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Abstract: Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal
damage are discussed with a focus on the consequences of traumatic brain injury. The effects of
glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration,
duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to
pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may
inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in
the hippocampus after brain trauma are involved in late post-traumatic pathology development, such
as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic–
pituitary–adrenal axis on neuroinflammation may be essential for late post-traumatic pathology.
These mechanisms are applicable to remote hippocampal damage occurring after other types of focal
brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury.
Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic–pituitary–adrenal axis
with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal
damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive
functions and the emotional state, further research on potential links between glucocorticoid signaling
and inflammatory processes in the brain and respective mechanisms is vital.

Keywords: hippocampus; brain trauma; glucocorticoids; corticosterone; cortisol; stress;
neuroinflammation; neurodegeneration; remote damage

1. Introduction

Brain injury is a common cause of death and disability for people of all ages world-
wide [1–3]. Depending on the biomechanics, brain lesions may occur both in areas of
the brain directly adjacent to the place of force application and in remote areas [4]. The
mechanisms of hippocampal damage are of particular importance, since they underlie late
complications of traumatic brain injury (TBI), such as epilepsy, depression and cognitive
impairment. The mechanisms of reorganization of neuronal networks in the hippocampus
include long-lasting chronic neuroinflammation and secondary damage to the nervous
tissue [5]. Responses and disturbances of the hypothalamic–pituitary–adrenal (HPA) axis
may play a critical role in late post-traumatic pathology, in particular by modulation of
synaptic activity and neuroinflammation in the hippocampus.

Even though stress-induced neuroinflammation and neurodegeneration in the hip-
pocampus is fairly well described, and secondary hippocampal damage after TBI is studied
by several groups, so far there have been no reviews on the glucocorticoid-dependent
mechanisms of inflammation-mediated distant hippocampal damage with a focus on the
consequences of TBI. PubMed search for the combination of words “TBI” (or “traumatic
brain injury” or “brain trauma”) and “corticosterone” shows no review papers. A search
query for “TBI” and “glucocorticoids” results in 15 relevant reviews, though none deals
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with the hippocampus. Ten of them are focused precisely on the clinical aspects of TBI: four
reviews are related to pituitary disfunction after TBI [6–9]; three reviews are devoted to
treatment [10–12], including usage of glucocorticoids (GCs) as medication; two reviews are
focused on post-traumatic stress disorder [13,14]. Only five reviews include experimental
studies; three of them are focused on the mechanisms of progesterone, dexanabinol and
dexamethasone effects [15], TNF inhibitors [15] and mesenchymal stem cells in TBI [16].
One review describes the blood–brain barrier disfunction and the effects of GCs on its
permeability [16]. The last and most relevant review was published in 2019 and was de-
voted to pro- and anti-inflammatory action of GCs after TBI [17]. Nevertheless, it lacks
several important aspects of GC action on synaptic transmission and excitotoxicity in the
hippocampus.

The aim of the present review was an analysis of the glucocorticoid-dependent mecha-
nisms of inflammation-mediated distant hippocampal damage with a focus on the conse-
quences of traumatic brain injury. In addition, we have systematically analyzed relevant
papers resulting from a PubMed search for the combination of “TBI” and “corticosterone”.

2. TBI, Its Late Consequences and the Hippocampus

Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury (TBI).
It occurs in 10–20% of patients after TBI [18]. About 57% of patients with PTE suffer from
medial temporal lobe epilepsy diagnosed by the semiology of epileptic seizures, signs on
the EEG and MRI [19]. Histological analysis reveals a specific epilepsy-related pathology
of the hippocampus, hippocampal sclerosis, in at least half of these patients [20]. The main
risk factors for PTE include the severity of injury, subdural, intracerebral hematomas and
early seizures [18,21–24].

Major depressive disorder development after TBI is quite frequent. Over 50% of
patients met major depression disorder criteria at least once, the disease being associated
with poorer health-related quality of life [25]. Pathological changes in the hippocampus may
represent a basis for post-traumatic depression [26], and, taking into account the common
pathophysiological mechanisms, depression is considered the main comorbid pathology
for epilepsy [27]. Interestingly, anxiety and depression in patients can be diagnosed before
the diagnosis of epilepsy [28], thus confirming common bases of disease mechanisms but
not a unidirectional causal relationship between depression and epilepsy.

The mechanisms of late TBI complications and reorganization of neuronal networks in
the hippocampus include long-lasting chronic neuroinflammation and secondary damage
to the nervous tissue [5]. The causes of chronic neuroinflammation development and
circuit reorganization are obviously complicated and, so far, remain obscure. Recent data
suggest that disturbance in the HPA axis function plays a critical role in late post-traumatic
pathology.

3. HPA Axis in Patients with TBI

HPA axis (Figure 1) is the main neuroendocrine system of the organism implementing
stress response and controlling adaptive mechanisms at different levels, from subcellular to
the whole organism [29–31]. Normally, physiological stress is realized due to HPA action
and release of glucocorticoids (GCs). Clinical studies of cortisol-dependent damage in
TBI are limited, and the data are scarce and contradictory. Different groups report that
cortisol level after TBI is decreased [32] or increased [33,34]. TBI is an acute physiological
stress and is expected to increase cortisol levels, at least in TBI patients with preserved HPA
axis function. However, some patients with TBI develop dysfunction of the anterior or
posterior pituitary gland, which, in turn, leads to secondary hypocorticism (a decrease in
cortisol levels due to a decrease in the production of pituitary adrenocorticotropic hormone,
ACTH). Agha et al. [35] showed that ACTH and cortisol production after stimulation by
glucagon in patients with TBI may be normal or reduced. In patients with a reduced
response, the basal cortisol level after TBI was also decreased, but in patients with a normal
response, it was increased. The risk factors for adrenal insufficiency and a decreased
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cortisol level in the acute period of TBI are basal skull fractures, hypotension and the
use of propofol [36]. Hydrocortisone replacement therapy may be associated with a
favorable neurologic outcome after TBI, suggesting the involvement of corticosteroids in
the consequences of brain trauma [37]. In general, signs of mild TBI, including absence
of amnesia and a higher Glasgow coma scale score, are associated with higher cortisol
levels [38], while the severity of coma positively correlates with acute cortisol level (within
6 h after TBI) [34]. On the contrary, during the first 3 days after TBI, the cortisol level is
higher in patients with lower Glasgow coma scale score and predicts mortality [39].
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central action via specific receptors in almost all organs and tissues, including the brain. The pre-
frontal cortex, hippocampus and amygdala control the activity of the hypothalamus, thus regulat-
ing the HPA axis [29–31]. 

4. Distant Hippocampal Damage in Rodent TBI Models 
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Figure 1. Hypothalamic–pituitary–adrenal (HPA) axis. Neuroendocrine response to stress includes
the reaction of HPA axis: the release of hypothalamic corticotropin-releasing hormone (CRH), which
stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland and, finally,
the release of glucocorticoids (GCs) from the adrenal glands (corticosterone in most rodents; cortisol
in humans). GCs enter the blood circulation, implementing both peripheral and central action
via specific receptors in almost all organs and tissues, including the brain. The prefrontal cortex,
hippocampus and amygdala control the activity of the hypothalamus, thus regulating the HPA
axis [29–31].

The time course of cortisol level during the first weeks after TBI also depends on the
initial HPA axis state. In patients with stressful events prior to brain injury, cortisol levels
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were significantly decreased, as compared with patients without stress before TBI [40],
indicating stress-induced HPA dysfunction. In patients without stressful events before
TBI, HPA function was preserved, and GC levels increased. Chronic HPA disturbances in
patients with TBI are studied even less. In mild TBI, hair cortisol did not diverge before
and months after TBI, its level reflecting individual coping with stress in general [41].
However, HPA dysregulation was shown two years after TBI, when hypocortisolemia and
low diurnal GCs variability were detected [42]. Another study reported normal cortisol
and circadian variations for two years after mild-to-moderate TBI, even with the presence
of depression [43].

According to the data of basic experimental research, it can be assumed that an altered
physiological response to acute stress may underlie some long-term effects of TBI. However,
convincing clinical studies in this area are still lacking. Corticoid-related primary and
secondary mechanisms of TBI, studied in animal models, are discussed below.

4. Distant Hippocampal Damage in Rodent TBI Models

Lateral fluid percussion brain injury model in rats [44,45] or mice [46,47] is the most
conventional TBI model. A “golden standard” of TBA modeling, it allows studying the
mechanisms of primary and secondary brain damage induced by TBI, though a few other
models are also used [48].

Primary damage includes direct impact to brain tissue, which is accompanied by
rupture of cell membranes, mechanical disruption of the blood–brain barrier, release of
albumin and other blood components into the extracellular space. Acute damage causes
severe metabolic disturbances inducing deficits in ATP production, energy deficiency and
subsequent impairment of Na+/K+ ATPase, as well as an increase in the concentration of ex-
tracellular K+. Changes in the extracellular K+ cause depolarization of neuronal membranes
and additional opening of voltage-gated calcium channels (VGCC), neurotransmitter re-
lease and a fast increase in the level of excitatory amino acids in the extracellular space [49].
Continuous changes in the concentration of extracellular ions further reduce the threshold
of neuronal excitability and are aggravated by their repeated excitation. In addition, energy
deficiency leads to the generation of free radicals and reactive oxygen species involved in
oxidative stress and secondary damage to the nervous tissue [49]. Primary damage results
in continued metabolic changes, excitotoxicity and the edema formation, inflammation,
apoptosis and necrosis, representing the mechanisms of secondary brain damage.

TBI applied to the neocortex induces secondary, distant damage to the hippocampus.
Neuronal death and glial activation are detected in the CA3 field and the dentate gyrus
(DG) of the hippocampus [50]. Less pronounced changes are detected in the contralateral
hippocampus [51,52]. Bilateral changes in the hippocampus after repeated TBI were
also shown [53]. GABAergic neurons (parvalbumin (PV), calretinin, somatostatin and
neuropeptide Y-immunoreactive) in the polymorphic layer of the DG are among the most
vulnerable populations of hippocampal neuronal cells. Previously, we described the
development of distant hippocampal damage after lateral fluid percussion brain injury
in rats [54,55]. Selective neuronal cell loss in the polymorph layer of the hippocampal
DG was demonstrated bilaterally; in the ipsilateral hippocampus, it was evident on day 3,
but in the contralateral hippocampus, these changes were delayed and detected on day 7.
Microglial activation was evident in the hippocampus bilaterally on day 7 after TBI, while
pro-inflammatory cytokines mRNA levels increased bilaterally from day 1 after TBI.

It is worth noting that distant damage to the hippocampus has been reported to be
a result of different extremal factors, including brain ischemia [31]. Remote hippocampal
damage is a well-documented consequence of chemoconvulsant injection (kainate [56],
dendrotoxin [57], pentylentetrazole [58,59]). Neuronal death [60], excitotoxicity and the in-
volvement of glutamate receptors in distant hippocampal damage were shown after TBI in
rats [61,62], indicating the similarity of damage mechanisms, irrespective of primary injury
nature. In general, many epileptogenic lesions are characterized by secondary neuronal
death in the DG, both in experimental and clinical settings [63]. The involvement of both
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NMDA and non-NMDA receptors [53,56], excitotoxicity and spreading of epileptiform
activity are [64,65] discussed as mechanisms of the damage. Acute and excessive release of
glutamate and aspartate leads to the activation of glutamate receptors (primarily AMPA
receptors) and depolarization of neuronal membrane. Activation of glutamate, kainate and
calcium-permeable AMPA receptors contributes to an increase in intracellular levels of cal-
cium, a universal secondary messenger [49]. Excessive intracellular calcium concentration
activates phospholipases, endonucleases and proteases (calpains), accelerating neuronal
death as a result of excitotoxicity by apoptotic and necrotic mechanisms [66–68].

Thus, excessive glutamate level after TBI is a trigger for secondary neurodegeneration,
which involves death of GABAergic neurons. Based on (1) the relative selectivity and dis-
tant character of hippocampal damage; (2) lack of specificity regarding the type of primary
impact inducing distant hippocampal damage and (3) the involvement of both ipsilateral
and contralateral hippocampus, it can be assumed that there are common systemic mecha-
nisms underlying selective death of hippocampal neurons and, possibly, the development
of chronic neuroinflammation. This selectivity may be explained by the effects of GCs,
affecting the hippocampus and functional properties of the hippocampal networks [26,31].

5. Glucocorticoid Signaling, Hippocampus and Neuronal Death

GCs (corticosterone, CS, in most animals, and cortisol in humans) are essential hor-
mones in all vertebrates, regulating two basic systems: glucose metabolism and immune
response. In general, GCs suppress inflammation and increase blood glucose level by
stimulating gluconeogenesis and inhibition of glucose uptake by cells [69]. Specific recep-
tors mediating signals of GCs are present in most cells of the organism. GCs regulate the
behavioral response to stress, and their receptors are widely expressed in the brain. The
effects of GCs are critically determined by the specific aspects of their action [70]. During
the stress response, GCs modulate the hippocampal function, affecting numerous signaling
and metabolic systems [31]. It is also important that, unlike other brain structures, the
basal membrane covers only 30% of the vascular surface in the hippocampus [71], which
facilitates the penetration of hormones into hippocampal neurons.

The functions of the GCs in the hippocampus are mediated by high-affinity min-
eralocorticoid (MR) and low-affinity glucocorticoid receptors (GR). MRs bind GCs at
low hormone levels, while the affinity of GRs to GCs is much lower, and the activa-
tion of these receptors occurs when GC levels increase, for example, during stress re-
sponse. Each type of corticosteroid receptor is presented by two forms: intracellular
cytoplasmic/nuclear receptors, exerting primarily slow genomic action (iMR, iGR), and
non-genomic membrane-bound receptors (mMR, mGR), rapidly altering excitatory neu-
rotransmission [29,72,73]. The affinity of membrane-bound and intracellular receptors
decreases in the order: iMR > iGR = mMR > mGR [30] (Figure 2). The genomic binding
loci of GR and MR comprise hundreds of partially overlapping DNA sites changing during
the circadian cycle and stress [74]. Intracellular MRs and GRs translocate to the nucleus,
where they act as nuclear transcription factors and modify gene expression, affecting pro-
tein synthesis. The genomic effects are realized within hours and may persist for many days,
underlying adaptation, synaptic and cellular plasticity. Membrane-associated GRs and
MRs act through G-proteins and affect the ion channels, rapidly modulating cell excitability.
In general, the effects of GCs on specific cell populations depend on: (1) their concentration,
(2) duration of exposure, (3) cell type with definite balance of specific intracellular and
extracellular GRs and MRs.

MRs are expressed mainly in the brain regions that are crucial to the formation of
memory and emotions, such as the hippocampus, amygdala, frontal, enthorinal and in-
sular cortex. GCs trigger rapid non-genomic effects on excitability of neurons in brain
through mMRs, thus influencing the cognitive and emotional functions and adaptive
behavior within minutes. Besides limbic structures, GRs are also expressed in the pre-
frontal cortex and are involved in cognitive and executive functions, such as reasoning and
attention [30,75]. GRs are involved in negative feedback on HPA axis; the amygdala stimu-
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lates the HPA axis, whereas both the hippocampus and prefrontal cortex have inhibitory
effects [76,77]. It is noteworthy that after TBI in rats, CRH may increase the excitability of
the amygdala and hippocampus [78].

The group of R. Sapolsky studied the effects of stress in animals for many years and
showed that sustained exposure to stress induces neuronal loss in the hippocampus [79,80].
Chronic stress resulted in about 20% loss of neurons in CA3 field of the hippocampus
of rats, and GCs also worsened other types of damage produced by ischemia, seizures
or excitatory amino acids in CA1 and CA3 fields. The authors explained these effects
by suppression of glucose transport, changes in calcium metabolism and suppression of
neurotrophic factors expression [79,81,82]. Since neuronal energy metabolism is almost
exclusively dependent on oxidative phosphorylation, and neurons have almost no glucose
storage, they are the cells most vulnerable to energy restriction. Adaptive processes are
highly energy dependent, and GCs may worsen neuronal survival.
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molecules.

Another mechanism of GCs-dependent neurodegeneration may be the elevation
of intracellular calcium and glutamate excitotoxicity. GCs dose-dependently affect the
excitability of neurons: glutamatergic synaptic transmission is enhanced by intermediate
doses of GCs acting on mMR (rapid response to stress) and is reduced by higher doses acting
on GR in addition to the already activated MRs (recovery after a stressful situation) [72,84]
(Figure 2).

The influence of GCs on neuronal excitability was extensively studied by the M. Jöels
group. The effects of GCs on CA1 pyramidal neurons are explained by a U-shaped curve:
very low (not physiological, e.g., after adrenalectomy), as well as very high CS levels
suppress neuronal activity, but intermediate doses increase the amplitude of excitatory



Biomedicines 2022, 10, 1139 7 of 19

postsynaptic potentials (EPSPs) [83,85,86] (Figure 3). In animals subjected to chronic stress,
changes of pyramidal neurons are rarely found. In pyramidal neurons of CA3 field, EPSP
amplitude increased, likely due to NMDA action in chronically stressed animals [87]
(Figure 4).

In granular neurons of the DG, MR-dependent effects on field potentials caused by
the activation of AMPA receptors were demonstrated [83,85]; however, they are almost
insensitive to physiological GS changes, including acute stress. In adrenalectomized rats,
extremely low level of GCs reduced neuronal activity of granular cells [88] (Figure 3).
In contrast, in animals exposed to chronic stress, GCs enhanced glutamatergic AMPA-
mediated signaling in granular cells [89] (Figure 4).

Voltage-gated calcium channels (VGCC) are among the principal players involved in
the control of calcium homeostasis. They are activated at depolarized membrane potentials
and become permeable for calcium. Amplitudes of VGCC currents increased after 1–4 h
of exposure to CSs, more likely through iGR signaling [90]. In chronic stress, GCs also
increased calcium currents through VGCC, both in granular cells of the DG [91] and in
pyramidal cells of CA1 field [92]. Thus, VGCC activation increases risk of cell death at
glutamate excess, especially in chronic stress.
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Figure 3. Corticosterone effects in the hippocampus at rest and during acute stress. 1, Glutamatergic
synapse on granular cell. In normal conditions, granular cells are almost insensitive to physiological
GSs changes, including acute stress, but extremely low levels of GCs reduce neuronal activity
of granular cells [88]. 2, Glutamatergic collateral to an interneuron. 3, GABAergic synapse on
granular neuron. Though little data on the modulation by GCs of collateral inhibition in the DG
are available, the effects of GCs on pyramidal cells of CA1 field may be similar. 4, Glutamatergic
synapse on pyramidal neuron of CA3 field. 5, Glutamatergic synapse on pyramidal neuron of CA1
field. Pyramidal neurons demonstrate U-shaped modulation by GCs: very low (not physiological),
as well as very high CS levels suppress neuronal activity, but intermediate doses increase EPSP
amplitude [83,85,86]. 6, GABAergic synapse on pyramidal neuron. GCs may temporarily reduce IPSP
with subsequent rapid or slow elevation of inhibitory postsynaptic potential (IPSP) amplitude [93,94].
pp, perforant path; gc, granular cell; mf, mossy fibers; pc, pyramidal cells (CA3 and CA1 fields), sc,
Schaffer collateral; in, interneuron. Red circle (+)—activating action; red circle (*)—activation by very
low GC levels; blue circle (−)—inhibiting action; arrows show changes in GC action with increasing
concentration or over time.

Thus, GC excess plays an essential role in the selective vulnerability of the hippocam-
pus, promoting calcium overload, energy deficits and secondary death of neurons [95]
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by increasing the susceptibility of neurons to glutamate excitotoxicity [96]. Importantly,
glutamatergic axons terminate on interneurons (Figure 3), and excitotoxic damage af-
fects primarily GABAergic interneurons, the most vulnerable population of cells in the
hippocampus.

On the other hand, GCs impair the protective activation of inhibitory neurotransmitter
systems during insults [79]. Patch-clamp recordings show that GCs, through the activation
of MRs, reduced the frequency of spontaneous inhibitory postsynaptic potentials (IPSP) in
pyramidal cells of CA1 field of the ventral hippocampus (more likely due to membrane-
associated receptors) but not in the dorsal part. The effect of a GR agonist was different:
it slowly increased IPSP magnitude in the hippocampus, more likely through iGRs [93].
Another group demonstrated rapid increase in spontaneous inhibitory postsynaptic cur-
rents (IPSCs) via mGR in CA1 pyramidal cells [94] (Figure 3). The authors explained that
the controversial result of rapid GC action is likely due to the difference in experimental
conditions.

In chronic stress, rhythmic IPSCs originating from the PV-positive GABAergic neurons
was impaired due to selective PV-positive cell loss, demonstrating lack of inhibition in
CA1 [94] (Figure 4). The authors explained the selective loss of PV-positive neurons by the
sustained activation of interneurons and imbalance in perisomatic inhibition.

Thus, GCs modulate the excitability of the hippocampus in acute and chronic stress
and enhance glutamate excitotoxicity, potentially causing selective neurodegeneration in the
hippocampus. Since TBI increases GC levels in humans and in animal models [54,55], the
consequences of stress can be considered as one of the secondary brain injury mechanisms.
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field. Chronic stress increases EPSP amplitude via NMDA-dependent signaling [87]. Failure of in-
hibition due to GABAergic neuronal loss is demonstrated [50,98]. 5, Glutamatergic synapse on 
pyramidal neuron of CA1 field. Though little data on the modulation by chronically elevated GCs 
of glutamatergic synapses in the CA1 are available, the effects of GCs on pyramidal cells of CA3 
field may be similar. 6, GABAergic synapse on pyramidal neuron. Rhythmic IPSCs due to loss of 
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Figure 4. Effects of GCs in chronic stress and structural post-traumatic changes in the hippocampus.
GABAergic neuronal loss in the DG and neuroinflammation are histological hallmarks of late post-
traumatic changes. 1, Glutamatergic synapse on granular cell. GCs enhance glutamatergic AMPA-
mediated signaling [89]. 2, Glutamatergic collateral on granular neuron (mossy fiber sprouting)
enhances DG excitability [97]. 4, Glutamatergic synapse on pyramidal neuron of CA3 field. Chronic
stress increases EPSP amplitude via NMDA-dependent signaling [87]. Failure of inhibition due to
GABAergic neuronal loss is demonstrated [50,98]. 5, Glutamatergic synapse on pyramidal neuron
of CA1 field. Though little data on the modulation by chronically elevated GCs of glutamatergic
synapses in the CA1 are available, the effects of GCs on pyramidal cells of CA3 field may be
similar. 6, GABAergic synapse on pyramidal neuron. Rhythmic IPSCs due to loss of interneurons
are demonstrated [94]. pp, perforant path; gc, granular cell; mf, mossy fibers; pc, pyramidal cells
(CA3 and CA1 fields); sc, Schaffer collateral; in, interneuron. Red circle (+)—activating action;
blue circle (−)—inhibiting action.
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6. Neuroinflammation and TBI

Both primary and secondary mechanisms of brain damage discussed above are as-
sociated with neuroinflammatory response. Neuroinflammation is one of the essential
mechanisms of brain damage modulated by GCs. Under normal conditions, microglial
activity and cytokine release are intimately associated with neuroplasticity and memory;
however, uncontrolled excessive neuroinflammation leads to cell death and further progres-
sion of brain pathology [99]. In pathological conditions, microglia play a crucial role in the
expression of both pro-inflammatory (IL-1ß, IL-6, TNFα) and anti-inflammatory (IL-4, IL-
10) cytokines, chemokines, as well as molecular fragments associated with damage (DAMP,
damage-associated molecular patterns, such as HMGB1, ATP, S100ß). These substances
enable microglial modulation of cyclooxygenase-2 and the components of the complement
system [49]. Cytokines produced by inflammatory cells are released within minutes after
TBI and alter the functioning of glutamate and GABAergic receptors, as well as potential-
dependent ion channels, inhibit the reuptake of glutamate by astrocytes and provoke an
increase in extracellular K+. Thus, cytokines can participate in hypersynchronization of
neurons and the occurrence of epileptiform activity [100], as well as contribute to further
neurodegeneration [101]. Microglial activation also occurs in remote areas of the brain,
microglial properties and cytokine profile changing over time [102].

In the area of TBI, neutrophils and other cells of the immune system are recruited as
well. These cells, along with glia, take part in the production of cytokines, chemokines,
free radicals, prostaglandins and components of the complement system. The profile of
peripheral immune system cells changes over time. Neutrophils first appear in the focus
of injury; after 3–5 days they are replaced by mononuclear leukocytes and, to a lesser
degree, by T cells, dendritic cells and natural killers [49]. The peripheral immune system is
also activated. It has been shown that 1 day after TBI, the number of CD4+ and CD8+ T
cells in rat spleen increases, indicating an activation of adaptive immunity. Suppression
of adaptive immunity improves TBI outcomes [103]. Thus, autoimmune mechanisms are
involved in the development of post-traumatic pathology [49], though their role has not
been studied in detail yet.

Astrocytic gliosis in the neocortex develops about 1 week after TBI and, in the long-
term period of injury astrogliosis, serves as an important histopathological marker of
hippocampal sclerosis [104–106]. Astrocyte dysfunction may be involved in increasing
the excitability of neurons and circuit reorganization via several mechanisms. Astrocytes
normally participate in the utilization of extracellular K+ (due to active transport into
the cell and distribution through the astrocyte system) and utilization/metabolism of
glutamate. Changes in K+ homeostasis and an increase in its concentration lead to a
decrease in neuronal excitability threshold, while impairment of glutamate utilization
results in an increase in its toxic effects. In addition, astrocytes play an important role in
water homeostasis of the brain [107] and form the brain glymphatic system involved in the
development and resorption of edema, transport of metabolites and immune cells [108].

The transition from acute activation of the brain immune system to chronic neuroin-
flammation in TBI is the subject of quite a few studies [5,17,109]. Chronic neuroinflam-
mation caused by TBI induces progressive edema and neurodegeneration associated with
cognitive and emotional disorders [110]. The first week after TBI is an important time
interval, day 7 being considered a borderline between acute and chronic post-traumatic
changes. It is noteworthy that edema resorption and the early development of astrogliosis
in the focus of direct impact to the neocortex was shown 7 days after TBI [104–106].

7. Neuroinflammation and GCs

Chronic neuroinflammation is a recognized consequence of chronic stress; its defini-
tive association with GCs is rigorously discussed but still remains obscure [111]. The
available data indicate dual effects of GCs, both anti- and pro-inflammatory. Suppression
of inflammation is among the well-established systemic effects of GCs. This ability of GCs
is widely used in clinical practice for treatment of inflammatory and autoimmune diseases.
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The activation of GRs and MRs in peripheral tissues results in inhibition of immune cell
activity and induction of apoptosis in lymphocytes [112]. GCs also inhibit inflammation via
several other mechanisms, including inhibition of tissue infiltration by cells from the blood,
inhibition of cytokine expression, changes of lymphocyte functioning and others [111]. In
the brain, GCs realize either pro- or anti-inflammatory properties depending on the degree
and duration of exposure, external factors preceding injury, injury characteristics and the
specific brain region [31,70,111].

The order and time period between GC increase and immune challenge may be
important for the effects of GCs on neuroinflammation (Figure 5). This was confirmed in a
study with administration of GCs and lipopolysaccharide (LPS, immunogenic component
of Gram-negative bacteria) in a different order [113]. If GCs were injected prior to LPS (2
and 24 h), they potentiated pro-neuroinflammatory effects (TNFa, IL-1b, IL-6 expression).
In contrast, GCs injected 1 h after LPS had an anti-inflammatory action in the brain. LPS
injection directly into the hippocampus of the stressed animals also increased the number
of reactive microglial cells and expression of pro-inflammatory cytokines [114] as compared
to non-stressed animals. The second factor affecting GCs action is the duration of their
exposure (Figure 5). Many groups have demonstrated that chronic stress is definitely a
pro-inflammatory condition [111]. Chronic stress potentiated LPS-induced activation of
several pro-inflammatory pathways, including nuclear factor kappa B (NF-κB) [115], and
increased basal activation of other intracellular pathways, such as ERK1/2, p38, SAPK/JNK
and AKT [116].
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Figure 5. Effects of GCs on neuroinflammation depend on time of damage [54,55,111,113]. Timing of
GCs exposure is critical for its pro- or anti-inflammatory action in the brain.

The interaction between GCs and the inflammatory mechanisms seems really intri-
cate. Dexamethasone injected directly into the rat hippocampus was able to induce weak
neuroinflammation but, when applied during LPS-induced neuroinflammation, evoked dif-
ferential effects on pro-inflammatory cytokines expression [117]. Systemic administration
of dexamethasone for 3 weeks in mice, mimicking chronic stress, induced depressive-like
behavior and glucocorticoid resistance, a potential priming factor enhancing inflamma-
tory response [118]. After ten days of corticosterone exposure in adrenalectomized rats,
GCs, in a dose-dependent manner, primed microglia to pro-inflammatory stimuli by gene
expression associated with inflammation (NLRP3, Iba-1, MHCII and NF-κB), thus poten-
tiating microglial pro-inflammatory response to LPS [119]. Interestingly, diffuse TBI also
primes microglia and promotes depressive-like behavior after secondary LPS-induced
inflammatory challenge 1 month after trauma [120].

Recent information about relationships between inflammation, GCs and TBI is scarce.
CS increased 1 hour after TBI, and its level negatively correlated with the number of periph-
eral T cells, confirming the anti-inflammatory effect of GCs [121]. The number of circulating
T cells positively correlated with TBI core infiltration and destructive neuroinflammatory
response in the brain.
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Using the lateral fluid percussion model of TBI, we showed CS elevation in the
blood and the hippocampus on day 3 after TBI [54,55]. The correlations between CS and
neuroinflammatory response in the hippocampus were time dependent and vague. On day
3, the blood CS level negatively correlated with microglial cell count in the hippocampus.
In contrast, on day 7 after TBI, when CS almost returned to baseline, noticeable and bilateral
microglial activation was detected. The levels of IL-1β in the contralateral hippocampus
positively correlated with CS in the same region. These results may reflect an early anti-
inflammatory and latter pro-inflammatory effect of CS in TBI (Figure 6).
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Figure 6. Local and systemic effects of TBI ([54,55]). Based on (1) selectivity and distant character
of hippocampal damage, (2) lack of specificity to the type of primary impact leading to distant hip-
pocampal damage and (3) involvement of both ipsilateral and contralateral hippocampus in models
of unilateral primary neocortical injury, it can be assumed that there are common CS-dependent
mechanisms underlying selective death of hippocampal neurons and chronic neuroinflammation.

Since GCs modulate the secondary mechanisms of damage, the HPA axis state during
trauma is also an important factor for GC action. On the one hand, the time course of
cortisol levels after TBI depends on the initial HPA state; in patients experiencing stressful
events before brain injury, acute cortisol levels significantly decreased during the acute
period of TBI [40]. Thus, patients with previously activated HPA demonstrate impaired
stress reactivity. This may defeat the positive effects of GCs (early anti-inflammatory
action) and enhance negative ones (e.g., enhancement of excitotoxicity). On the other
hand, moderate stress may increase the resistance of neurons to brain insults and protect
from further excitotoxic damage; the expression of cytokines and neurotrophic factors may
underlie the protective effects of mild stress [122].

8. CS Changes and Associated Events in Animal Models of TBI: Summary Table

Additionally, we have summarized the data generated from systematic analysis of
all 48 relevant papers resulting from the PubMed search for the combination of “TBI”
and “corticosterone” (21 of them combined with “hippocampus” and 7 of them with
“neuroinflammation”). The results on CS changes are presented in Table S1 (Supplementary
Material). In addition to CS alterations, the cellular, molecular and behavioral changes
revealed in these papers are shown in the last column. The data are different and sometimes
appear contradictory; however, the main reasons for discrepancies seem to be significant
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differences in the aims of the studies and, hence, in the experimental designs used by
different groups.

9. Conclusions: TBI and Beyond

In this review, we discussed GC-dependent common mechanisms of stress- and
inflammation-mediated distant hippocampal damage, focusing on the consequences of
TBI. The effects of GCs on specific neuronal populations in the hippocampus depend on
GC levels, duration of GC exposure and cell type (in particular, the balance of specific
intracellular and extracellular GR and MR). Pro- or anti-inflammatory effects of GCs also
depend on their concentration and exposure duration. Previous stress and elevated GC
level prior to pro-inflammatory impact may inflate pro-inflammatory effects. Long-term
and moderate elevation of GCs may also enhance neuroinflammatory response. GC-
mediated long-lasting neuronal circuit changes in the hippocampus after TBI are involved
in late post-traumatic pathology development, such as epilepsy, depression and cognitive
impairment. Complex and diverse actions of HPA axis on neuroinflammation may be
essential for late post-traumatic pathology.

Importantly, these mechanisms are applicable to remote hippocampal damage occur-
ring after other types of focal brain damage (stroke, epilepsy) or central nervous system
diseases without obvious focal injury (e.g., infections). Secondary damage to the hippocam-
pus is shown in the middle cerebral artery (MCAO) model in rats [123,124]. MCAO induces
accumulation of the pro-inflammatory cytokine IL-1β accompanied by elevated CS at the
early and delayed stages of stroke [124]. High initial level of GCs and previous stress
exacerbate damage to the hippocampus after brain strokes in humans [125] and rats [126].

Thus, the liaisons of excessive GCs /dysfunctional HPA axis with neuroinflammation,
dangerous to the hippocampus, may be crucial for distant hippocampal damage in many
brain diseases. Taking into account that the hippocampus controls both the cognitive
functions and the emotional state, further research of potential links between GC signaling
and the inflammatory processes in the brain and respective mechanisms is vital.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10051139/s1, Table S1: Corticosterone changes in TBI
models [127–171].
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ACTH adrenocorticotropic hormone
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
BDNF brain-derived neurotrophic factor
CRH corticotropin-releasing hormone
CS corticosterone
DAMP damage-associated molecular patterns
DG dentate gyrus, hippocampal field
EPSP excitatory postsynaptic potential
GABA gamma-Aminobutyric acid
GCs glucocorticoids

https://www.mdpi.com/article/10.3390/biomedicines10051139/s1
https://www.mdpi.com/article/10.3390/biomedicines10051139/s1
BioRender.com


Biomedicines 2022, 10, 1139 13 of 19

GR glucocorticoid receptor
HPA hypothalamo-pituitary axis
IL-1ß interleukin 1 beta
IL-6 interleukin 6
iMR, iGR intracellular cytoplasmic/nuclear receptors subtype
IPSC inhibitory postsynaptic current
IPSP inhibitory postsynaptic potential
LPS lipopolysaccharide
MCAO middle cerebral artery
mMR, mGR membrane-associated receptors subtype
MR mineralocorticoid receptor
NF-κB nuclear factor kappa B
NMDA N-methyl-D-aspartate
PTE post-traumatic epilepsy
PV parvalbumin
TBI traumatic brain injury
TNFα tumor necrosis factor alpha
VGCC voltage-gated calcium channels
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