103 (29.7) 37 (10.7)
MES 75 (23.1) 70 (42.9) 5 (3.1) 143 (20.6) 121 (34.9) 22 (6.4)
NE 44 (13.5) 8 (4.9) 36 (22.2) 132 (19.0) 35 (10.1) 97 (28.0)
PN 135 (41.5) 17 (10.4) 118 (72.8) 278 (40.1) 88 (25.4) 190 (54.9)

Radiotherapy status (%)
Therapy 244 (75.1) 116 (71.2) 128 (79.0) 510 (73.6) 261 (75.2) 249 (72.0)
Without therapy 66 (20.3) 37 (22.7) 29 (17.9) 136 (19.6) 59 (17.0) 77 (22.3)
Unknown 15 (4.6) 10 (6.1) 5 (3.1) 47 (6.8) 27 (7.8) 20 (5.8)

Chemotherapy status (%)
Therapy 193 (59.4) 105 (64.4) 88 (54.3) 486 (70.1) 264 (76.1) 222 (64.2)
Without therapy 111 (34.2) 48 (29.4) 63 (38.9) 161 (23.2) 61 (17.6) 100 (28.9)
Unknown 21 (6.5) 10 (6.1) 11 (6.8) 46 (6.6) 22 (6.3) 24 (6.9)

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7771824

Qian et al. Characterization of ANXA1 in Glioma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


CGGA RNA-seq data (Dataset 2, Figure 2B). These results
indicate that ANXA1 is closely related to clinical behavior.

Genomic Features of ANXA1 Expression
Subtypes in Gliomas
To investigate the association between ANXA1 expression and
genomic alterations, we analyzed the somatic mutations and copy

number alteration data from cases with RNA-seq and WES data
for this purpose. In total, 231 samples in the entire cohort
harbored both RNA-seq and WES data (Dataset 3).
Recapitulating previous studies, we confirmed frequency
mutation in IDH, TP53, ATRX, CIC, NOTCH1, EGFR, and
PDGFRA in this study. According to ANXA1 expression,
gliomas were divided into G1 group (low expression, n � 116)
and G2 group (high expression, n � 115). Approximately two-

FIGURE 1 | Gene expression pattern of ANXA1 in glioma. (A) and (G) Normal brain and WHO II–IV; (B) and (H) histology; (C) and (I) 2016 WHO classification; (D)
and (J) IDH mutation status in LGGs and GBMs; (E) and (K)MGMT promoter methylation status in LGGs and GBMs; (F) and (L) primary (Pri.)/recurrent (Rec.) status in
LGGs and GBMs. (A–F) for Dataset 1 and (G–L) for Dataset 2. (M) Representative immunohistochemistry (IHC) staining of ANXA1 in different grades of gliomas. (N)
Comparing ANXA1 expression in gliomas with WHO II–IV by Dot plots.
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thirds of cases in the G1 group carried either an IDH1 mutation
or IDH2 mutation.

In addition, cases in the G1 group were enriched in CIC and
NOTCH1 mutation that have been well-described in
oligodendroglia histology (Figure 3). In contrast, both TP53
and ATRX mutation in cases of the G2 group were 1.25 times
higher than those in the G1 group. On the other hand, cases in the
G2 group have a much higher mutation frequency of EGFR and
PDGFRA than those in the G1 group. Notably, although
previously not recognized, mutations in RYR2, IGSF10, BNC2,
CADPS2, COL12A1, TRABD2A, and USP34 were significantly
enriched in the G2 group. Moreover, we also explored the
frequency of copy number alterations in G1 and G2 groups.
For CN amplification, G1 had a higher alteration frequency in
AHNAK and CD276, while G2 had a high alteration frequency in
EGFR, PDGFRA,MET, and TTN. For CN loss, our results showed
that deletion in CDKNA2A/B genes in interferon-α family and
olfactory receptor family 4 subfamilies mainly occurred in G2
cases. Taken together, glioma subtypes classified by ANXA1
expression showed distinct mutation and CNA features.

ANXA1 Correlates With Immune-Related
Function and Cancer Hallmark in Glioma
Ecosystem
ANXA1 expression was heterogeneous in different glioma
subtypes. To explore ANXA1’s biological role in gliomas,
RNA-seq data were collected. First, we obtained the genes that
significantly correlated with ANXA1 expression (Pearson |R| >
0.6 and p < 0.05). Totally, 462 positive and 107 negative
coexpressed genes were identified in Dataset 1. Then, we
predicted the GO biological process and cancer hallmark of
these coexpressed genes. GSEA showed that the coexpressed
positive genes associated with ANXA1 were mainly involved in
immune-related functions, such as interferon-gamma response
and regulation of innate immune response, suggesting a
regulatory role in the immune microenvironment in gliomas
(Figure 4A). In particular, we found that these coexpressed genes
also positively function in apoptosis, epithelial–mesenchymal
transition, NF-κB signaling, etc., indicating that ANXA1 may
play an important role in regulating cell fate in gliomas. In
contrast, we found that coexpressed negative genes of ANXA1

FIGURE 2 | Landscape of clinical and molecular characteristics associated with ANXA1 expression in gliomas. Dataset 1 (A) and Dataset 1 (B) were arranged in
an increasing order of ANXA1 expression. The relationship between ANXA1 expression and patients’ characteristics was evaluated: (a, Wilcoxon rank sum tests
between two groups; b, one-way ANOVA between several groups; c, Spearman’s correlation tests between ANXA1 expression and continuous variables; d, Log-rank
test for survival data).
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participate in the neuro-basic functions in gliomas, such as
synapse structure and organization, regulation of cellular
component biogenesis, and neuro-projection morphogenesis
and differentiation. Furthermore, GSEA verified that ANXA1
was associated with immune, apoptosis, and neuron function
(Figure 4B). For genes in interferon-gamma response, we
confirmed that they are associated with ANXA1 expression,
and show the differential expressed patterns in glioma
subtypes grouped by ANXA1 expression (Figure 4C). In
summary, ANXA1 correlates with immune-related function
and cancer hallmark and plays a critical role in the glioma
ecosystem.

ANXA1 Is Highly Expressed in M2
Macrophages and MES Tumor Cells
As ANXA1 confers an extended immune status, we sought to
further explore the ANXA1 regulatory immune role in the glioma
ecosystem. We applied CIBERSORT software on Dataset 1 for
estimating the relative abundances of 22 infiltrating immune cells
(Newman et al., 2015). These cells mainly include lymphocytes,
plasma, myeloid cells, and eosinophils. As a result, the majority of
cell types in gliomas are myeloid cells and lymphocytes. In
addition, we found that M2 macrophages are significantly
enriched in gliomas with high ANXA1 expression (Figure 5A).
We also validated that ANXA1 expression exhibited a significant
positive correlation with the expression of M2-related genes (all
R > 0.6 and p < 2.2e-16), including CD276, CLE7A, CTSA, FN1,
IL4R,MMP9,MSR1, TGFB1, andVEGFA (Figure 5B), suggesting
that ANXA1 acts a potential regulatory factor for M2
macrophages. In addition, we further collected anatomic
transcriptional data in gliomas (Dataset 4), including leading

edge (LE), infiltrating tumor (IT), cellular tumor (CT),
pseudopalisading cells around necrosis (PAN), and
microvascular proliferation (MVP) (Puchalski et al., 2018).
Therefore, we found that ANXA1 was significantly under-
expressed in CL enriched in the PN TCGA subtype and
significantly overexpressed in MVP enriched in the MES
TCGA subtype. This result is consistent with previous findings
that ANXA1 was highly expressed in MES gliomas. To further
explore ANXA1’s role in the tumor environment, we collected
single-cell transcriptomic data in gliomas from a previous study
(Neftel et al., 2019) (Dataset 5). We found that ANXA1 is highly
expressed in macrophages, indicating a potential role for
macrophages, especially M2 macrophages (Figure 5D).
Moreover, we also noticed that tumor cells are highly
expressed in the ANXA1 gene. In the single-cell level, our
result showed that tumor cells with high expression of ANXA1
are in the MES cellular state (Figure 5E), indicating that ANXA1
could drive transitions to MES-like states in gliomas as reported
in a previous study (Hara et al., 2021). In summary, we found that
ANXA1 is highly expressed in M2 macrophages and MES
tumor cells.

ANXA1 Is a Prognostic Model for Predicting
OS in Gliomas
To further explore the role of the ANXA1 gene in clinical
application, we examined the prognostic value in all kinds of
subtypes in gliomas. We used the quartile of ANXA1 expression
to divide the samples into three groups and explore their
prognostic differences (Dataset 1). Gliomas with high
expression levels of ANXA1 showed a significant poor
prognosis for overall survival (OS) in both gliomas and LGGs

FIGURE 3 | Mutational landscape of glioma with high and low expression of ANXA1. Dataset 3 was classified in two groups according to ANXA1 expression.
Alterations in common driver and novel genes are displayed. Cases with both RNA-seq and WES data (n � 231) were enrolled for this analysis.
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(log-rank test, p < 1.0e-4, Figures 6A,B). We also found that
ANXA1 expression stratified patients with MGMT promoter
methylation into distinct survival groups (log-rank test, p <
1.0e-4, Figure 6C), assuming that patients previously thought
to be sensitive to TMZ could be stratified based on ANXA1
expression. Meanwhile, our results suggest that patients
previously thought to be resistant to TMZ can be stratified

based on ANXA1 expression, and patients with low ANXA1
expression could also have a good prognosis (log-rank test,
p < 1.0e-4, Figure 6D). These analyses in Dataset 2 were
conducted in parallel (log-rank test, all p < 1.0e-4, Figures
6E–H). Furthermore, we conducted the univariate and
multivariable Cox regression analyses in Dataset 1, which
implies that ANXA1 expression is an independent predictor

FIGURE 4 | ANXA1 involved in the biological process and cancer hallmark. (A) Biological functions related to immune response, interferon-gamma response, and
regulation of innate immune response were significantly positively correlated with ANXA1 expression (R > 0.6 and p < 0.05). (B) GSEA indicated that ANXA1 was
significantly associated with immune phenotypes and neuro-associated function. (C) ANXA1 was significantly correlated with the genes in the hallmark of interferon-
gamma response.
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for survival prognosis after adjusting for other clinicopathological
factors (Table 2). These results suggest that ANXA1 expression is
significantly correlated with patient outcome.

DISCUSSION

Since the advanced therapeutic classical model including surgery
followed by commitment radiotherapy and chemotherapy with
temozolomide, the median survival time remains poor with

14–16 months for recent 10 years (Stupp et al., 2005). The
discovery of the lymphatic system in the central nervous
system proposed a new theoretical basis and reformed the past
view regarding the immunotherapy for brain tumors (Louveau
et al., 2015). Therefore, more effective treatment methods were
needed to improve survival in these patients.

Annexin A1 (ANXA1), also known as lipocortin I, is a Ca2+-
dependent phospholipid-binding protein (Rescher and Gerke,
2004). It not only plays a regulated role in the process of
inflammation and immunity (Perretti and D’Acquisto, 2009)

FIGURE 5 | ANXA1 highly expressed in M2 macrophages and MES tumor cells. (A) Cell component of gliomas grouped by ANXA1 expression. (B) ANXA1
expression positively associated markers of M2 macrophages. (C) Expression pattern of ANXA1 in different histological regions of GBM blocks. (D) The single-cell data
showed that ANXA1 was mainly expressed in tumor cells and macrophages. (E) Expression pattern of ANXA1 in the glioma cellular state.
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but also is deregulated in multiple cancers, where it may
participate in tumor development and metastasis, as
summarized in previous reports (Foo et al., 2019; Bai et al.,
2020). To explore the exhaustive function of ANXA1 in gliomas,
we integrated the bulk genomic and transcriptomic profiles and
scRNA-seq data to comprehensively characterize the role of
ANXA1 in gliomas. In this study, we revealed that ANXA1
was significantly upregulated in GBM patients, especially

enriched in IDH wild-type gliomas, which was consistent with
previous reports (Lin et al., 2021; Qiu et al., 2020). In addition,
gliomas with chemotherapy and/or radiotherapy tend to have a
high ANXA1 expression. From the somatic mutation and copy
number alteration data, we confirmed that glioma-related
mutations in TP53, ATRX, EGFR, PDGFRA, and others
previously not recognized, including RYR2, IGSF10, BNC2,
CADPS2, COL12A1, TRABD2A, and USP34, were significantly

FIGURE 6 | ANXA1 was a prognostic factor in glioma patients. (A) Kaplan–Meier survival analysis of all grades of glioma patients in Dataset 1 based on ANXA1
expression. (B) Kaplan–Meier survival analysis of LGG patients in Dataset 1 based on ANXA1 expression. (C) Kaplan–Meier survival analysis of patients with MGMT
promoter methylation inDataset 1 based on ANXA1 expression. (D)Kaplan–Meier survival analysis of patients without MGMT promoter methylation inDataset 1 based
on ANXA1 expression. (E) Kaplan–Meier survival analysis of all grades of glioma patients in Dataset 2 based on ANXA1 expression. (F) Kaplan–Meier survival
analysis of LGG patients inDataset 2 based on ANXA1 expression. (G) Kaplan–Meier survival analysis of patients with MGMT promoter methylation inDataset 2 based
on ANXA1 expression. (H) Kaplan–Meier survival analysis of patients without MGMT promoter methylation in Dataset 2 based on ANXA1 expression.

TABLE 2 | Univariate and multivariate analysis of clinical prognostic parameters in Dataset 1.

Variable
Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

WHO III 3.498 2.287 ∼ 5.348 <0.0001 3.705 2.329 ∼ 5.893 <0.0001
WHO IV 8.902 5.996 ∼ 13.215 <0.0001 6.814 4.259 ∼ 10.903 <0.0001
Gender (male) 0.924 0.702 ∼ 1.216 0.572 — — —

Age of diagnosis 1.033 1.020 ∼ 1.046 <0.0001 1.010 0.998 ∼ 1.024 0.096
IDH status (wild type) 2.777 2.099 ∼ 3.674 <0.0001 0.851 0.588 ∼ 1.232 0.393
1p/19q co-deletion status 5.887 3.608 ∼ 9.606 <0.0001 3.279 1.918 ∼ 5.603 <0.0001
MGMT promoter methylation status 1.196 0.909 ∼ 1.573 0.202 — — —

Chemotherapy (without therapy) 0.686 0.511 ∼ 0.922 <0.050 1.452 1.048 ∼ 2.013 <0.05
Radiotherapy (without therapy) 1.571 1.134 ∼ 2.176 <0.01 1.286 0.908 ∼ 1.821 0.157
ANXA1 1.002 1.002 ∼ 1.003 <0.0001 1.002 1.000 ∼ 1.002 <0.005
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enriched in the higher ANXA1 expression group, while the
deletion in CDKNA2A/B correlated with higher ANXA1
expression. As observed from previous reports of ANXA1 in
different cancers (Bai et al., 2020), we also revealed that ANXA1
was mainly involved in immune-related functions, such as
interferon-gamma response and regulation of innate immune
response. Notably, in single-cell–level analysis, we validated that
ANXA1 exhibited a significant positive correlation with the
expression of M2 macrophages and was significantly
overexpressed in MVP enriched in the MES TCGA subtype.
Importantly, in our analysis from 1018 CGGA samples, higher
ANXA1 expression predicted a poor prognosis in gliomas.

Despite increasing studies postulating the roles of ANXA1 in
cancer, the consensus holds that ANXA1 in cancer cells might only
be a partial functional mediator of tumorigenesis andmetastasis, so
it does not simply qualify as a tissue-specific mediator for
predicting the occurrence of metastasis or cancer in general,
due to its differential expression between different cancers. In
gliomas, although there had been several reports confirming the
overexpression of ANXA1 and that it may be a prognostic and
immune microenvironmental marker, the exhaustive functions of
ANXA1 in gliomas remain unclear. Consistent with previous
results, we further validated that ANXA1 was mainly
upregulated in MES gliomas and macrophages, especially
overexpressed in the pseudopalisading cells around the necrosis
and microvascular proliferation region which further precisely
confirmed the location of ANXA1, indicating that ANXA1 could
drive transitions to MES-like states in gliomas and plays an
important role in M2 macrophages to induce the inhibitory
glioma microenvironment. The details in moving the interaction
of tumor cells and macrophages in gliomas will be our next
study focus.

ANXA1 has also been shown to affect the sensitivity of cancer
cells to various chemotherapeutic drugs. For instance, the
silencing of ANXA1 with specific targeting compounds could
increase cisplatin sensitivity to drug-resistant A549 cells (Wang
et al., 2010). In our study, we also found that ANXA1 was highly
expressed in recurrent GBMs, and patients with MGMT
promoter methylation possessed a lower ANXA1 expression
level in GBMs. As we know, the MGMT promoter methylated
status has a confirmed association with TMZ therapy in GBMs;
thus, we imply that ANXA1 not only functions as an important
factor of the post-surgery recurrence of glioma but also results in
the resistance of TMZ chemotherapy. In the far future, the
combined strategy of TMZ and anti-ANXA1 may improve the
prognosis of GBMs.

In our current study, we elaborated the functions of ANXA1
in gliomas from different datasets, including gene mutations,
CNAs, and transcriptomic RNA sequences, especially at the
single-cell transcriptomic level. Compared with the previous

studies, we revealed that ANXA1 was also upregulated in M2
macrophages derived from the glioma immune
microenvironment, indicating that ANXA1 may exert pro-
tumor and inhibitory immune effects in both tumors
intrinsically and the tumor microenvironment. Additionally,
inhibiting ANXA1 would decrease post-surgery recurrence or
relapse of GBMs and prolong patients’ survival times. In
summary, these findings have proposed that ANXA1, a key
gene in glioma, in moving the tumor cell and glioma inhibitory
microenvironment, can be a promising direction for the
therapeutic strategy in gliomas. The further mechanism and
intervention treatment require extensive studies to validate in
vivo. We hope that these results would provide a new insight
into future diagnosis and therapy in gliomas.
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