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Abstract: Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic
aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at
its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However,
to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on
metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics
are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is
the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in
PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend
to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and
offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
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1. Introduction

Metabolomics is the newest omic science in systems biology, following genomics,
transcriptomics, and proteomics. The four omics are complementary in understanding the
interrelated cellular functions of a specific disease phenotype [1]. Metabolomics is currently
applied to various disciplines including environmental epidemiology, food technology,
ecological restoration, and oncology. It is an analytical profiling technique that measures
and compares large numbers of metabolites in a biological sample. Metabolomic analy-
sis is performed to identify (untargeted, global, and top-down approach) and quantify
(targeted, specific, and bottom-up approach) metabolites with the goal of understanding
the mechanisms by which upstream molecules (genes, RNAs, and proteins) contribute to
pathology [2–4]. It seeks to investigate how therapeutics affect treatment outcomes [5] by
serving as biomarkers via the quantification of these small molecules [6,7]. Metabolites
(≤1.5 kD), which include sugars, fatty acids, amino acids, nucleotides, alkaloids, and
steroids [1,8] can sometimes be enzymatically transformed into epimetabolites, allowing
them to regulate physiological processes [9–11]. Because biological matrices are complex
with thousands of metabolites in them, the use of analytical methods such as metabolomics
allows individual metabolite measurements to be managed [12–18]. The difference between
the two types of metabolomics is that the untargeted approach identifies a single metabolite
in a hypothesis-driven manner, while the targeted approach quantifies a metabolite of
interest a priori [1,2,19]. In humans, the untargeted approach reveals functional changes to
the metabolome as a result of endogenous (diet, exercise) and exogenous (environmental
exposures, virus, and genotoxins) agents [20–23]. Because the untargeted approach deals
with a vast number of unknown molecules with disparate physical and chemical char-
acteristics, multiple protocols for sample preparation, data acquisition, and analysis are
required including subsequent validation via the targeted approach [24]. Regardless, in
both approaches, tools such as high-performance liquid chromatography (HPLC), mass
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spectrometry (MS), and nuclear magnetic resonance (NMR) are used to provide insights
into the disease mechanisms [3,4,18,25]. For clarity, metabolism refers to the series of
biochemical processes that generate energy via ATP, while the metabolome is the collection
of metabolites that are produced by cells during metabolism. The number of metabolites
(intermediates) in a metabolome depends on the biochemical pathway involved. Moreover,
metabolomic and metabolic are distinct from each other in that the former refers to the
actual omic approach while the latter is a term that signifies the relationship to metabolism.
The process flow for LC-, MS-, and NMR-based metabolomic analysis for disease biomarker
research is shown in Figure 1.
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2. Metabolomics: The “Supra-Omic”

The four omic platforms can be applied complementarily in pathology; however,
metabolomics shows remarkable advantages over genomics, transcriptomics, and pro-
teomics. Despite being relatively new, its ‘supra-omic’ nature is due to its ability to provide
a real-time snapshot of the physiological state of a cell, tissue, or organism because the mea-
sured metabolite concentration accurately reflects infinitesimal biochemical perturbations,
both endogenous and exogenous. Metabolomics has advantages over the other omics. First,
the metabolome is highly sensitive to functional cellular changes brought about by stimuli
including diet, radiation, medications, and stress levels [27]. Metabolites are products or
intermediates of a metabolic pathway and their measurement represents a direct and real-
time functional readout of physiological status or cellular activity [6]. Second, metabolomic
alterations are determined via multiple analyses of biofluids (urine, serum) and tissue
extracts in vitro, tissues and organs in vitro, and tissues operando. Samples are conveniently
obtained in clinical and point-of-care (POC) settings, making risk assessment, diagnosis,
staging, and treatment response evaluation quicker and more accurate. Third, metabolomic
procedures can easily be integrated into currently existing clinical infrastructure that utilizes
established protocols for a timely, reproducible, and cheap results [28–32]. Fourth, data
analysis in metabolomics is easier to handle than those for the other omics because only a
small fraction of the human metabolome is associated with key dysregulated metabolic
pathways in any disease. In contrast, there are tens of thousands of genes and proteins
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that are potentially linked to a disease, some of which are yet to be discovered [33–39]. The
biochemical importance of various metabolites is still unknown; although, their number
is still relatively small compared to the human genome (~19,000 to 22,000) [40–42]. The
number includes both polar and non-polar metabolites, present in large (>1 µmol/L) or
small (<1 nmol/L) concentrations [6,43]. Fifth, the other omics are partially effective in
evaluating cellular functions because no previously defined correlation exists between
gene/protein expressions and metabolism, considering that RNA can be spliced or undergo
post-translational modification [42]. For example, only a small fraction of transcriptomic
alterations correlates with changes in proteomic data [44–46]. Even alterations in both
genome and proteome are hardly reflective of a diseased cell’s phenotype. However, recent
clinical evidence suggests that mutated isocitrate dehydrogenase1/2 (IDH 1/2), the en-
zyme that converts isocitrate to α-ketoglutarate (αKG) in the tricarboxylic acid (TCA) cycle,
causes the conversion of αKG to the oncometabolite D-2-hydroxyglutarate (2-HG), which
is responsible for the epigenetic inhibition and cellular differentiation [47,48]. This devel-
opment establishes the first direct link between gene mutation to metabolic activity and
cellular function in hematologic malignancy, providing a promising clinical opportunity
for targeting the oncogenic pathway via drugs. Metabolomics is not without challenges,
particularly in the use of an untargeted approach and the limiting factor of identifying
unknown metabolites [49,50]. Since the approach handles small and diverse metabolic
precursors with varying physical and chemical characteristics at unsteady state concentra-
tions, it is necessary to employ sophisticated experimental designs, sample preparations,
imaging techniques, and analyses to capture the series of enzyme-mediated catalytic re-
actions. The other omic platforms typically utilize a single tool. However, metabolomics
requires multiple steps [24,50]. Thus, metabolomics is labor intensive requiring excellent
techniques; although, it still produces the most meaningful results in disease etiology thus
far. Metabolomics in a clinical setting supports the identification of metabolic biomarkers
for cancer detection and surveillance [24]. For example, high-resolution metabolomics was
used to identify the top 5, 10, and 20 metabolites from plasma using HPLC coupled with
a Q-Exactive high-resolution mass spectrometer [51]. The identification and analysis of
high-frequency metabolomic biomarkers with tyrosine on top were reported in a review for
breast cancer [51] and a recent study by a French cohort utilized untargeted metabolomics
in breast cancer to predict disease outcome [52]. Figure 2 depicts the hierarchical interrela-
tionships among the omics.
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3. Integration of Metabolomics to Other Omic Platforms

The biological activity of metabolites is a systems biology issue [53–57]. Combin-
ing metabolomics with other omics is attractive because the integration elucidates net-
works of molecular mechanisms in tumorigenesis [58–60], and can enhance personalized
medicine [61–67]. For instance, using combined MS and HPLC can obtain information
about individual differences in a patient’s metabolome and proteome, something that is
difficult to achieve by solely using next-generation sequencing (NGS). NGS strategies as
diagnostic solutions can analyze protein-coding regions associated with a patient’s dis-
ease, but it is insufficient in terms of adequately predicting temporal cellular states. The
integration of all data from these omics is critical insofar as to suitably apply personalized
medicine [68] because a metabolite connects a downstream target to a specific annotated
gene [69]. The target in turn influences the gene to form a feedback loop mechanism [22],
as shown in Figure 2. The importance of integration is seen in some very recent coupled
metabolomic–genomic research [70–73]. The association of metabolites in gene expression,
transcription, and translation is more significant than acting as a data sink. The activity of
metabolites and associated enzymes is controlled by transcription factors such as androgen
receptors (AR) [74,75] or estrogen receptors (ER) [76–80]. For prostate cancer, AR signaling
is critical in the growth of prostate tumors given that androgen is required in de novo
lipogenesis [81]. This phenomenon enables the tumors to proliferate despite androgen
deprivation therapy (ADT) because they generate steroids for sustained ATP production.
In other instances, gene expression is controlled by metabolites [82–87]. Metabolites are
active participants in enzymatic reactions [88–93] and they control protein and cellular
functions [94–98] so they are essential in comprehensively characterizing disease patho-
genesis [99–104]. This review article focuses on the metabolomic profile of prostate cancer
(PCa) and the current state of metabolomics–diverse omics integration in PCa research. In
the first part, current knowledge on biochemical pathway alterations in PCa is discussed,
including advances in adapting PCa metabolomics. In the second part, progress in inte-
grating PCa metabolomics with other omics is detailed. In the last part, future directions
and concluding remarks are given. To the best of our knowledge, this review article is the
first of its kind to focus on metabolomic-based multi-omic data integration. The authors
intend to provide researchers in the field with a comprehensive knowledge base in PCa
metabolomics applications.

4. Why Focus on Metabolomics for PCa Cancer Research?

The PCa metabolome contains metabolites that reflect the human body’s reaction to tu-
mor progression. Differentiating the PCa metabolome from the general human metabolome
is critical since the complex relationships among these metabolites and how they affect PCa
development is still a fairly new research area. As previously mentioned, alterations in
genome, transcriptome (blueprints), and proteome (execution) do not directly reflect pheno-
typic changes. However, accurate identification and measurement of relevant metabolites
provide functional PCa information because they are the end products of complex biochem-
ical reactions, which can sensitively monitor any internal and external DNA damaging
agents, including environmental factors [105,106]. The number of human PCa metabolites
currently being researched is still very low but these few metabolites are highly specific per-
tinent pathways [107]. PCa metabolites can be conveniently extracted from urine, plasma,
blood, and tissue. Traditional human clinical metabolic studies on PCa rely on biofluids
because they are convenient and non-invasive to extract. However, researchers and clin-
icians are moving toward extracting tissues since they are organ specific, which reflects
localized biochemical perturbations [108]. Challenges associated with tissue metabolomics,
however, involve invasiveness, low patient samples for robust biomarker discovery and
validation, and non-standardized protocols for various types of tissues. In terms of the
separation of hydrophilic and lipophilic metabolites, whether they are extracted from
biofluids or tissue, one challenge is separation and resolution efficiency. Each sample
matrix is different, based on source and individual. Thus, equipment in the metabolomic
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analysis must be optimized, calibrated, and re-optimized to ensure clear separation of the
metabolite of interest. Moreover, different mixed solvent standards must be used either
as single, combined, or biphasic solvents to ensure increased levels of detection for all
biofluid, tissue, and cell line samples. Healthy prostate cells rely on glucose oxidation for
ATP production, and they are characterized by low citrate metabolism within the TCA
cycle resulting in citrate accumulation [109,110]. Malignant transformation of prostate
cells, however, activates the TCA cycle by decreasing zinc levels and the cells rely heavily
on lipids for energy [111]. Unlike other cancers, PCa cells are unique in that they are not
glucose dependent (non-Warburg). These cells show higher levels of metabolites including
choline and sarcosine and lower levels of polyamines and citrate compared to normal
prostate epithelial cells [111].

Within the last 10 years, there has been a growing number of purely PCa metabolomic
studies, exploiting the various instrumental platforms. Most of these studies focused
on biomarkers discovery and therapeutic target identification [1,24,37,109–117]. In PCa,
sarcosine and choline are the primary metabolites [118]. Urea cycle metabolites such as
arginosuccinate, arginine, and proline are elevated in PCa than in benign controls [119].
The study found that the oncogenic pathways HIF1α and NFκB were positively correlated
with fumarate levels, inducing low survival rates. The increased plasma concentration
of sphingolipids and Cav-1 also positively correlates with PCa aggressiveness [120]. The
study determined that Cav-1 alters cell lipid metabolism by increasing the catabolic con-
version of sphingomyelins to ceramide derivatives, elevating synthesis and efflux of gly-
cosphingolipid indicative of altered ceramide metabolism and scavenging of exogenous
sphingolipid. The landmark study by Sreekumar and colleagues in 2009, although contro-
versial, has garnered further confirmatory studies to validate its results [121]. Although
uracil, kynurenine, glycerol-3-phosphate, leucine, and proline were slightly elevated, sar-
cosine was singularly increased in metastatic PCa, and a localized tumor compared to
BPH. An immediate validation study that has conflicting results was from Jentzmik and
colleagues [122]. Post-digital rectal exam (DRE) of 106 PCa patients and 33 control patients
revealed that the creatine-normalized sarcosine level was not statistically different between
the two cohorts, including the absence of correlation between biopsy of prostatectomy
Gleason score. Subsequent confirmatory studies ensued, without a conclusion as to the
validity of Sreekumar et al., 2009, or Jentzmik et al., 2010. However, in the Cao et al. study
investigating sarcosine levels in urine supernatant and sediment, the creatine- and alanine-
normalized sarcosine levels were statistically higher in PCa patients than in abnormal
prostate without cancer patients or healthy patients, from both sample source and nor-
malization protein [123]. A very recent study using a PCa urine-based 1H-NMR revealed
that guanidinoacetate, phenylacetylglycine, and glycine were significantly increased while
L-lactate and L-alanine were substantially decreased [124]. In the 20 metabolites identified,
sarcosine was not even a player in PCa after employing principal component analysis
(PCA), partial least squares-differential analysis (PLS-DA), ortho-PLS-DA (OPLS-DA), and
the Wilcoxon test. Another conflicting result among most of these validation studies is that
the knockdown of glycine-N-methyltransferase (GNMT), the glycine-producing sarcosine
enzyme, inhibits PCa cell proliferation to further abolish malignancy via G1 cell cycle arrest
and apoptosis in certain allelic frequencies and ethnicities, with only a few studies finding
opposite conclusions [125–131]. Additionally, the metabolic differences between normal
prostate and PCa cells were previously thought to be caused by androgen receptors and
that ADT suppresses tumorigenesis. However, the emergence of castration-resistant PCa
(androgen-independent) makes androgen targeting by drugs more complicated because of
the unique PCa metabolic profile, pointing to the need to identify biomarkers for cancer
screening via metabolomics [24,81]. These facts show that the link between current clinical
practice and unexplored gaps in using metabolomics is still elusive considering that the
metabolites found in various PCa research are non-harmonized and at times contradicting.
However, despite limitations and future refinements in analytical technique, metabolomics
is suitable and needed in PCa research.
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5. Why Merge Metabolomics with Other Omics in PCa?

Merging metabolomics with the three omics provides a more comprehensive PCa
analysis [3,132–134]. In PCa, integrated metabolomics is utilized in two fashions: individual
omics are independently adapted, and their results are co-analyzed for correlation and
pattern analysis using statistical means, and multiple omics are integrated into a single
model, the results of which then represent a single biological phenomenon [135]. The first
case is executed using the functional study approach in which multiple independently
generated omics data are plotted into a known metabolic network [106,135]. This visual
representation of data is a powerful tool, but the interpretation is subject to errors and
bias. Another method is to compare a priori gene ontology (GO) terms to other metabolites
genes, enzymes, or proteins that are shown to have differential expressions between
normal cells and PCa [135]. Within the last decade, multiple studies have come out
pairing metabolomics and genomics. For instance, the overexpression of phosphorylated
oncogenes AKT1 and MYC were linked with phenotypic metabolic sets associated with
defined metabolic pathways [136]. Information on metabolomic profiles and matched
gene expressions provide insight into the function of the gene using gene-metabolite
profiles [137]. Correspondingly, metabolites can determine a particular gene target that
contributes to the gene annotations [22]. However, integrated metabolomics strategy
requires high-throughput computational and mathematical techniques such as Bayesian
models [138,139], deep learning models [140,141], and least square models [142,143]. A
detailed review of the principles of analytical integration of metabolomics and multi-omics
data was made by Jendoubi et al. [132]

Recent PCa studies (2018–2021) in integrated metabolomics and genomics have em-
ployed techniques such as LC- or GC- combined with MS, fluorometric assays, and seahorse
flux analysis. A study investigated arginine starvation using CWR22Rv1, PC3, and MDA-
MB-231 cell lines [144]. Results revealed that deficiency in arginine synthesis (defects in
PCa), performed as arginine starvation, resulted in cell death via epigenetic silencing and
metabolite depletion. cGAS-STING activation also contributed to cell death. Oxidative
phosphorylation, DNA repair pathway, and Type I interferon response were dysregulated,
contributing to a decrease in both arginine and αKG. In a 2020 study by Kim and col-
leagues, withaferin (WA) treatment in 22Rv1, LNCaP, and 22Rv1 for validation employed
fluorometric-based metabolomics [145]. In all cell lines, mRNA and protein levels of key
fatty acid synthesis enzymes were downregulated. Suppression of a acetyl-coA carboxylase,
expression of fatty acid synthase, and PCa cell survival from WA treatment resulted in
the expression of c-MYC, not AKT. Glyceraldehyde-3-phosphate (GA3P) and citrate were
both decreased. The metabolite-PCa causality was investigated in a study that employed
genome-wide association studies (GWAS) in metabolites related to lipid, fatty acid, and
amino acid metabolism [146]. Thirty-five metabolites were associated with PCa, and 14 of
those were found not to have causality with PCa progression. These research studies that
identified key metabolites at the genomic level can then be used as therapeutic targets or
directions for further research.

Numerous integrated metabolomics and transcriptomics (2019–2021) have demon-
strated the utility of a combined approach. A study in 2021 concluded that per- and polyflu-
oroalkyl substances (PFAS) exposure led to an increase in xenograft tumor growth and
altered metabolic phenotype of PCa, particularly those associated with glucose metabolism
via the Warburg effect, involving the transfer of acetyl groups into mitochondria and TCA
(pyruvate) [147]. PFAS also increased PPAR signaling and histone acetylation in PCa. Using
RWPE-1 and RWPE-kRAS samples and GC-MS, acetyl-coA and pyruvate dehydrogenase
complex were both significantly altered. Chen and group evaluated EMT-PCa and epithelial
PCa differentiation utilizing ARCaPE and ARCaPM samples in LC-MS and a glucose uptake
assay analytical platform [148]. The levels of aspartate, glycolytic enzymes (except for
glucose 2 transporters), pyruvate dehydrogenase kinase 1/2, pyruvate dehydrogenase 2,
and glutaminase 1/2 were all increased, while succinate dehydrogenase and aconitase 2
were decreased. PCa cells undergoing epithelial–mesenchymal transition (EMT) showed
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low glucose consumption and glucose metabolism in ARCaPE downregulated. Glucose
metabolism in transcription factor- (TF) induced EMT models was also downregulated.
ARCaPM cells showed increased aspartate metabolism. The carnitine palmitoyl transferase
I (CPT1A) expression was analyzed by a study using the LNCaP-C4-2 and UHPLC-MS
platform [149]. Results showed that ER stress, serine biosynthesis, and lipid catabolism
were all upregulated, including the overexpression of CPT1A, which showed increased
SOD2 when subjected to low fatty acids and no androgen. The implication was that
high lipid metabolism and low androgen response resulted in worse progression-free
survival. The group of Marin de Mas et al. conducted an aldrin exposure analysis via
gene–protein reaction (GPR) associations to determine the effects on carnitine shuttle and
prostaglandin biosynthesis [150]. Nineteen metabolites were found to be both consuming
and producing. The application of a novel stoichiometric gene–protein reaction (S-GPR)
(imbedded in genome-scale metabolic models, GSMM) on the transcriptomic data of Aldrin-
exposed DU145 PCa revealed increased metabolite use and production. Carnitine shuttle
and prostaglandin biosynthesis were shown to be significantly altered in Aldrin-exposed
DU145 PCa.

There was a total of four recent PCa investigations using integrated metabolomics
and proteomics from 2019 to 2021. One of them analyzed mast cell (MC) and cancer-
associated fibroblasts (CAF) in PCa tissues from prostatectomy patients [151]. Tran-
scriptomic profiling of MCs isolated from prostate tumor region showed downregulated
SAMD14 while proteomic profiling of HMC-1 demonstrated an overexpression of SAMD14.
Modified SAMD14 protein was associated with immune regulation and ECM processes.
The group of Blomme et al. characterized AR inhibition (ARI) using the wild, bicalutamide-,
appalutamide-, and enzalutamide-resistant LNCaP cells via LTQ-OVMS, FT-MS, QEO-MS,
and LC-MS [152]. 2,4-dienoyl-coA reductase (DECR1) knockout induced ER stress and
stimulated CRPC cells to undergo ferroptosis. DECR1 deletion in vivo, on the other hand,
inhibited lipid metabolism, and reduced CRPC tumor growth. Both glucose metabolism
and fatty acid β-oxidation were altered. Li et al. analyzed the silencing of FUN14-domain-
containing protein-1 (FUNDC1) in PC3, DU145, and C42B cell lines [153]. A decrease
in levels of pyruvate, cis-aconitase, α-ketoglutarate, and succinate accompanied by an
increase in levels of glutathione and ROS were observed. FUNDC1 was shown to affect
cellular plasticity via sustaining oxidative phosphorylation, buffering ROS generation, and
supporting cell proliferation. Lastly, the team of Dougan et al. conducted a knockdown of
peroxidasin (PDXN) in RWPE1, DU145, PC3, 22Rv1, and LNCaP [154]. PXDN overexpres-
sion was positively correlated with PCa progression, while PXDN knockdown increased
oxidative stress, ROS, and apoptosis.

6. Clinical Applications of Metabolomics in PCa

The metabolic signature of PCa is used in tumor diagnosis, staging, and continuous
assessment of treatment outcomes. The fact that PCa is a metabolic disease makes it suitable
for targeted therapeutics. Metabolomics opens tremendous avenues for improving clinical
applications. Biomarker discovery is one of metabolomics’ clinical applications. Advances
in imaging, such as magnetic resonance imaging (MRI), computed tomography, radionu-
clide scans, and positron emission tomography (PET), are capitalized for the accurate
detection of PCa. Since PCa cells do not rely on the Warburg effect (aerobic glycolysis) like
most cancer cells, they are therefore not addicted to glucose (non-glycolytic). Thus, it has
low avidity to 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed
tomography (FDG PET/CT) [155]. It is only in late-stage metastatic PCa does the Warburg
effect manifest. Other F-labeled glucose tracers can be employed for glucose-independent
PCa. During early-stage PCa, ATP is produced from lipids from androgen signaling to
produce energy. In the case of ADT, they utilize de novo lipogenesis. OXPHOS is favored
and aerobic glycolysis is downregulated, in contrast to other tumors wherein OXPHOS is
evaded to prevent apoptosis. Such a shift is attributed to acidosis in the microenvironment
(TME) [24,113,155,156]. FDG PET/CT can be used in this case. Another novel tracer in PCa
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diagnosis is the [18F]-fluciclovine or the anti–1-amino-3-18F-fluorocyclobutane-1-carboxylic
acid [157,158]. Fluciclovine uptake by PCa cells via alanine-serine-cysteine transporter 2
differentiates non-prostatic neoplasms from metastatic PCa [157,159]. Suitable tracers can
now be implemented with high diagnostic accuracy considering that this review paper
detailed the metabolic differences among normal, benign, and metastatic PCa. Other
than metabolic imaging, clinical samples can be directly analyzed using metabolomics.
Surgically obtained samples of PCa and the surrounding normal tissues can now be com-
pared using metabolomics. However, this method is least desirable for PCa screening and
monitoring. For the purpose of PCa biomarker detection, biofluid samples are adequate.
Although sarcosine was recently rejected as a valid PCa biomarker, new clinical evidence
using metabolomics suggests that free amino acids such as ethanolamine, arginine, and
branched-chain amino acids are potential biomarkers [160,161]. The second clinical ap-
plication of metabolomics is in identifying PCa risk factors. PCa progression is rooted in
oncogenic DNA mutations, such as germline mutations and somatic mutations. These DNA
alterations are caused by risk factors including endogenous agents (diet, ROS, macrophage,
and neutrophil) and exogenous environmental agents (radiation, metals, and chemicals).
Exogenous agents directly interact with DNA while endogenous agents indirectly promote
carcinogenesis by promoting TME conducive to mutation. Once damaged, the DNA causes
altered metabolism through changes in chromatin accessibility, which in turn modifies
the epigenetic landscape. These metabolic risk factors can be accurately determined via
untargeted metabolomics in population cohort studies [24]. Lastly, metabolomics can be
adapted in a clinical setting in the discovery of advanced therapeutics that target PCa
metabolism. For example, a study analyzing AKT and MYC dysregulation in human
normal and PCa samples revealed that dysregulation of AKT1 and MYC alters non-glucose-
mediated pathways and their downstream targets [136]. Since MYC is one of the leading
oncogenes in PCa development, it can serve as a potential drug target. Another study
conducted on characterizing urine-enriched mRNA using BPH, PTT, normal, and PCa
urine samples in UHPLC-HRMS revealed that glutamate metabolism and TCA aberration
contributed to PCa phenotype via GOT1-mediated redox balance [162]. Alanine, aspartate,
and glutamate metabolite levels were increased including the level of glutamic-oxaloacetic
transaminase 1. GOT11 in this context is an appropriate therapeutic target. Metabolomics
can also be combined with immunotherapy and single-cell sequencing to aid in the search
for advanced PCa therapeutics [163]. A summary of all recent integrated metabolomic
studies on cell lines and in clinical cohorts are summarized in Tables 1–4.

7. Metabolomic Tools

The most prominent techniques in PCa metabolomics are chromatography coupled
to MS (LC-MS and GC-MS) and NMR spectroscopy (mostly proton NMR, 1H-NMR) [5].
NMR is widely used in the screening of patient urine and blood plasma samples because
it can be fully automated, reproducible, and metabolites are easily identified from simple
one-dimensional spectra [32,164]. It does not require intensive sample preparation and
separation, making it ideal to be paired with other tools [164]. However, it is difficult to
quantify co-resonant metabolites and it has lower sensitivity compared to MS by up to
100-fold [27,32,165]. Regardless, NMR can detect temporal biochemical changes and mon-
itor real-time alterations in metabolites before and after experimental treatment [32,165].
GC-MS method fractionates mixtures into metabolite components and then uses mass
spectrometry to quantitate each metabolite [166]. However, it can only be used for volatile
metabolites. It is cheap, reproducible, and has high sensitivity; although, sample prepa-
ration takes significant time [166,167]. An alternative to 1H-NMR and GC-MS is LC-MS,
in which separation occurs in the liquid phase, which broadens its applicability. It is
not time consuming and can identify and quantify hundreds of metabolites in a single
extract [168,169]. However, it is costlier than GC-MS and is difficult to control potentially
due to the ionization problems when in presence of other ions [168]. Separation using
LC-MS can alter the metabolites’ molecular structure. Other PCa techniques include Raman
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spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, thin-layer chromatography,
and metabolite arrays [170–173].

In the subsequent sections, we will present the current state of knowledge on PCa
research, utilizing metabolomics paired with genomics, transcriptomics, and proteomics.
Herein, we queried PubMed using keywords such as “genomics, metabolomics, prostate
cancer,” “transcriptomics, metabolomics, prostate cancer,” “proteomics, metabolomics,
prostate cancer,” and “multi-omics, metabolomics, prostate cancer.” Accompanied by
other database searches, we exhaustively compiled all paired and multi-omic studies
employing metabolomics.

8. Metabolomics and Genomics

Heterogeneity in PCa tumors and their metastatic form makes functional impact as-
sessment challenging [174,175]. Fundamental mutations in PCa involve tumor suppressors
(inactivating mutations) and oncogenes (activating mutations) [176]. To better understand
how metabolomic dysregulation and genetic alterations are related to PCa, the main drivers
of PCa oncogenic activity must be elucidated: AR expression, PTEN locus mutation, p53
locus mutation, and c-MYC amplification. Detailed PCa genomic reviews were performed
elsewhere [101,177]. This review focuses on paired genomic and metabolomic studies
performed thus far.

AR expression. Aberrant changes in AR render it sensitive to androgen depriva-
tion therapy (ADT) and AR pharmaco-antagonists (androgen insensitivity syndrome),
two mainstream therapies in PCa [178,179]. Alterations in AR genes include point muta-
tions and deletions. Mutations in the second zinc-finger ligand-binding domain of the AR
receptor contribute to this insensitivity [176,180,181]. Repeated AR mutations have been
associated with resistance to AR-targeted therapy in CRPC [176,180–182]. One notable tool
used in analyzing AR-mediated biochemical pathways and target genes is 13C-glucose
metabolic flux analysis [183,184]. In a study on AR-V7, which correlated to ADT resistance
and poor prognosis, the authors intended to validate whether such resistance is caused by
AR substitution or potential AR-V7-mediated downstream gene target modifications [185].
Results revealed that AR-V7 promotes PCa growth and enhances glycolysis as with AR,
including high dependence on glutaminolysis and reductive carboxylation. However,
confirmatory metabolomic flux assay revealed that the ensuing low citrate level in PCa
is due to low consumption, not low synthesis [186]. Further, AR targets genes associated
with enzymes active in aerobic respiration, fatty acid oxidation, and homeostasis [187–189].
Lipid metabolism is an AR-regulated pathway that affects the production of acetyl-coA
and modifications in acetylation and glycosylation processes [190].

PTEN locus mutation. PTEN is a tumor suppressor, and the deletion of its gene at the
10q23 location inactivates its protein and lipid phosphatase activities. It is a regulator of
the PI3KT/AKT pathway [176,191]. PTEN-deficient PCa cells such as LNCaP are targeted
directly or indirectly to restore PTEN function, via the blockade of the PI3KT/AKT path-
way in combination with chemotherapy and other drugs [192,193]. Subsequent studies
have demonstrated a positive correlation between PTEN mutations and PCa aggressive-
ness [194,195]. In a recent study, PTEN loss was shown to be positively correlated with
fatty acid synthetase (FASN) gene knockdown, the enzyme in de novo lipogenesis. The
downregulation of both genes resulted in a decrease in stromal microinvasion [196]. Co-
deletion of PTEN with other genes, such as PML1, promoted PCa tumorigenesis in mouse
models and activated SREBP, a transcription factor that regulates de novo lipogenesis
and adipogenesis [197].

p53 locus mutation. p53 is another tumor suppressor; mutations in its genes lead to
PCa development and PCa treatment resistance [198,199]. p53 represses the expression
of glucose transporters resulting in the inactivation of glycolysis and PCa cell glucose
consumption. p53 expression promotes OXPHOS via the regulation of glutamine uptake
via activation of glutaminase 2 (GLS2) [199–201]. p53 as a PCa tumor suppressor was
first proven in a study linking p53 mutations in PCa cell lines and PCa primary human
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samples [176]. Consecutive p53 studies validated the functional role of p53 mutation, specif-
ically via loss, on PCa progression [198,199,201]. In a recent study, phenethyl isothiocyanate
(PEITC), a dietary compound, inhibits PCa cell growth by inducing apoptosis via rescuing
mutant p53 in VCaP and LAPC-4 [202]. Loss in p53 is also associated with enhanced serine
one-carbon glycine synthesis (SOG), responsible for DNA methylation [203].

c-MYC amplification. The proto-oncogene and regulator gene c-MYC is a transcription
factor encoded by the MYC oncogene on 8q24, shown to be constitutively overexpressed in
PCa [204–206]. Research indicates that c-MYC alters enzyme expressions associated with
glycolytic pathways including HK2, PFK1, ENO1, LDHA, and GLUT1 concentrations [207].
Additionally, GLS1 and its associated transporters are regulated by c-MYC, thereby ad-
vancing glutamine metabolism [208]. Amplifying c-MYC activates the PI3K/AKT axis. A
study demonstrated that in localized and metastatic PCa, there is a correlation between
c-MYC amplification with PI3K-associated dysregulation, including PTEN and all AKT
homologs [209]. Activities of c-MYC and AKT1 stimulate the increase in glycolytic and
lipogenic-associated metabolites in all PCa cell models [210,211]. It is found that c-MYC ex-
pression is positively correlated with AR activity [212–214], as shown in a recent study [212].
However, in another study, c-MYC overexpression exhibited an antagonistic effect on AR
activity and transcription in PCa cell lines due to both proteins co-occupying similar en-
hancer binding sites [215]. The AR target genes KLK3 (PSA) and GNMT were inversely
correlated with c-MYC in advanced PCa [215].

In these paired approaches, genomic data preceded metabolomic data; although, it
is unclear as to the time-sensitive effect of genetic aberration on downstream metabolite
levels [105]. There has been an increase in metabolomic genome-wide association studies
(GWAS) that seek to quantify the extent to which genetic manipulations affect metabolite
levels. In humans, GWAS and exome sequencing revealed that genetic variations account
for roughly 10–76% of metabolic aberrations in blood metabolome [216]. Chu et al. pub-
lished an epidemiological-based multi-omic study [105] and Jendoubi et al. published a
review article on metabolomics and multi-omics integration [132]. These papers focused
on methodological paradigms non-specific to PCa pathology, which emphasizes computa-
tional/mathematical approaches. Our literature search within the last decade (2011–2021)
resulted in 91 exclusive paired studies and was trimmed to 14 pertinent PCa studies. These
are listed in Table 1.

Table 1. Summary of genomic–metabolomic integration studies for PCa within the last decade
(2011–2021) 1,2.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Hsu et al., 2021 [144] Arginine
starvation

Cell lines:
CWR22Rv1,

PC3,
MDA-MB-231

LC-MS Seahorse
flux analysis

Arginine metabolites
(−)

α-ketoglutarate (−)

Oxidative
phosphorylation

DNA repair
pathway

Type I interferon
response

Deficiency in arginine synthesis
(defects in PCa), performed as

arginine starvation resulted in cell
death via epigenetic silencing and

metabolite depletion.
cGAS-STING activation contributed

to cell death.

Cai et al., 2020 [217]
Citrate synthase

(CS) down-
regulation

71 = adenocar-
cinoma

2 = leiomyo-
sarcoma

1 = hyperplasia
6 = normal

UPHPLC-
MS/MS

Seahorse assay

Glyceraldehyde
3-phosphate (−)

Citrate (−)

Lipid metabolism
Mitochondrial

function

CS expression: PCa > normal
prostate.

Decreased CS expression resulted in
inhibited PCa proliferation, colony
formation, migration, invasion, cell

cycle in vitro, and low tumor growth
in vivo.

CS downregulation lowers lipid
metabolism and

mitochondrial function.

Kim et al., 2020 [145] Withaferin (WA)
treatment

22Rv1
LNCaP, 22Rv1

(validation)
Hi-MYC

Fluorometric
assay

ATP citrase lyase,
acetyl-coA

carboxylase 1, fatty
acid synthase,

carnitine
palmitoyltransferase

(−)

Fatty acid
synthesis

WA treatment in all cell lines
downregulated mRNA and protein

levels of key fatty acid
synthesis enzymes.

Suppression of a acetyl-coA
carboxylase, expression of fatty acid
synthase, and PCa cell survival from

WA treatment→ expression of
c-MYC, not AKT.
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Table 1. Cont.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Adams et al., 2018 [146] Metabolite-PCa
causality

24,925 = GWAS
metabolites

44,825 = GWAS
PCa

27,904 control

Data mining and
statistical

analysis, no
experimental

tool

Lipids and
lipoproteins

Fatty acids and ratios
Amino acids

Fluids
35 metabolites

association w/ PCa,
14 has no causality

Lipid metabolism
Fatty acid

metabolism
Amino acid
metabolism

35 metabolites were associated w/
PCa, and 14 of those were found not

to have causality w/ PCa
progression.

Khodayari-Moez et al.,
2018 [136]

AKT and MYC
dysregulation

60 = human
PCa samples
16 = normal

prostate

Data analysis,
no experimental

tool

Metabolites related to
dysregulated

metabolic pathways

D-glutamine and
D-glutamate
metabolism
Fatty acid

biosynthesis
Fructose and

mannose
Metabolism

Nitrogen
metabolism
Pyrimidine
metabolism

Dysregulation of AKT1 and MYC
alters non-glucose-mediated

pathways and their downstream
targets.

MYC is one of the leading oncogenes
in PCa development.

Heger et al., 2016 [128]

Sarcosine
dehydro-

genase (SDH)
supplementation

PC3, LNCaP
PCa murine

xenograft
(validation)

IEC

Glycine, serine,
sarcosine (+)

dimethylglycine and
glycine-N-

methyltransferase
(slight +)

Sarcosine
metabolism

SDH supplementation significantly
increased levels of glycine, serine,

and sarcosine, but slight increase in
dimethylglycine and

glycine-N-methyltransferase levels.
PC-3→ 25, LNCaP→ 32,

overlapping→ 18 differentially
expressed genes.

Liu et al. 2015 [137] Gene-metabolite
association

16 = benign
12 = PCa

14 = metasta-
sized

Mathematical,
no experimental

tool,
second-hand
LC/GC-MS

from
Sreekumar et al.

1353 genes
1489 metabolites Non-applicable

Directed random walk global
gene-metabolite graph (DRW-GM) =
from integrated matched gene and

matched metabolomic profiles
→accurate evaluation of gene

importance and pathway activities
in PCa.

Use of method in three independent
datasets→ accurate evaluation of

risk pathways.

Shafi et al., 2015 [186]
Androgen

receptor variant
7 (AR-V7)

LNCaP Seahorse assay
LC-MS

Glucose/fructose (−)
3-phosphoglycerate,
2-phosphoglycerate

(−)
Pyruvate (+)
Citrate (−)

α-ketoglutarate (+)
Malate (−)

Oxaloacetate (+)
Glutamine (+)

Citrate (−)

Glycolysis via
extracellular

acidification rate
(ECAR)

Glutamine
metabolism via

reductive
carboxylation

Tricarboxylic acid
(TCA) cycle

Glutaminolysis

AR-V7 stimulated growth,
migration, and glycolysis measured
by ECAR (extracellular acidification

rate) similar to AR.
AR→ increase citrate, AR-V7→

reduce citrate mirroring metabolic
shifts (castration-resistant PCa).
AR-V7 is highly dependent on
glutaminolysis and reductive

carboxylation→ produce
metabolites consumed by TCA cycle.

Gilbert et al., 2014 [218]
SNPs of vitamin

D-PCa
association

1275 = PCa
2062 = healthy

controls
MS

25-hydroxyvitamin-D
(25(OH)D)

1,25-
dihydroxyvitamin,

(1,25(OH)2D)

25(OH)D
synthesis
25(OH)D

metabolism

Vitamin D-binding protein SNPs
were associated

with prostate cancer.
Low 25(OH)D metabolism score was

associated with high grade.

Zecchini et al., 2014 [219] Beta-arrestin 1
(ARB1)

C4-2
786-O

1,2-13C2 glucose
assay

GC-MS

Succinate
dehydrogenase

Fumarate hydratase

Oxidative
phosphorylation

Aerobic
glycolysis

ARB1 contributes to PCa metabolic
shift via regulation of

hypoxia-inducible factor 1A (HIF1A)
transcription through regulation of

succinate dehydrogenase and
fumarate hydratase in normoxic

conditions.
ARB1 was directly linked in PCa as a

promoter by altering metabolic
pathways.

Survival of PCa cells in harsh
conditions due to ARB1.

Hong et al. 2013 [220]

Metabolic
quantitative trait
loci (mQTLs) via

genome-wide
association

study (GWAS)

214 = PCa
188 = control

489 = PCa
(replication)

UPLC-MS w/
XCMS

Caprolactam
Glycerolphosphocholine

2,6-
dimethylheptanoylcarnitine
Glycerolphosphocholine

Bilirubin
C9H14Ona

Glycerophospho-N-
palmitoyl

ethanolamine
Stearoylcarnitine

Glycochenodeoxycholic
acid 3-glucuronide

Fatty acid
β-oxidation via

acyl-CoA
dehydrogenase

Seven genes (PYROXD2, FADS1,
PON1, CYP4F2, UGT1A8, ACADL,

and LIPC) and their variants
contributed significantly to trait

variance for one or more metabolites.
Enrichment of 6 genes was

associated w/ increased ACAD
activity.

mQTL SNPs and mQTL-harboring
genes over-represented in GWAS→

implications in PCa.
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Table 1. Cont.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Poisson et al., 2012 [221] Gene expression
mapping

402 = original
488 = replication

Statistical and
mathematical,

no experimental
tool

Non-applicable Non-applicable

Convert gene information to p-value
weight via 4 enrichment tests and

4 weight functions.
Used p weights on PCa metabolomic

dataset.
Disjoint pathways→ higher

capability to differentiate
metabolites than enriched pathways.

Lu et al., 2011 [222]

Single-minded
homolog 2

(SIM2)
expression

PC3
LNCaP
VCaP
DU145

LC-MS-MS 38 dysregulated
metabolites

PTEN signaling
PI3K/AKT
signaling

Toll-like receptor
signaling

Lenti-shRNA in PC3→
downregulates SIM2 gene and

protein→ affects key signaling and
metabolic pathways.

Massie et al., 2011 [223] AR regulatory
effects LNCaP

NMR
1,2-13C2 glucose

assay
GC-MS

Calcium/calmodulin-
dependent protein

kinase
kinase 2 (CAMKK2)

Glycolysis via
activating 5’

AMP-activated
protein kinase
(AMPK)- phos-

phofructokinase
(PFK) signaling

AR regulates aerobic glycolysis and
anabolism in PCa.

CAMKK2, a direct AR target gene,
regulates downstream metabolic

processes.
CAMKK2 is important in
androgen-dependent and
castration-resistant PCa.

1 The list is non-exhaustive, tabulated as of the writing of this review article. 2 Total of 91 queries trimmed down
to 14 integrated genomic-metabolomic PCa studies.

9. Metabolomics and Transcriptomics

The PCa’s genome has limited somatic mutations, but its gene expression profiles, as
recorded in the transcriptome, are varied in both localized and metastatic PCa. Integrating
transcriptomic data with metabolomic data reveals levels of known and unknown metabo-
lites indicative of genetic aberrations or protein/enzyme expression. Table 2 summarizes
a comprehensive decade-long study on paired transcriptomics and metabolomics. We
scoured the literature and found 17 relevant publications.

Table 2. Summary of transcriptomic–metabolomic integration studies for PCa within the last decade
(2011–2021) 1,2.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Imir et al., 2021 [147]
Perfluoroalkyl

sulfonate (PFAS)
exposure

RWPE-1
RWPE-kRAS GC-MS

Acetyl-coA
Pyruvate

dehydrogenase
complex (PDC)

Glycolysis via
Warburg effect and

transfer of acetyl
group into

mitochondria
TCA cycle

Threonine and
2-oxobutanoate

degradation
Phosphatidylethanol-
amine biosynthesis
Lysine degradation
Pentose phosphate

pathway (PPP)

PFAS exposure led to increase in
xenograft tumor growth and altered

metabolic phenotype of PCa,
particularly those associated w/

glucose metabolism via the Warburg
effect, involving the transfer of

acetyl groups into mitochondria and
TCA (pyruvate).

PFAS increased PPAR signaling and
histone acetylation in PCa.

Tilborg and Saccenti
2021 [224]

Gene expression-
metabolic

dysregulation
relationships

14 metabolic
data sets, one
of those is for

PCa.
7 = tissue PCa

7 = tissue
normal

Statistical, no
experimental

tool

Out of 72 metabolites
investigated in PCa, 0

significantly
differentially

abundant metabolites
were found
(padj < 0.05)

No enriched or
dysregulated

pathways for PCa

Topological analysis of Gaussian
networks→ PCa more defined by
genetic networks than metabolic

ones.
PCa-related metabolites were not

significantly altered between
controls and PCa samples.

Wang et al., 2021 [225]
Differential
metabolites

between PCa
and BHP

41 = PCa
38 = BPH

GC-MS
GC/Q-TOF-MS

Multivariate and
univariate
statistical
analysis

12 metabolites
(+/−) including

L-serine,
myo-inositol, and

decanoic acid

L-serine,
myo-inositol, and

decanoic acid
metabolism

L-serine, myo-inositol, and decanoic
acid→ potential biomarkers for
discriminating PCa from BHP.

The 3 metabolites→ increased area
under the curve (AUC) of cPSA and
tPSA from 0.542 and 0.592 to 0.781,

respectively.
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Table 2. Cont.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Gómez-Cebrián et al.
2020 [226]

Dysregulated
PCa metabolic

pathway
mapping

73 using serum
and urine NMR

36 metabolites
(+/−) including

glucose, glycine, 1-
methylnicotinamide

Energy metabolism
Nucleotide
synthesis

36 metabolic pathways were
dysregulated in PCa based on

Gleason score (GS) (low-GS (GS < 7),
high-GS PCa (GS ≥ 7) groups).
Levels of glucose, glycine, and

1-methylnicotinamide→
significantly altered between

Gleason groups.

Chen et al., 2020 [148]
EMT-PCa and
epithelial PCa
differentiation

ARCaPE
ARCaPM

LC-MS
Glucose uptake

assay

Aspartate (+)
Glycolytic enzymes

(+) except for glucose
2 transporter (−)

TCA cycle: pyruvate
dehydrogenase

kinase 1/2, pyruvate
dehydrogenase 2 (+)

Succinate
dehydrogenase A,

aconitase 2 (−)
Glutaminase 1/2 (+)

Glucose uptake
Aspartate

metabolism
Glycolysis
TCA cycle
Glutamine–
glutamate
conversion

PCa cells undergoing
epithelial-mesenchymal transition

(EMT) showed low glucose
consumption.

Glucose metabolism in ARCaPE
downregulated.

Glucose metabolism in transcription
factor- (TF) induced EMT models

downregulated.
ARCaPM cells showed increased

aspartate metabolism.

Joshi et al. 2020 [149]

Carnitine
palmitoyl

transferase I
(CPT1A)

expression

LNCaP-C4-2 UPHLC-MS

Acyl-carnitines
Mitochondrial

reactive oxygen
species

Superoxide
dismutase 2

ER stress
Serine biosynthesis

Lipid catabolism
Androgen
response

Upregulated pathways via
transcriptomic analysis→ ER stress,
serine biosynthesis, lipid catabolism.

Overexpressed (OE) of CPT1A
showed increased SOD2 when

subjected to low fatty acids and no
androgen→ better antioxidant

defense w/ CPT1A OE.
High lipid metabolism, low
androgen response→ worse

progression-free survival.

Lee et al., 2020 [162]
Urine-enriched

mRNA
characteriza-tion

Urine:
20 = BPH
11 = PTT
20 = PCa

20 = normal
65 = PCa

(validation)

UHPLC-HRMS

Alanine, aspartate,
and glutamate (+)

Glutamic-oxaloacetic
transaminase 1 (+)

14 metabolic
pathways
including

aminoacyl-tRNA
biosynthesis
TCA cycle
Pyruvate

metabolism
Amino acid
pathways

Integrated gene
expression-metabolite signature

analysis→ glutamate metabolism
and TCA aberration contributed to
PCa phenotype via GOT1-mediated

redox balance.

Marin de Mas et al. 2019
[150]

Aldrin exposure
analysis via

gene-protein-
reactions (GPR)

associations

DU145

Dataset
processing, no
experimental

tool

19 metabolites, both
consuming and

producing

Carnitine shuttle
Prostaglandin
biosynthesis

The application of novel
stoichiometric gene–protein reaction
(S-GPR) (imbedded in genome-scale

metabolic models, GSMM) on the
transcriptomic data of

Aldrin-exposed DU145 PCa revealed
increased metabolite

use/production.
Carnitine shuttle and prostaglandin
biosynthesis→ significantly altered

in Aldrin-exposed DU145 PCa.

Andersen et al., 2018
[227]

Differential
genes and

metabolites

158 tissue
samples from

43 patients
HR-MAS MRS

23 metabolites
differentially

expressed between
high RSG and low

RSG, including
spermine, taurine,
scyllo-inositol, and

citrate

Immunity and
ECM remodeling

DNA repair
pathway

Type I interferon
signaling

High RSG (≥16%) was associated w/
PCa biochemical recurrence (BCR).

These high reactive stromata→
upregulated genes and metabolites
involved in immune functions and

ECM remodeling.

Shao et al., 2018 [228]
Metabolomics-

RNA-seq
analysis

Tissue:
21 = PCa

21 = normal
50 = PCa and
normal each
(validation)

GC-MS

Fumarate
Malate

Branched-chain
amino acid (+)
Glutaminase,

glutamate
dehydrogenase 1

2 (+)
Pyruvate

dehydrogenase (+)

TCA cycle
BCAA degradation

Glutamine
catabolism
Pyruvate

catabolism

Fumarate and malate levels→
highly correlated w/ Gleason score,

tumor stage, and expression of genes
involved in BCAA degradation.
BCAA degradation, glutamine

catabolism, and pyruvate catabolism
replenished TCA cycle metabolites.

Al Khadi et al., 2017 [229]
Peripheral and

transitional zone
differentiation

20 PCa patients
undergoing

prostatectomy

Network-based
integrative
analysis, no

experimental
tool

23 metabolites (+)
including fatty acid
synthase (FC = 2.9)

and ELOVL fatty acid
elongase 2 (FC = 2.8)

15 KEGG
pathways

including de novo
lipogenesis and

fatty acid
β-oxidation

RNA sequencing and
high-throughput metabolic analyses
(non-cancerous tissue, prostatectomy

patients)→ genes involved in de
novo lipogenesis: peripheral >

transitional.
Peripheral zone induced lipo-rich

priming→ PCa oncogenesis.

Sandsmark et al.,
2017 [230]

CWP, NCWP,
EMT evaluation

129
1519 samples
(validation)

HR-MAS MRS
MRSI

Citrate (−)
Spermine (−) TCA cycle

Increased NCWP activation via
Wnt5a/Fzd2 Wnt activation mode

→ common in PCa.
NCWP activation is associated w/

high EMT expression and high
Gleason score.

NCWP-EMT→ significant predictor
of PCa metastasis and biochemical

recurrence.
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Table 2. Cont.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Ren et al., 2016 [231]

Paired approach
for altered
pathways

determination

25 = PCa and
adjacent

non-cancerous
tissues each

51 = PCa and
16 = BHP

(validation)

LC-MS
TOF-MS

Sphingosine (+)
Sphingosine-1-

phosphate receptor 2
(−)

Choline,
S-adenosylhomoserine,
5- methylthioadensine,
S-adenosylmethionine,

Nicotinamide
mononucleotide,

Nicotinamide
adenine

dinucleotide, and
Nicotinamide

adenine dinucleotide
phosphate (+)

Adenosine, uric acid
(−)

Cysteine
metabolism
Methionine
metabolism

Nicotinamide
adenine

dinucleotide
metabolism
Hexosamine
biosynthesis

Cysteine, methionine, and
nicotinamide adenine dinucleotide

metabolisms and hexosamine
biosynthesis were aberrantly altered

in PCT vs. ANT.
Sphingosine was able to distinguish
PCa from BHP cells for patients w/

low PSA levels.
The loss of sphingosine-1-phosphate
receptor 2 signaling→ loss of TSG

(oncogenic pathway).

Torrano et al., 2016 [232]

Peroxisome
proliferator-

activated
receptor gamma

coactivator
1-alpha (PGC1α)

assessment

150 = PCa
29 = control

LNCaP
DU145

PC3

LCHR-MS
Stable isotope

13C-U6-glucose
labeling

PGC1α (−)
PGC1β

Histone deacetylase 1

PGC1α pathway
Estrogen-related

receptor α (ERRα)
pathway

PGC1α was a co-regulator and
inhibits PCa progression and

metastasis. Its deletion in murine
prostate epithelium confirmed the

finding.
PGC1α dictates PCa oncogenic

metabolic wiring, and its
tumor-suppressive ability was

mediated by the ERRα pathway.

Zhang et al., 2016 [233]
Angelica gigas
Nakai (AGN)

evaluation
5 mice per

group UHPLC-MS-MS

11 metabolites (+)
including glutathione
disulfide and taurine

11 metabolites (−)
including lysine,

tyrosine, and lactate

Methionine-
cysteine

metabolism
Purine metabolism
Citrate metabolism

Dosing w/ AGN→ detectable
decursinol, little decursin

decursinol angelate.

Cerasuolo et al.,
2015 [234]

Neuro-
Endocrine

transdifferen-
tiation

LNCaP
H-NMR,

Mathematical
modeling

Creatinine +
phosphor-creatinine

(+)
Glycine (+)
Proline (+)
Alanine (+)

Fatty acids (+)
Phospholipids (+)

Glutathione (+)
Glutamine (+)

Glucose oxidation
Arginine and

proline metabolism
Glycine, serine,
and threonine

metabolism
Glutamine and

glutamate
metabolism
Glutathione
metabolism

Hormone-deprived LNCaP cells
were transdifferentiated to

non-malignant neuroendocrine
phenotype.

Initially, LNCaP cells dwindled,
neuroendocrine-type cells

proliferated→ later,
neuroendocrine-type cells sustained

LNCaP cells making them
androgen-independent.

Meller et al., 2015 [235] Metabolites
analysis 106 = PCa

GC-MS
LC-MS
MRM

Malignant vs.
non-malignant:

156 metabolites (+)
17 metabolites (−)

Gleason score:
11 metabolites (+)
4 metabolites (−)

ERG translocation:
53 metabolites (+)
17 metabolites (−)

Fatty acid
β-oxidation

Sphingolipids
metabolism
Polyamines
metabolism
Cholesterol
metabolism

Fatty acid β-oxidation and
sphingolipids metabolism were
dysregulated in PCa relative to

non-malignant tumors.
TMPRSS-ERG translocated was

positively correlated (causality) w/
metabolites from PCa samples.

Advanced PCA tumors exhibited
increased cholesterol metabolism→

energy storage.

1 The list is non-exhaustive, tabulated as of the writing of this review article. 2 Total of 50 queries trimmed down
to 17 integrated transcriptomic–metabolomic PCa studies.

10. Metabolomics and Proteomics

The proteome’s phenotype is closest to the metabolome’s [105]. Kim et al. identi-
fied proteins encoded by 17,294 genes [236] and Schroeder estimated that there are about
80,000–400,000 since one gene can encode multiple proteins [237]. In PCa, proteomics is
applied to determine proteasomal degradation and aberrant metabolic processes. Most
PCa studies focused on protein profiles and protein expression aberrations resulting from
localized or metastatic PCa. A proteome sample is separated into components via gel-
and liquid-based approaches. The gel-based method includes gel electrophoresis while
the liquid-based method involves LC or LC-MS [101]. Implementing proteomics is expen-
sive so integrated proteomics–metabolomics study is limited in the literature compared
to genomics–metabolomics or transcriptomics–metabolomics studies. However, recent
mapping development of the proteome and the emergence of top-down proteomics have
made its use more manageable [105]. The integration of proteomic and metabolomic data
has been focused on profiling, pathway mapping, and association studies. For example,
PCa versus normal prostate cell differentiation is achieved via proteomics–metabolomics.
The approach analyzes dysregulation in lipid metabolism and increases in protein phos-
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phorylation [238]. Advancement in computing enables the coupled approach to move
beyond simple pathway mapping. Herein, we summarized seven integrated proteomic–
metabolomic PCa studies, presented in Table 3, within the last decade (2011–2021). The list
was extracted from 86 online queries from PubMed and multiple databases.

Table 3. Summary of proteomic–metabolomic integration studies for PCa within the last decade
(2011–2021) 1,2.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Kopylov et al., 2021 [239]
Schizophrenia-

PCa
association

52 = PCa Q-TOF MS
UPLC

Cer(d18:1/14:0)
3Cholesta-3,5-dien-7-

one
1α,25-dihydroxy-19-
nor-22-oxavitamin
D312:0 Cholesteryl

ester24-hydroxy-
cholesterol11-cis-

RetinolElaidolinoleic
acid14-hydroxy
palmitic acid12-

amino-dodecanoic
acidL-Leucine

Sphingolipid
metabolism 3

CholestanoidS-
teroid

biosynthesisS-
teroid biosynthesis

Bile acid
biosynthesis

Retinol
metabolism
Linoleic acid

metabolismFatty
acid

biosynthesisFatty
acid biosynthesis

Valine, leucine and
isoleucine

degradation

Proteomic and metabolic data→
input to approach employing

systems biology and
one-dimensional convolutional

neural network (1DCNN) machine
learning.

Systems biology + 1DCNN→
efficiently discriminate between:

Unrelated pathologies = 0.90 (SCZ
and oncophenotypes)

Oncophenotypes/gender specific
diseases = 0.93 (PCa).

1DCNN→ high efficiency in
PCa diagnosis.

Shen et al., 2021 [240]

Laser-capture-
micro-dissection
(LCM) androgen

quantification

16 = PCa LC-SRM-MS
Androsterone 4

Androstenedione
Dehydroepiandrosterone

Testosterone

Interleukin
signaling 4

IGF signaling
NOTCH4 signaling

Wnt signaling
PDGF signaling

Steroid metabolism
ECM signaling,

RAF/MAPK
signaling by

integrins

Coupled parallel LC-MS-based
global proteomics and targeted

metabolomics→ ultrasensitive and
robust quantification of androgen

from low sample quantity.
LC-MS-based method→ robust and

reliable protein quantification in
LCM, including highly accurate

profiling of stroma and epithelial
LCM of PCa patients.

Teng et al., 2021 [151]

Mast cell (MC)
and cancer-
associated

fibroblasts (CAF)
profiling

PCa tissue
from

prostatectomy
patients
BPH-1
HMC-1

SAMD14 (+) 5 Immune signaling
ECM processes

Transcriptomic profiling of MCs
isolated from prostate tumor region
→ downregulated SAMD14.

Proteomic profiling of HMC-1→
overexpression of SAMD14→

modified proteins associated w/
immune regulation and

ECM processes.
Add HMC-1-SAMD14+ medium to

culture of (CAF + prostate
epithelium)→ reduced deposition

and alignment of ECM generated by
CAF; suppressed tumorigenic

morphology of prostate epithelium.

Blomme et al. 2020 [152]

Androgen
receptor
inhibitor

(ARI)-based
LNCaP

characterization

LNCaP WT 6

LNCaP
bicalut-res

LNCaP
apalut-res

LNCaP
enzalut-res

LTQ-OVMS
FT-MS

QEO-MS
LC-MS

Metabolites
associated w/

glucose metabolism
(citrate, acetyl-coA)

and lipid metabolism
(+) for DECR1
overexpression

Dihydroxyacetone
phosphate and

glycerol 3-phosphate
(−) for DECR1

knockout

Glucose
metabolism
Fatty acid
β-oxidation

2,4-dienoyl-coA reductase (DECR1)
knockout→ induced ER stress, and

stimulated CRPC cells to
undergo ferroptosis.

DECR1 deletion in vivo→ inhibited
lipid metabolism, and reduced

CRPC tumor growth.

Felgueiras et al., 2020
[238]

PCa-normal
prostate

differentiation

Tissue:
8 = PCa

8 = normal
FT-IR

Polysaccharide and
glycogen (−)

Nucleic acid (+)

Lipid metabolism
Protein

phosphorylation

FT-IR (spectroscopic profiling) and
antibody microarray (signaling

proteins)→ dysregulation in lipid
metabolism and increased protein

phosphorylation.

Li et al., 2020 [153]

FUN14-domain-
containing
protein-1

(FUNDC1)
silencing

PC3
DU145
C42B

LC-MS
UPHLC

AAA+ protease
LonP1

Complex V (ATP
synthase)

TCA intermediates:
pyruvate,

cis-aconitase,
α-ketoglutarate,

succinate (−)
Glutathione, ROS (+)

TCA cycle
Oxidative

phosphorylation

FUNDC1 affects cellular plasticity
via sustaining oxidative

phosphorylation, buffering ROS
generation, and supporting

cell proliferation.
FUNDC1 expression→ facilitated
LonP1 proteostasis→ preserved

complex V function and decreased
ROS generation.
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Table 3. Cont.

Reference Experimental
Condition

Sample/
n Samples

Analytical Tool
for Metabolites

Altered Metabolites
(+/−)

Dysregulated
Metabolic
Pathways

Main Findings

Dougan et al., 2019 [154]
Peroxidasin

(PXDN)
knockdown

RWPE1
DU145

PC3
22Rv1

LNCaP

LC-MS-MS

Metabolites that
prevent oxidative

stress and promote
nucleotide

biosynthesis (−)
(i.e., desirable to

increase oxidative
stress and decrease

nucleotide
biosynthesis→

apoptosis of
PCa cells)

Oxidative stress
response

Phagosome
maturation
Eukaryotic

initiation factor 2
(eIF2) signaling
Mitochondrial
bioenergetics

Gluconeogenesis I

Increased PXDN expression
positively correlated w/ PCa

progression.
PXDN knockdown→ increased
oxidative stress and decreased

nucleotide synthesis.
PXDN knockdown→ increased ROS
→ decreased cell viability, increased

apoptosis.
PXDN knockdown→ decreased

colony formation.

1 The list is non-exhaustive, tabulated as of the writing of this review article. 2 Total of 86 queries trimmed down
to 7 integrated proteomic–metabolomic PCa studies. 3 Altered metabolite indicates corresponding dysregulated
metabolic pathway. 4 Enumerated metabolites are presented for quantification purposes using the coupled
parallel LC-MS-based global proteomics and targeted metabolomics of LCM. The associated potential biochemical
pathways are also listed. These pathways are not dysregulated since there are no experimental conditions applied.
5 Tumor-suppressor gene whose protein counterpart potentially induces regulation in immune signaling and ECM
processes. 6 LCaP cell lines: LNCaP WT = LNCaP wild type; LNCaP bicalut-res = LNCaP bicalutamide-resistant;
LNCaP apalut-res = LNCaP apalutamide-resistant; LNCaP enzalut-res = LNCaP enzalutamide-resistant.

11. Integrated Omic Analysis

Thus far, there are numerous studies combining multiple types of omic approaches and
data within the last decade; however, there are few investigations in the literature that have
employed metabolomics with other multiple omics. The excellent review by Zhang et al.
showed PCa studies with few metabolomic-based omic combinations [177]. An example
of a three-tier approach was performed by Oberhuber et al., in which they analyzed the
effects of the expression of the signal transducer and activator of transcription 3 (STAT3)
on PCa tumor growth, metabolite level, and PCa-associated metabolic pathways [241].
With transcriptomics, the group determined that high STAT3 expression corresponded to
downregulation in OXPHOS. Similarly, proteomics revealed that STAT3 expression inhibits
OXPHOS-TCA cycle activity. Nonetheless, the upregulation of pyruvate dehydrogenase
kinase 4 (PDK4), an enzyme that lowers metabolism by inhibiting pyruvate-to-acetyl-
coA conversion, resulted in the suppression of tumor growth [241]. These and other
metabolomic-based multi-omic integration PCa studies are summarized in Table 4. It is
important to note that omic science has expanded into new forms including epigenomics,
lipidomics, volatilomics, and phosphoproteomics.

Table 4. Summary of metabolomic-based multi-omic integration studies for PCa within the last
decade (2011–2021) 1,2.

Reference Experimental
Condition

Sample/
n Samples Analytical Tool Altered Metabolites

(+/−)
dysregulated

Metabolic
Pathways

Combined Modality/Main Findings

Kiebish et al., 2020 [100]
PCa prognostic

markers
identification

382 pre-surgical
serum samples

from PCa
patients

267 = training
set (validation)
115 = testing

set (validation)

MS-MS
HILC-MS

LC-MS
GC-TOF-MS

1-methyladenosine
(+)

Cholesterol
metabolism

Proteomics + Lipidomics +
Metabolomics:

Linear regression + Bayesian method
+ multi-omics→ Tenascin C (TNC)

and Apolipoprotein A1V (Apo-AIV),
1-Methyladenosine (1-MA), and
phosphatidic acid (PA) 18:0–22:0,
AUC = 0.78 (OR (95% CI) = 6.56

(2.98–14.40), P < 0.05)→ high
differentiating ability w/ and

w/o BCR.

Oberhuber et al.,
2020 [241]

Signal
transducer and

activator of
transcription 3

(STAT3)
expression

84 = PCa from
prostatectomy

patients
LC-MS-MS
LC-HRMS

Pyruvate
dehydrogenase

kinase 4 (+)

Oxidative
phosphorylation

TCA cycle
Pyruvate oxidation

Transcriptomics + Proteomics +
Metabolomics:

High STAT3 expression→ OXPHOS
downregulated (Transcriptomics).
High STAT3 expression→ TCA
cycle/OXPHOS downregulated

(Proteomics).
High PDK4 expression→ inhibited

PCa tumor growth.
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Table 4. Cont.

Reference Experimental
Condition

Sample/
n Samples Analytical Tool Altered Metabolites

(+/−)
dysregulated

Metabolic
Pathways

Combined Modality/Main Findings

Itkonen et al., 2019 [242]

Cyclin-
dependent

kinase 9 (CDK9)
inhibition

LNCaP
PC3

Seahorse
metabolic flux

analysis
Acyl-carnitines (+)

Oxidative
phosphorylation

ATP synthesis
AMP-activated
protein kinase

(AMPK)
phosphorylation

Lipidomics + Fluxomics +
Metabolomics:

CDK9 inhibition→ acute metabolic
stress in PCa cells.

CDK9 inhibition→ downregulated
oxidative phosphorylation, ATP
depletion, and sustained AMPK

phosphorylation.
CDK9 inhibition→ increased levels

of acyl-carnitines

Gao et al., 2019 [243]
LASCPC-01 and

LNCaP
differentiation

LASCPC-01
LNCaP

GC-TOF-MS
LC-MS

25 metabolites altered
from control
Carnitine (−)

Glycolysis
One-carbon
metabolism

Transcriptomics + Lipidomics +
Metabolomics:

62 genes upregulated in LSCPC-01,
112 genes upregulated in LNCaP

(Transcriptomics).
25 genes significantly altered from

control (Lipidomics + Metabolomics).
LASCPC-01: high glycolytic rate,

low-level triglycerides.
LNCaP: high 1C metabolism rate,

low carnitine.

Kregel et al., 2019 [244]

Bromodomain/
extraterminal

(BET)-
containing

proteins
(BRD2/3/4)

inhibitor
analysis

22RV1
LNCaP
VCaP
PC3

DU145

LC-MS

Polyunsaturated fatty
acids (+)

Thioredoxin-
interacting protein

Interferon regulatory
transcription factor

(−)

Cyclin-dependent
kinase 9 inhibition

CDK9 hyper-
phosporylation

Polycomb
repressive complex

2 activity

Proteomics + Lipidomics +
Metabolomics:

BET inhibitors: affected AR+ PCa
(22RV1, LNCaP, VCaP) more than

AR- PCa (PC3, DU145).
BET inhibitors→ disrupted AR and

MYC signaling at concentrations:
(BET) < (BET inhibitors)

(Proteomics).

Zadra et al. 2019 [245]

Fatty acid
synthase (FASN)
suppression via

IPI-9119

LNCaP
22RV1

HeK293T
RWPE-1

UPLC-MS-MS
LC-MS
GC-MS

14C-labeling

91 of the 418
metabolites
modulated

Malonyl-coA
carnitine (+)

Carnitine
palmitoyltransferase

1
(−)

De novo fatty acid
synthesis and
neutral lipid

accumulation
ER stress response

signaling
Amino acid

synthesis
TCA cycle

Carbohydrate
metabolism
Nucleotide
metabolism

Lipidomics + Metabolomics:
IPI-9119, a selective inhibitor of

FASN altered the PCa metabolome
by inhibiting fatty acid oxidation via
accumulating malonyl-coA carnitine.
Malonyl-coA carnitine accumulation

→ inhibited carnitine
palmitoyltransferase 1→ FAO

suppression.
FA synthesis suppression→

inhibited AR and AR-V7 expression.
IPI-9119→ induced ER stress,

inhibited AR/AR-V7 translation.

Murphy et al., 2018 [246] PCa biomarker
identification

158 = PCa
prostatectomy

patients

LC-MS-MS
Statistical
modeling

13 glycosylation
metabolites (+)

including
tetraantennary
tetrasialylated
structures and

A3G3S3

Glycosylation

Genomics + Transcriptomics +
Proteomics +Lipidomics +

Metabolomics:
Integration of data across 5 omic

platforms from tissue and serum→
single AUC value that better

differentiates aggressive PCa from
the indolent type compared to AUCs

obtained from single omics.

Hansen et al., 2016 [247] TMPRSS2-ERG
expression

129 = PCa
samples from

41 patients
40 = PCa

samples from
40 patients

HR-MAS-MRSI
Out of 23 metabolites,
citrate and spermine

(−)

TCA cycle
Nucleic acid

synthesis
Citrate metabolism

Polyamines
metabolism

Transcriptomics + Metabolomics:
ERGhigh = low citrate and spermine

concentrations→ increased PCa
aggressiveness (Metabolomics).

Metabolomic alterations for ERGhigh
vs. ERGlow →more pronounced in

low Gleason samples→ implication:
potential risk stratification tool.

1 The list is non-exhaustive, tabulated as of the writing of this review article. 2 Total of 82 queries trimmed down
to 8 metabolomic-based integrated multi-omic PCa studies.

12. Metabolomic Profile of Prostate Cancer

In the U.S., PCa incidence and mortality is around 270,000 and 35,000, respectively,
by 2022 [248]. It is the second leading cancer death in American men and the fifth lead-
ing cancer death among men worldwide [109,248–250]. PCa cells undergo substantial
metabolic changes that define their unique phenotype [110,251]. The primary driver of
PCa development is genetic alterations, but neoplastic transformations can occur, which
further supplies energy to tumors [1,111,252–259]. Metabolic reprogramming is one of the
hallmarks of PCa development [260–264]. PCa cells, unlike other cancers, do not depend
on aerobic glycolysis for ATP production [81,265]. Instead, they obtain energy primarily
from lipids via the activation of the TCA cycle [188,261,266]. Only in advanced metastatic
PCa do cells favor lactate production in the presence of oxygen [267–269]. Although PCa
cells do not exhibit the Warburg effect, they still produce lactate, which aids in immune
escape, cell mobility, angiogenesis, and PCa development [270,271]. In normal prostate,
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citrate is accumulated [81] with glucose as the main source of energy [272]. In PCa, citrate
is decreased [273]. The decrease in citrate lowers NADH production [81,273]. As a result,
PCa cells produce energy less efficiently [274–278]. The accretion of zinc in normal prostate
inhibits m-aconitase (m-ACO), the enzyme that catalyzes the isomerization of citrate to
isocitrate in the TCA cycle [81,273]. Zinc is key in prostate malignancy since it dictates the
tumor’s metabolic and energy consumption preference, growth and proliferation, and inva-
siveness. Simultaneously reducing citrate levels and preventing zinc accumulation drives
PCa progression and metastasis [273,279,280]. PCa tissues have low levels of spermine
in the prostatic fluid [279,280], contributing to their aggressiveness [281,282]. They are
characterized by high levels of taurine [1,283,284], choline [285–287], sarcosine [121,288],
myo-inositol [1,283,284], and pyruvate kinase M2 [1,283,284]. Androgen is the primary
driver of PCa via AR signaling. Non-metastatic PCa is androgen dependent, with AR af-
fecting the one-carbon metabolism and other transcription factors in PCa-related catabolic
pathways [289]. Metastatic PCa is androgen independent, able to resist ADT by switching
from one steroid receptor to another [290,291]. Glucocorticoids are often used in conjunc-
tion with antiandrogen agents and their effects are dependent on glucocorticoid receptors
(GR) [290,292]. Research efforts have aimed at increasing glucocorticoid metabolism and GR
responsiveness via hexose-6-phosphate dehydrogenase as a means of reversing metastatic
PCa cells’ resistance to ADT [290]. In the succeeding sections, the canonical pathways
associated with PCa progression are discussed: glycolysis, OXPHOS via the TCA cycle,
de novo lipogenesis, and glycogenesis/glycogenolysis. Pentose phosphate pathway (PPP)
and amino acid metabolism are included as non-canonical pathways. The metabolic profile
between normal prostate and PCa cells is shown in Figure 3.
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generation. Enhanced glutamine metabolism and acetate consumption were also observed in PCa 
cells. Dashed lines indicate abridged pathways, and solid lines indicate direct pathways. Transport-
ers for each species are indicated. Figure drawn using BioRender [26]. 
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tatic fluid. To sustain the energy requirement of the compromised aerobic respiration, 
non-essential biochemical pathways are limited [189]. However, in PCa, glycolysis is up-
regulated and reprogrammed, providing ATP energy for tumor proliferation [297,298]. 
Early-stage PCa limits glycolysis but stimulates enhanced OXPHOS [113]. Nonetheless, 
when it becomes metastatic and castration resistant, glycolysis is reinforced, including de 
novo lipogenesis,[299] amino acid metabolism, and nucleic acid synthesis [300]. Both be-
nign and metastatic PCa cells exhibit some form of Warburg effect because ATP comes 
from aerobic glycolysis, not OXPHOS [267,301]. In fact, early-stage PCa cells derive their 
ATPs from lipids and other biomolecules, and when the cells have metastasized into late-
stage PCa cells, they become wholly glycolytic. 

Under anaerobic conditions, glycolysis is favored, and very little pyruvate is pre-
sented to the aerobic mitochondria [267,294]. Regardless of oxygen availability, PCa cells 
favor glycolysis [114,267,271,294]. The Warburg effect was initially associated with dys-
function in mitochondria but is now associated with the cell’s quick consumption of glu-
cose, even for those pathways that are outside of mitochondria [302]. Because of the dis-
regard for OXPHOS, PCa cells produce less ATP, but they efficiently convert glucose into 
lipids, amino acids, or nucleotides [303]. Glycolysis is regulated by AMP-activated protein 
kinase (AMPK) [304], which in turn activates the mammalian target of rapamycin (mTOR) 
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pathways cause PTEN-deprived tumorigenesis in PCa [297,306–308]. This loss in PTEN 
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Figure 3. Metabolic profile of epithelial prostate cell during tumorigenesis. In the normal type (left),
zinc inactivates m-aconitase (ACO), which accumulates citrate to prostatic fluid. In the malignant
type, cells do not rely on the Warburg effect; although, they produce lactate. Instead, they consume
lipids (generated via de novo lipogenesis), activate the TCA cycle, and stimulate OXPHOS for ATP
generation. Enhanced glutamine metabolism and acetate consumption were also observed in PCa
cells. Dashed lines indicate abridged pathways, and solid lines indicate direct pathways. Transporters
for each species are indicated. Figure drawn using BioRender [26].

12.1. Glycolysis

The metabolism of healthy prostate epithelial cells and acinar epithelial cells are
regulated by glycolysis [293,294]. In normal prostate, pyruvate in cytosol enters the mito-
chondria to be converted into acetyl-coA. Because glucose oxidation is incomplete in normal
prostate, the bioenergetic balance is lower than the glycolysis–TCA tandem. Citrate accumu-
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lates in normal prostate due to the action of zinc, which inhibits m-ACO [113,114,295,296].
In essence, m-ACO compromises TCA, lowers citrate oxidation, and amasses citrate (pro-
duced from glucose and aspartate) in mitochondria, cytosol, and prostatic fluid. To sustain
the energy requirement of the compromised aerobic respiration, non-essential biochemical
pathways are limited [189]. However, in PCa, glycolysis is upregulated and reprogrammed,
providing ATP energy for tumor proliferation [297,298]. Early-stage PCa limits glycolysis
but stimulates enhanced OXPHOS [113]. Nonetheless, when it becomes metastatic and
castration resistant, glycolysis is reinforced, including de novo lipogenesis, [299] amino
acid metabolism, and nucleic acid synthesis [300]. Both benign and metastatic PCa cells
exhibit some form of Warburg effect because ATP comes from aerobic glycolysis, not OX-
PHOS [267,301]. In fact, early-stage PCa cells derive their ATPs from lipids and other
biomolecules, and when the cells have metastasized into late-stage PCa cells, they become
wholly glycolytic.

Under anaerobic conditions, glycolysis is favored, and very little pyruvate is presented
to the aerobic mitochondria [267,294]. Regardless of oxygen availability, PCa cells favor
glycolysis [114,267,271,294]. The Warburg effect was initially associated with dysfunction
in mitochondria but is now associated with the cell’s quick consumption of glucose, even
for those pathways that are outside of mitochondria [302]. Because of the disregard for
OXPHOS, PCa cells produce less ATP, but they efficiently convert glucose into lipids,
amino acids, or nucleotides [303]. Glycolysis is regulated by AMP-activated protein kinase
(AMPK) [304], which in turn activates the mammalian target of rapamycin (mTOR) complex
1 (mTORC1) [305]. Mouse models have revealed that PI3K/AKT/mTOR signaling path-
ways cause PTEN-deprived tumorigenesis in PCa [297,306–308]. This loss in PTEN results
in the activation of pyruvate kinase M-2 (PKM-2), a key enzyme in aerobic glycolysis [309].
Another correlation exists between PTEN/p53 loss and elevated levels of hexokinases
(HK2). The increase in HK2 has been attributed to the deletion of PTEN and p53 tumor
suppressor genes in mouse models [310–312]. PTEN loss is associated with the activation of
the AKT/mTORC1/4EBP1 signaling pathway [297,306–308], while p53 deletion is caused
by the inhibition of miR143 synthesis [313–316]. PTEN/p53-mediated HK2 overexpression
drives aerobic glycolysis, which promotes PCa metastasis. Another gene implicated in PCa
cells’ survival is 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4). The
gene has demonstrated control over glycolysis and its associated mRNA; it is higher in
metastatic PCa than in the localized version [317].

12.2. OXPHOS via the TCA cycle

Like glycolysis, AMPK controls the TCA cycle and is triggered when there is not
enough ATP produced (e.g., high levels of AMP/ADP) [305]. It is a heterotrimeric pro-
tein encoded by the 5′-AMP-activated protein kinase gene (PRKA). AMPK protects cells
from ATP decrease by regulating ATP consumption pathways. AMPK1 controls PCa
oncogenes with its association with PI3K, mTOR, and MAPK pathways [318]. Activation
results in reducing anabolic processes to limit energy use; however, AMPK controls lipid
homeostasis [319] and mitochondrial homeostasis [320].

Acetyl-coA is produced in the cytosol from the β-oxidation of free fatty acids, oxi-
dation of pyruvate, deamination and oxidation of amino acids, and oxidation of ketone
(acetoacetate and β-hydroxybutyrate) [109,321–323]. Although the Warburg effect is crucial
to PCa, OXPHOS via TCA provides additional energy in tumorigenesis. The normal and
benign prostate epithelium promotes citrate synthesis over citrate oxidation [324]. In PCa,
zinc is lost, m-ACO activity is enhanced, and citrate oxidation is activated [298]. The
process ensures efficient and fast ATP consumption [325,326]. Rapid energy consumption
guarantees PCa cells survival despite the limited availability of acetyl co-A. The production
of oxaloacetate is also elevated to ensure sustained citrate oxidation [327]. For both upregu-
lated glycolysis and the TCA cycle, the levels of glucose, lactate, and citrate are monitored
using 13C isotope labeling metabolomics.
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There are two zinc transporters relevant to PCa: SLC39 protein (Zrt- and Irt-like
proteins ZIP) and SLC30 protein (ZnT) [328]. ZIP increases zinc levels in the cytoplasm by
importing extracellular and vesicular zinc, while ZnT exports zinc out of the cell of moves
them into mitochondria or lysosomes [328–330]. ZIP1-ZIP4 proteins have been shown to
be downregulated in PCa [331,332]. ZIP1 (encoded by SLC39A1) was found to be absent
in the TRAMP PCa model and was lower in RWPE2 human tumorigenic cells compared
to RWPE2 non-tumorigenic cells [298]. ZIP1 was shown as the major zinc transporter
because it is expressed in LNCaP and PC-3 cell lines, proving that its absence in some
PCa studies is not due to mutation but rather transport [328]. ZIP2 (encoded by SLC39A2)
reabsorbs zinc from prostatic fluid and is shown to be significantly downregulated in
PCa compared to normal or benign prostate [331,333,334]. ZIP3 (encoded by SLC39A3)
acts similarly to ZIP2; its protein expression changes with zinc status, but its mRNA
expression is unchanged indicating post-translational modification [328,332]. Mutations in
SLC39A4 gene-encoding ZIP4 were shown to be related to acrodermatitis enteropathica and its
expression is decreased [328,335,336]. The knockdown of both ZIP1 and ZIP4 contributes to
cell invasiveness [332]. Similarly, the knockdown of ZnT-1 as per their function, increases
cell proliferation [337,338]. High levels of zinc were shown to induce apoptosis because
zinc activates caspase-9, caspase-3, the release of cytochrome c from mitochondria, and
the cleavage of poly(ADP-ribose) polymerase [339]. Low levels of zinc, on the other hand,
reduce p53 and p21 concentrations in the nucleus and have been connected to high levels
of PKB/AKT and Mdm2 phosphorylation. The importance of zinc in the TCA cycle is
further emphasized by studies that reduce PCa invasiveness by inhibiting aminopeptidase
N activity [340]. Reducing zinc in PCa cells elevated the expression of cytokines responsible
for metastasis [337,338]. Zinc inhibits the activity of NF-kB, a transcription factor that
regulates genes associated with PCa metastasis as well as reducing expressions of MMP-9,
IL-6, IL-8, and VEGF genes [337,341]. Besides m-ACO, high-throughput mass spectrometry
has revealed high levels of TCA enzymes such as citrate synthase, fumarase, and malate
dehydrogenase in PCa cells [342].

12.3. De Novo Lipogenesis

Apart from serving as energy storage and directing intracellular signaling, lipids guide
tumorigenesis because alterations in lipid or choline metabolites have ramifications in PCa
cell proliferation [273,343]. Cholesterol inside the lipid droplets found in the cytosol of
PTEN-deprived PCa cells proves the relationship between tumor development and lipid
metabolism [344]. A major metabolic reprogramming in PCa cells is the upregulation of
lipid synthesis for cell membrane formation, cell signaling, and cellular proliferation [114].
Early-stage PCa is characterized by the expression of lipogenic enzymes, but late-stage
aggressive PCa shows the buildup of phospholipids (phosphatidylcholine), cholesterol
esters, and triglycerides [273]. The letter type can also ingest exogenous lipids for synthesis.
It is also observed that in late-stage metastatic PCa, acetyl-CoA is produced from acetate
using acetyl-CoA synthetase 2 instead of being generated from glucose and glutamine [343].

Fatty acids. Studies show that the generated fatty acids are deposited in PCa cells [345].
However, no accumulation of lipids is observed despite an increase in de novo lipogene-
sis [346]. This may be due to the equilibrium between lipogenesis (cell membrane synthesis)
and lipid oxidation (energy for survival and growth), wherein the elevated rate of fatty acid
synthesis supplies energy to PCa cells while concurrently oxidizing lipids [113,278]. Evi-
dence of such equilibrium in PCa can be seen by the overexpression of α-methylacyl-CoA
racemase (AMCR), an enzyme that catalyzes lipid oxidation [345]. PCa is characterized
by the presence of PRKAB1 and PFKFB4 genes required for cell proliferation, proving
that like glycolysis and the TCA cycle, lipogenesis is AMPK regulated [317]. More proof
of lipogenesis reprogramming in PCa is the high levels of phosphocholine, phospho-
ethanolamine, and glycerophosphocholine, responsible for cell membrane reconstruction
and cell proliferation [347]. Lipogenic enzymes are increased in PCa due to the activation
of the oncogenic-signaling pathway PI3K/AKT [277] while fatty acid enzymes are also
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elevated due to nuclear localization of AKT [348]. AR regulates fatty acids and cholesterol
synthesis enzymes used in lipogenesis [323,349,350]. However, the elevated expression of a
lipogenesis transcription factor sterol regulatory element-binding protein-1 (SREBP-1) in
PCa alters the expression of fatty acid synthase/fatty acids by serving as a transcription
factor for AR in a feedback loop fashion [351]. SREBP-1 further activates lipogenesis by
increasing the production of reactive oxygen species (ROS) and NADPH oxidase 5—two
species that promote PCa cell proliferation [352]. Fatty acid synthase also reprograms
androgen-dependent and castration-resistant AR+ PCa models; thus, it can serve as a target
that can potentially affect tumor aggressiveness [353].

Cholesterol. The increase in cholesterol synthesis, especially in the PCa cell membrane,
is accompanied by high levels of choline and creatine [354]. PCa growth is mediated by
AR, which can be addressed via AR antagonists such as enzalutamide. In PCa, cholesterol
homeostasis is perturbed, and lipogenesis is upregulated. Studies suggest that a high level
of circulating cholesterol and active cholesteryl ester synthesis in the blood increases the risk
for PCa development [355–359]; although, some studies indicate that lower LDL and lower
total cholesterol are associated with PCa at the time of diagnosis [360]. Recent evidence sug-
gests that modulation of cholesterol metabolism or inhibition of its biosynthesis enzymes
potentially suppresses tumor proliferation and metastasis [358,361–364]. Correspondingly,
cholesterol esterification enzyme sterol-o-acyl transferases (SOAT) 1/2 or acyl-coenzyme
A: cholesterol acyltransferase (ACAT) 1/2 are associated with PCa proliferation and inva-
sion [359,365–368]. The homeostasis transcription factor SREBP 1/2 accumulates cellular
cholesterol by increasing uptake and synthesis while the liver X (LXR) receptor promotes
efflux [369,370]. SREBP increases ROS generation and NADPH oxidase overexpression
causing PCa cells’ invasion and proliferation [352]. Blocking the SREBP-regulated metabolic
pathway using statins has shown anti-tumor activity and, consequently, lowers AR sig-
naling, which also controls cholesterol enzyme synthesis [371,372]. The downregulation
of SREBP mediated by the inactivation of the PI3K/AKT/mTOR pathway (i.e., increase
PTEN signaling) inhibits cholesteryl ester accumulation and aberrant SREBP-dependent
lipogenesis [344,373–375]. The activation of the PI3K/AKT signaling pathway activates
MDM2 (inhibitor of tumor suppressor p53), inhibits apoptotic genes BAX and GSK3,
downregulates cell survival gene BAD, and inhibits cell cycle progression genes p21 and
p27 [376]. An example strategy consisting of coordinated lipogenesis and AR signaling
blockade is the use of fatostatin, which not only inhibited cholesterol biosynthesis but also
caused G2-M cell cycle arrest and apoptosis [245,377,378]. The inverse relationship between
statin use and PCa antitumor action is exemplified by several studies [363,379–383], which
target major oncogenic/metabolic pathways such as AR-AKT complex and molecular
mediators such as MK167 and cMYC [380]. Synergism between PI3K/AKT/mTOR dysreg-
ulation and PTEN-p53 inhibition in lipogenesis causes the Warburg effect and promotes
PCa aggressiveness.

12.4. Glycogenesis/Glycogenolysis

Specific to PCa, a study added R1881 to androgen dependent PC3 cell lines expressing
AR (i.e., androgen abscission), determining that in 5 days, cells were reduced (via G1 cell
cycle arrest) and glycogen content was increased up to five times [384]. In addition, G6P was
increased three times and both GS and GP were increased two times, providing evidence of
enhanced glycogenesis. Moreover, glycogenolysis was inhibited by subjecting LNCaP cells
to GP inhibitor CP-91149 and further validated that cell growth was curtailed [384]. This
combined approach in targeting the glycogenesis pathway has since proven an efficacious
PCa therapy. The metabolic reprogramming effects of glycogenesis in PCa were validated in
another study; although, the authors employed CCL39 lung fibroblasts [385]. The authors
showed that under low O2 levels, HF1/2 induced glycogenesis, as evidenced by increased
glycogen stores and increased PGM1′s mRNA and protein levels. The generated glycogen
served as feed to glucose-starved cells (hypoxia preconditioned cells), allowing them to
survive via glycogenolysis (i.e., glycogen as glucose substitute) [385]. Such results parallel
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the Schnier study in that in order to combat PCa cell growth, invasion, and proliferation,
glycogenolysis must be terminated through pharmacologic targeting of its intermediates
and enzymes. Further, the approach opens a potential to also halt glycogenesis by AR
deprivation therapy, which invariably stops glycogen as an alternative food.

12.5. Pentose Phosphate Pathway

PPP is a parallel glucose-degrading mechanism to glycolysis, with an interlink through
fructose-6-phosphate (F6P) and GA3P [386]. The interlink with glycolysis is seen after
isomerization of ribulose-5-phosphate (R5P) using transketolase and transaldolase. PPP
is controlled by G6PDH wherein studies have indicated that this enzyme is increased in
PCa [387–391]. G6PDH, NAPDH, and ribose synthesis were all upregulated in PCa through
the action of AR signaling [343,388]. Further, upregulation of G6PDH through mTOR
increased AR flux within PPP, as evidenced by the removal of the G6PDH-AR regulation
mechanism following rapamycin treatment. While PPP’s role in PCa is only beginning to
be understood, the results demonstrate its significant role in tumorigenesis [388].

12.6. Amino Acid Metabolism

Recent investigations have elucidated the role of amino acids in cancer metabolism [160].
Because the basis for amino acid metabolism is the generation of intermediates for the synthesis
of nucleobases required for growing cells [392], depriving PCa cells with these intermediates
can serve as PCa therapy [393]. Amino acids, like glucose, also fuel PCa progression. Glu-
tamine, for example, is an important amino acid in human plasma shown to be associated
with PCa [81]. It has an anaplerotic function in the human metabolism because it supports the
TCA cycle by being transformed into glutamate and then to the intermediate α-ketoglutarate
(glutaminolysis) [81,110,160,268]. PCa cells proliferate by maintaining glutamine metabolism
through upregulating the glutamine transporter ASCT2 (encoded by the gene SLC1A5) and
glutaminase, the enzyme in glutamine-glutamate conversion [394,395]. Glutamine in PCa
is also responsible for acetyl-coA production; nitrogen donor for protein, nucleotide, lipid
synthesis, and lipogenesis [110,113]. Glutamate is used in glutathione synthesis, which pro-
tects the cell from stress and PCa cell oxidation [396]. The two-prong role of glutamine in
sustaining lipogenesis and glutaminolysis in PCa is highlighted in studies where both glu-
tamine and the glutaminase transporter are overexpressed in tumor cells [397–399]. Whereas
citrate is generated from OXPHOS via the TCA cycle, the same citrate is produced from
α-ketoglutarate via the reverse TCA cycle (reductive carboxylation) [294,400]. This process
supports the pathogenesis of PCa and hypoxia-inducible factor 1 (HIF-1) regulatory pathway
because the glucose is rechanneled to the acetyl-coA pathway by the influx of glutamine [294].
α-ketoglutarate transformation (with CO2) essentially redirects the TCA cycle by producing
isocitrate and citrate. The resulting citrate is transported into the cytosol, part of which is
converted to acetyl-coA to support lipogenesis in PCa. The other part is then recycled as
isocitrate in the TCA cycle [400]. The lactate (and some pyruvate) generated from reductive
decarboxylation are consumed by PCa cells for their proliferation and anabolism [109].

Other crucial amino acids in the pathogenesis of PCa are serine (2-amino-3-
hydroxypropanoic acid), glycine (aminoethanoic acid), proline (pyrrolidine-2-carboxylic
acid), arginine (2-amino-5-guanidinopentanoic acid), leucine (2-amino-4-methylpentanoic
acid), and sarcosine [(2-methylamino)acetic acid], among others [300]. Similarly, glutamine
and proline are produced by PCa cells from arginine. While arginine is attributed to nitric
oxide (NO) production, PCa cells appear to have lost their ability to synthesize arginine
due to a deficiency in arginine synthetase [401,402]. Proline is also an important amino
acid in that it maintains the level of pyridine nucleotides. Proline biosynthesis and its ac-
companying enzyme levels promote cancer cell growth, plasticity, and heterogeneity [403].
Another crucial amino acid in PCa is sarcosine, which was previously reported to be el-
evated in urine samples of PCa patients [121]. Sarcosine is an intermediate in glycine
synthesis, produced from choline and methionine metabolism, and an essential component
of glutathione, creatine, purines, and serine [404]. The sarcosine-glycine-methionine path-
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ways promote purines and thymidylates synthesis, molecules that are essential in DNA
synthesis and repair [405]. Amino acid synthesis in PCa tumor TME is also regulated by
the AKT/mTORC1/4EBP1 signal transduction axis, which simultaneously loses PTEN and
p53, resulting in HK2-mediated aerobic glycolysis—an event favorable to PCa proliferation,
as seen in mouse models [113].

PCa cells are shown to increase the uptake of amino acids [160]. These amino acids
are transported across cell membranes using mostly non-specific hydrophilic transporters.
The most recognizable neutral and cationic amino acid transporter is the Na+- and Cl−-
dependent SLC6A14. The L-type amino acid transporter 1 (LAT1, encoded by the SLC7A5
gene) is an antiporter, which imports branched-chain/high-molecular-weight amino acids
(e.g., histidine, methionine, and phenylalanine) and thyroid hormones into the cells and
exports glutamine and other essential amino acids [160]. SLC7A5 was shown in studies
to be overexpressed in PCa cells [406,407]. LAT1 in PCa has a high affinity to leucine and
it activates the mTOR signaling pathway [408,409]; thus, its inhibition results in tumor
suppression. The dynamics between LAT1 and ASCT2 in PCa enable glutamine to enter the
cytoplasm via ASCT2, glutamine to activate tumor-inducing pathways (i.e., glycolysis, TCA
cycle), glutamine to leave the cytoplasm via LAT1, and leucine to enter the cytoplasm via
LAT1 [160]. To summarize, Figure 4 presents an overview of the four dysregulated canonical
pathways in PCa: glycolysis (Figure 4a), TCA cycle (Figure 4b), de novo lipogenesis
(Figure 4c), and glycogenesis/glycogenolysis (Figure 4d).
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13. Conclusions and Future Perspectives

The benefit of integrating metabolomics with other omics is possible with the ad-
vancement in metabolite quantification and imaging, allowing the discovery of clinically
relevant biomarkers for precision medicine. The elegance of a multi-omic approach is
its ability to elucidate multi-level real-time molecular interactions that reflect complex
biochemical pathways and potential dysregulations. The approach is practical and has
generated a tremendous amount of information within the last decade crucial to under-
standing PCa pathology. However, considerations must be made to effectively adapt an
integrated metabolomics technique in a POC setting. First, while PCa genotyping and
metabolic measurements are sufficiently robust to be translated into health care facilities,
transcriptomics and proteomics still require solid quantification assays. Second, because
the different omics develop at different rates, there needs to be data integration and harmo-
nization from various domains. The use of a uniform ontology allows for a streamlined
integration and interpretation of PCa omics data where they can be used for validation
studies. Such integrated data must be high-quality with a high level of granularity and
stored in a publicly available repository/databases. Third, one of the challenges in the PCa
community, including other cancers, is the challenge of risk stratification based on survival
results and clinicopathological indicators during PCa’s onset. This can be addressed by
developing effective and precise therapeutic targets and biomarkers, which can only be
achieved via an integrated omics analysis with metabolomics as its core. We are assured
that this review provides comprehensive information on a metabolomics/multi-omics
approach and its role in PCa.
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