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Purpose: We seek to reformulate the so-called Propagator Anisotropy (PA) and
Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator
diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution ker-
nels and dual Fourier Integral Transforms (MiSFIT). These measures describe
relevant normalized features of the Ensemble Average Propagator (EAP).
Theory and Methods: First, the indices, which are defined as the EAP’s
dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically
reformulated within the MiSFIT framework. Then a comparison between the
resulting maps is drawn by means of a visual analysis, a quantitative assess-
ment via numerical simulations, a test-retest study across the MICRA dataset (6
subjects scanned five times) and, finally, a computational time evaluation.
Results: Findings illustrate the visual similarity between the indices computed
with either technique. Evaluation against synthetic ground truth data, however,
demonstrates MiSFIT’s improved accuracy. In addition, the test–retest study
reveals MiSFIT’s higher degree of reliability in most of white matter regions.
Finally, the computational time evaluation shows MiSFIT’s time reduction up
to two orders of magnitude.
Conclusions: Despite being a direct development on the MAP-MRI represen-
tation, the PA and the NG can be reliably and efficiently computed within
MiSFIT’s framework. This, together with the previous findings in the original
MiSFIT’s article, could mean the difference that definitely qualifies diffusion
MRI to be incorporated into regular clinical settings.
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1 INTRODUCTION

Diffusion MRI (dMRI) has become an irreplaceable tool
for the noninvasive study of the micro- and meso-structure
of the white matter (WM) of the brain. While the
micro-structure is usually characterized through suitable
diffusion models, the description of the meso-structure
entails the reconstruction and analysis of the Ensemble
Average Propagator (EAP),1 defined as the Probability
Density Function of water molecules moving a distance R
within a diffusion time 𝜏.2 The topic covered in this paper
focuses on the latter. Specifically, we address the charac-
terization of the three-dimensional EAP computed from
multi-shell samplings, that is, dMRI acquisitions compris-
ing a small set of b-values (shells) with a large number of
diffusion gradients each.3

Reconstructing the three-dimensional EAP allows
to compute several scalar indices that embed use-
ful descriptors of WM. Among them, return-to-origin,
return-to-plane or return-to-axis probabilities (respec-
tively, RTOP, RTPP, and RTAP), as well as propagator
anisotropy (PA) or non-Gaussianity (NG) are the
most often used.4-6 In the present paper we focus
on PA and NG, which come to generalize the
popular Fractional Anisotropy (FA) and diffusion
Kurtosis.

PA is defined in Reference 6 as the distance from
the propagator P(R) to its isotropic equivalent. By means
of Parseval’s theorem, it can also be defined as the dis-
tance from the attenuation signal E(q) (the diffusion signal
characterized by wave vector q over the unweighted T2
baseline) to its closest isotropic counterpart, O(q):

PA = 𝛾(sin(∠(E(q),O(q))), 𝜀) ∈ [0, 1], (1)

where:

cos(∠(E(q),O(q))) =
⟨E(q),O(q)⟩
||E(q)||||O(q)||

, (2)

and:
𝛾(t, 𝜀) = t3𝜀

1 − 3t𝜀 + 3t2𝜀 , (3)

for 𝜀 = 0.4, which stands for a contrast enhancement of
PA within the normalized range [0, 1]. PA has shown the
ability to characterize morphological and cytoarchitectural
attributes, even in Gray Matter regions where the FA is
non-informative.7 Yet, PA offers a more accurate assess-
ment of the anisotropic behavior in crossing fibers regions.
Within clinical setups, PA has shown a great potential in
the analysis of longitudinal changes within subjects,8 the
characterization of cognitive impairment after traumatic
brain injury9 impaired social cognition in autism,10 or

age-dependent neuronal demise in transgenic Alzheimer
rats.11

In turn, NG is defined as the distance from E(q) to its
closest Gaussian representation, G(q):6

NG = sin(∠(E(q),G(q))) ∈ [0, 1]. (4)

Though the clinical applicability of NG has not been as
thoroughly tested as that of PA, it has been lately proven
useful at distinguishing grade II from grade III and IV
gliomas,12 relevant for the noninvasive preoperative eval-
uation of tumour pathological grading. Some additional
studies on axonal loss and demyelination,13 as well as head
and neck cancer14,15 are also available.

Though they can be computed resorting to other esti-
mation techniques,5 PA and NG naturally arise from
MAP-MRI.4,6 Therein, the NG can be easily computed
from the energy of the non-DC components, since
MAP-MRI develops the diffusion signal by successively
refining a Gaussian model. Conversely, the PA is related
to the non-DC components of the isotropic, non-voxel
adaptive version of MAP-MRI, a.k.a. 3D-SHORE.

In this article, we aim at formulating and evaluating
both PA and NG for the newly developed Micro-Structure
adaptive convolution kernels and dual Fourier Inte-
gral Transforms (MiSFIT16), both of them from the
very same signal representation. By taking advantage of
the computational efficiency of MISFIT, we expect the
already-demonstrated higher accuracy in the RTxP com-
putation w.r.t MAPL (the de facto standard, regularized
version of MAP-MRI4) to also be translated for PA and
NG. In addition, we also expect this accuracy to result in a
higher reliability of the measures, which together with the
critical reduction of the computational time, qualify MiS-
FIT’s PA and NG to be incorporated not only in research
studies, but also in clinical settings.

2 THEORY

2.1 MiSFIT’s signal representation

MiSFIT’s composite representation, as it can be seen in
Reference 16 equation (4), comprises the aggregate of a
free-diffusing isotropic component and a semi-parametric
component that accounts for the partial volume fraction
f ∈ [0, 1] of constrained diffusion:

cE(q) = (1 − f ) exp(−bD0) + fE(q), (5)

with q = qu (q = ||q|| ∈ R+) the wave-vector related to the
b-value as b = 4𝜋2

𝜏q2 and D0 the diffusivity of free-water
at body temperature. The constrained diffusion signal E(q)
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is drawn as the spherical convolution of a parametric ker-
nel, defined by the longitudinal 𝜆|| and transverse 𝜆⊥ dif-
fusivities, with a nonparametric orientation distribution
Function (ODF), Φ:

E(q) = ∫ ∫Φ(v) exp
(
−b

(
(uTv)(𝜆|| − 𝜆⊥) + 𝜆||

))
dv, (6)

where  = {u ∈ R3 ∶ ||u|| = 1}. By representing the ODF
in the basis of Spherical Harmonics (SH), MiSFIT lastly
represents the attenuation signal as:

E(qu) =
L∑

l=0
l even

l∑

m=−l
êODF

l (q)𝜙m
l Y m

l (u), (7)

where Y m
l (u) are the (even) SH functions, 𝜙m

l stand for
the SH coefficients of the ODF, and êODF

l (q) are 𝜆|| and
𝜆⊥-dependent convolution multipliers (see Reference 16
for further details). A central part to our developments,
as can be easily deduced from Equations (1) and (4), is
the computation of scalar products between SH-spanned
functions like in Equation (7). We prove in Supporting
Information Appendix A that their calculation relies on
the evaluation of the following integral, l(𝜌𝜆), involving
the Legendre Polynomials Pl(xi):

l(𝜌𝜆) = ∫ ∫
1

−1

Pl(x1)Pl(x2)
(2𝜌𝜆 + x2

1 + x2
2)3∕2

dx1dx2, (8)

for 𝜌𝜆 = 𝜆⊥∕(𝜆|| − 𝜆⊥). These integrals do not admit a
closed form. However, since only the first few even orders
of l are needed, they can be precomputed for a wide range
of 𝜌𝜆 and with an accuracy up to the numerical precision of
the machine. Figure 1 shows their values for the first few l.

2.2 PA for MiSFIT’s composite signal

From the definition in Equation (1), we develop into:

sin (∠(cE(q), cO(q))) =
√

1 − cos2 (∠(cE(q), cO(q))). (9)

We demonstrate in Supporting Information Appendix B
that the squared cosine in the last equation leads to:

cos2 (∠(cE(q), cO(q)))

=
||cO(q)||2

||cE(qu)||2
=
(1 − f )2Oiso + f 2Oani + f (1 − f )Omix

(1 − f )2Eiso + f 2Eani + f (1 − f )Emix
,

(10)

where the isotropic terms (Eiso, Oiso), the anisotropic
terms (Eani, Oani), and the mixed terms (Emix, Omix) come

from the composite representation (i.e., isotropic plus
anisotropic parts) in Equation (5):

Oani = (𝜙0
0)

2
𝜋𝛿

−3∕2
𝜆
0(𝜌𝜆);

Eani =
∑

l,m
(𝜙m

l )
2
𝜋𝛿

−3∕2
𝜆
l(𝜌𝜆); (11)

Eiso = Oiso = (2D0)−3∕2;

Emix = Omix = 4
√
𝜋𝜙

0
0

(
(D0 + 𝜆⊥)

√
D0 + 𝜆||

)−1
,

(12)
for 𝛿𝜆 = 𝜆|| − 𝜆⊥. Therefore, the PA finally reads:

PA = 𝛾

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
√
√
√
√
√
√
√
√
√
√
√
√

1 −

(1−f )2

(2D0)3∕2 +
4
√
𝜋f (1−f )

(D0+𝜆⊥)
√

D0+𝜆||
𝜙

0
0

+f 2(𝜙0
0)

2
𝜋𝛿

−3∕2
𝜆
0(𝜌𝜆)

(1−f )2

(2D0)3∕2 +
4
√
𝜋f (1−f )

(D0+𝜆⊥)
√

D0+𝜆||
𝜙

0
0

+f 2∑
l,m(𝜙m

l )
2
𝜋𝛿

−3∕2
𝜆
l(𝜌𝜆)

, 𝜀

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)

Noticeably, removing the isotropic compartment (i.e., tak-
ing f = 1) results in a much simpler expression:

PA = 𝛾

(√

1 − Oani

Eani
, 𝜀

)

= 𝛾
⎛
⎜
⎜
⎜
⎝

√
√
√
√
√
√

1 −
(𝜙0

0)2𝜋𝛿
−3∕2
𝜆
0(𝜌𝜆)

∑

l,m
(𝜙m

l )
2
𝜋𝛿

−3∕2
𝜆
l(𝜌𝜆)

, 𝜀

⎞
⎟
⎟
⎟
⎠

. (14)

Conversely, fitting a voxel with f = 0 (i.e., a free-water
voxel), results in both ||cO(q)||2 and ||cE(qu)||2 being equal.
Hence, the PA as defined in Equation (9), will be 0 as
expected.

2.3 NG for MiSFIT’s composite signal

Now, from the definition in Equation (4):

sin(∠(cE(q), cG(q, D̂))) =

√
√
√
√1 −

(
⟨cE(q), cG(q, D̂)⟩

||cE(q)||||cG(q, D̂)||

)2

,

(15)
where cG(q, D̂) is the closest Gaussian propagator. In the
MiSFIT approach, the equivalent Gaussian propagator is
estimated by fitting a tensor to the EAP-based reconstruc-
tion of the attenuation signal (for b-values< 2000 s∕mm2).
The reason behind this is that computing the actual closest
Gaussian propagator (i.e. that which results in the smallest
possible Mean Squared Difference) is not trivial and would
require solving a calculus of variations problem that could
easily maim the computational efficiency nature upon
which MiSFIT is build. Hence, the problem is solved in the
logarithmic domain of E(q), to make it convex and permit
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F I G U R E 1 Numerical values of the integrals
l(𝜌𝜆) as described in Equation (8)

a closed-form solution, while keeping the computationally
efficient feature that makes MiSFIT desirable for specific
settings. Thus, from now on, our implementation of the
closest Gaussian propagator will be referred to as “DTI-like
propagator.” More information about the Gaussian propa-
gator and the method chosen to compute it is included in
the Supporting Information Appendix E. We demonstrate
in Appendix C that the quotient in Equation (15) equals:

(
⟨cE(q), cG(q, D̂)⟩
||cE(q)||||cG(q, D̂)||

)2

=

(

1−f
√

|D̂+D0|
+ f

∑

l,m
𝜙

m
l 𝜉

m
l

)2√

8|D̂|

(1 − f )2Eiso + f 2Eani + f (1 − f )Emix
, (16)

where D̂ is the DTI-like propagator; D0 = D0I3 is D0 times
the identity matrix; | ⋅ | stands for the determinant; 𝜉m

l are
the SH coefficients of a spherical function defined in Sup-
porting Information Appendix C that depends on D̂, 𝜆||
and 𝜆⊥. Finally, the NG reads:

NG =

√
√
√
√
√
√
√
√
√
√
√
√
√
√

1 −

(

1−f
√

|D0+D̂|

+ f
∑

l,m
𝜙

m
l 𝜉

m
l

)2√

8|D̂|

(1−f )2

(2D0)3∕2 + f 2∑

l,m
(𝜙m

l )
2
𝜋𝛿

−3∕2
𝜆
l(𝜌𝜆)

+ 4
√
𝜋f (1−f )

(D0+𝜆⊥)
√

D0+𝜆||
𝜙

0
0

. (17)

Again, evaluating the NG for f = 1 yields to a simpler
expression:

NG =

√
√
√
√1 −

(
8𝛿3

𝜆
|D̂|

)1∕2
(∑

l,m𝜙
m
l 𝜉

m
l

)2

𝜋

∑
l,m(𝜙m

l )
2l(𝜌𝜆)

. (18)

For values of f other than 0, finding the Gaussian counter-
part to the MiSFIT-estimated EAP is not equally easy. This
is not an issue within the (anisotropic) MAP-MRI frame-
work, since it represents the diffusion signal as a series of
orthogonal cumulants, being the DTI estimation the first
one, that is:

EMAP(q) = EDTI(q) + EMAP⧵DTI(q), (19)

so that the closest Gaussian is just the first addend. As
already explained in the beginning of the section, MiSFIT
can only compute a “DTI-like” propagator in order not to
maim its computational efficiency.

3 METHODS

3.1 Materials

In vivo validation has been carried out using only publicly
available databases:

• The HCP (Human Connectome Project)1MGH-USC
dataset (subject 1007) comprises high-quality DWI vol-
umes acquired on a Siemens 3T Connectome Scanner
(Siemens) with maximum gradient strength 300 mT/m.

1Data obtained from the Human Connectome Project (HCP) database
(https://ida.loni.usc.edu/login.jsp). The HCP project (Principal
Investigators: Bruce Rosen, MD, PhD, Martinos Center at Massachusetts
General Hospital; Arthur W. Toga, PhD, University of Southern
California, Van J. Weeden, MD, Martinos Center at Massachusetts
General Hospital) is supported by the National Institute of Dental and
Craniofacial Research (NIDCR), the National Institute of Mental Health
(NIMH) and the National Institute of Neurological Disorders and Stroke
(NINDS). HCP is the result of efforts of co-investigators from the
University of Southern California, Martinos Center for Biomedical
Imaging at Massachusetts General Hospital (MGH), Washington
University, and the University of Minnesota.

https://ida.loni.usc.edu/login.jsp
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The data were acquired with a spin-echo echo pla-
nar imaging (EPI) with TR∕TE = 8000∕57 ms, four dif-
ferent shells at b = [1000, 3000, 5000, 10000] s/mm2

with [64, 64, 128, 256] diffusion gradients each, and
40 interleaved nonweighted baselines, in-plane reso-
lution 1.5 × 1.5 mm2 and slice thickness 1.5 mm, and
pulse separation time/diffusion gradients length Δ∕𝛿 =
21.8∕12.9 ms. The outermost shell has been removed
in order to validate our proposal with more standard
acquisitions.

• The MICRA (Micro-structural Image Compilation
with Repeated Acquisitions) database17 contains
five repeated sets of multishell samplings DWI for
each of six healthy volunteers. The images were
acquired within a 2-week period, approximately at
the same time for each participant—avoiding poten-
tial diurnal effects—on an ultra-strong gradient 3T
Connectome MRI scanner using a single-shot spin
echo EPI with TR∕TE = 3000∕59 ms, six different
shells at b = [200, 500, 1200, 2400, 4000, 6000]
s/mm2, with [20, 20, 30, 61, 61, 61] gradient direc-
tions, respectively, in-plane resolution 2 × 2 mm2,
slice thickness 2 mm and Δ∕𝛿 = 24∕7 ms. The
data were preprocessed by removing Gibbs ring-
ing artifacts18 (with MRtrix319) and correcting
susceptibility-induced distortions (with FSL’s topup;
Analysis Group, FMRIB, Oxford, UK.; https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki20,21) and B1 field inhomogeneity22

(with MRtrix3).

3.2 Implementation details

The fitting procedure for parameters f , 𝜆|| and 𝜆⊥ in
Equations (5) and (6), and the computation of the ODF’s
SH coefficients, is detailed in Reference 16. We have used
L = 8 as the maximum order for SH expansions, and
empirically set𝜇 = 1.2 ⋅ 10−4 as the regularization parame-
ter described therein to avoid singular convolution kernels.
To compute l(𝜌𝜆), we have resorted to linear interpola-
tion in the logarithmic domain from the values depicted
in Figure 1. The whole MiSFIT framework, including
the newly introduced PA and NG, was coded in Matlab®

R2019b (The MathWorks, Inc.) and is available for down-
load 2.

The computation of PA and NG with MiSFIT is val-
idated by comparing them with the de facto standard
in the related literature, that is, the MAPL as described
in Reference 4. We have used the implementation in
the DIPY package 3under Python 3, though the actual

2http://www.lpi.tel.uva.es/dmrilab
3https://dipy.org/

code allowing the computation of the PA within the
anisotropic MAP-MRI reconstruction was kindly provided
by the authors on demand. We use MAPL with positivity
constraints and cross-validation for setting the Laplacian
penalty term. The maximum order for the basis functions
was set to 6.

In both cases, and unless otherwise noticed, both PA
and NG have been set up using the entirety of the acquisi-
tion’s shells.

3.3 Ground-truth-based evaluation

Numeric comparisons over ground-truth data are based
on the methodology originally proposed in Reference 16.
A micro-structure model is estimated at representative
regions of the WM using NODDI.23 Afterwards, a statis-
tical model is built upon the estimated parameters, and
further used to draw random samples that are fed to the
forward NODDI model to generate synthetic samples sim-
ulating 1, 2, or 3 crossing fibers at will with a known
Peak Signal to Noise Ratio (PSNR). As long as the gen-
erative model can be sampled for any gradient direction
and b-value, ground-truth values are easily obtained for
any dMRI measure with arbitrary precision by numeri-
cal integration. See Reference 16 for further details on
this methodology. While the ground truth for the PA
is somehow trivial via the SH representation, determin-
ing the ground truth of NG implies solving a problem
of calculus of variations. So this is transformed into a
Least Squares optimization one by minimizing the squared
residuals of a preset number of q-space samples and then
solved in the logarithmic domain of E(q), as explained
in Section 2.3.

3.4 Reliability study

The repeated acquisitions within MICRA dataset have
been used to assess the repeatability of the computed mea-
sures (i.e. intersession variability) and the separability they
provide (i.e. intersubject differences). These complemen-
tary properties together characterize the reliability of each
method (MiSFIT/MAPL) and measure (PA/NG).24 Note
that DTI’s FA and DKI’s mean Kurtosis have been included
in the table for a wider comparison.

The design of the corresponding experiment is as fol-
lows: First, ROIs were back-projected by registering the
JHU atlas’ labels25 (in MNI152 space) into each sub-
jects’ space by means of linear plus nonlinear registration
(FSL’s26 FLIRT and FNIRT,27 respectively) of the subject’s
FA to the JHU atlas, followed by the application of the
inverse warping to the JHU labels. An eroded mask of the

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.lpi.tel.uva.es/dmrilab
https://dipy.org/
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F I G U R E 2 Three-dimensional visualization of the 11 JHU DTI-based labels in standard space. Note that some of the regions are not
shown in either subfigure, in order to ease the visualization.

regions with a kernel of size 2 × 2 × 2 was then computed
to palliate the effects of a possible misalignment in the
registration, removing tissue regions potentially affected
by a partial volume effect, followed by the removal of
those values for which the FA in the region yielded out-
liers (defined as those values falling 1.5 times outside the
interquartile range). More information about the outlier
rejection procedure is included in the Supporting Infor-
mation Appendix E.1. Finally, for each ROI in the subject
space, one single-valued representative of each measure
was computed as the median value. Figure 2 shows a 3D
brain render of the 12 WM regions included in the study
(i.e., those in the JHU DTI-based atlas). Note that ROIs in
both right and left hemisphere have been merged together
into a single region.

Repeatability was then computed as the mean across
subjects of the variances across sessions, while separabil-
ity was computed as the variance across subjects of the
means across sessions. A Figure of Merit (FoM) was lastly
defined as the separability over repeatability ratio. Owing
to the limited size of the database, a 200-runs bootstrap
analysis over population’s subsets was carried out to assess
the confidence we can put on such FoM, expressed as its
coefficient of variation (CV):

CVFoM =
(

1 + 1
4n

) s
x
, (20)

with x/s the mean/SD over bootstrapped samples, and n
the number of bootstrap samples, used in the first term to
attain unbiased estimates of the CV.

3.5 Computational time evaluation

One main advantage of MiSFIT, as compared to
MAP-MRI/MAPL, is its computational efficiency, which
allows to estimate the EAP two orders of magnitude
faster. Nonetheless, the computation of scalar measures
from the reconstructed EAP can result in nonnegligible
computational overloads: while the computation of NG is
straightforward after the non-isotropic MAP-MRI signal
representation, this is not the case for PA, which requires
nontrivial extra calculations.

For this reason, it makes sense to compare how long
MiSFIT and MAPL take to compute (1) the signal repre-
sentation, (2) the PA and (3) the NG. The experiment is
carried out with the aforementioned Matlab’s (for MiSFIT)
and Python DIPY’s (for MAPL) implementations running
in a quad-core Intel © CoreTM i7-6500U processor with
8GB RAM.

4 RESULTS

4.1 Visual assessment

Figures 3 and 4 compare the computations of PA and NG
by MiSFIT and MAPL for the randomly chosen third ses-
sion of the fourth MICRA’s subject. With regard to PA,
MAPL presents a noisier behavior (Fig. 3, left), specially in
those areas with lower anisotropy values —except the ven-
tricles, which MiSFIT clearly fails to delineate. This can
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F I G U R E 3 Comparison of the PA maps obtained with either MiSFIT and MAPL for the third session of the fourth MICRA’s subject.
Left: visual assessment within the whole range of variation [0, 1]. Right: joint 2-D histograms (logarithmic) of MAPL’s values vs. MiSFIT’s. The
high-valued islands within MiSFIT (tag numbered ‘1’) correspond to ambiguous configurations of the convolutional representation of MiSFIT.

F I G U R E 4 Comparison of the NG maps obtained with either MiSFIT and MAPL for the third session of the fourth MICRA’s subject.
Left: visual assessment within the cropped range [0.1, 0.7]. Right: joint 2-D histograms (logarithmic) of MAPL’s values vs. MiSFIT’s. The
outliers tagged with ‘2’ correspond to ambiguous configurations of the convolutional representation of MiSFIT.

also be observed in areas with higher anisotropy, result-
ing, for example, in some visible discontinuities in the
external capsule. In comparison, MiSFIT produces a more
saturated map, clearly defining the major WM fiber tracts
and their limits, making even more distinguishable the
anisotropy of diffusion processes in some brain regions.
Nonetheless, this contrast saturation does not imply, per se,
a more accurate result. The comparison can also be anal-
ysed in terms of the two-dimensional (2D) joint histogram
(Figure 3, right), which shows a linear correlation between
both metrics, only disturbed for lower PA values, where
the histogram broadens. As explained in Reference 16,
MiSFIT’s estimation produces artifacts (tagged with num-
ber 1) due to ambiguities in highly isotropic zones (such
as the ventricles or the gray matter), where the opti-
mizer has to decide, in Equations (5) and (6), whether
f = 1 or 𝜆⊥ ≃ 𝜆||.

For NG, both MiSFIT and MAPL provide outcomes as
similar as those found with PA (Figure 4, left), with the
exception of the overall negative bias MAPL introduces
w.r.t MiSFIT. This shift is more clearly visible in Fig. 4,
right: MAPL’s values are strongly linearly correlated with
MiSFIT’s, but placed along a line with slope less than 1
and negative bias. Once again, MiSFIT fails to delineate
the ventricles due to the ambiguity in the representation,
yielding to the outlier tagged as 2 in the histogram.

4.2 Quantitative analysis based
on ground-truth

The numerical assessment of the accuracy of each method
is based on the ground-truth data described in Section 3.3:
Figures 5 and 6 show the similarity of PA and NG, as
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F I G U R E 5 Two-dimensional joint histogram of the estimated propagator anisotropy (y-axis) against synthetic ground truth values
(x-axis) for different peak signal to noise ratio (PSNR, 16 left, 32 middle, 64 right). There exists a significant linear correlation between the
estimated and real values, with micro-structure adaptive convolution kernels and dual Fourier integral transforms being clearly more
accurate and less variable than MAPL for PSNR > 32.

F I G U R E 6 Two-dimensional joint histogram of the estimated non-Gaussianity (y-axis) against synthetic ground truth values (x-axis)
for different peak signal to noise ratio (PSNR, 16 left, 32 middle, 64 right). A linear correlation can be appreciated in both PSNR = 64 maps.
Micro-structure adaptive convolution kernels and dual Fourier integral transforms tends to be more accurate in the high values, while MAPL
estimation gets unbiased for lower ones, as well as for PSNR = 16.
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F I G U R E 7 Estimated relative mean squared error (rMSE) of propagator anisotropy (PA) (top) and non-Gaussianity (NG) (bottom) as a
function of signal’s bandwidth (i.e. RTOP), for different peak signal to noise ratio (16 left, 32 middle and 64 right) and 1, 2 or 3 fiber crossing
configuration. Missing bars correspond to those fiber bundle configurations for which PA, NG or RTOP values could not be computed.
Statistical properties displayed: mean (star-shaped symbol), SD (full-colored box), 90% confidence interval (empty box).

computed with each of MAPL and MiSFIT, with true val-
ues of PA and NG, respectively. Joint 2D histograms have
been computed for different PSNR values (16, 32, and 64).
Figure 7 shows the rMSE for PA and NG estimates from
both MAPL and MiSFIT as a function of the ground-truth
RTOP value, as in Reference 16. This choice is based on the
definition of RTOP as the integral of the attenuation signal
in the whole q-space:

RTOP = ∫
R3
|E(q)|2dq, (21)

which directly relates RTOP to the bandwidth of the EAP.
For PSNR= 64, MiSFIT results in more accurate PA

maps than MAPL from every possible point of view:
Not only depicting smaller variability across the dynamic
range, but also resulting in mean values closer to the
ground truth. When conditions worsen, for example,
PSNR= 16, MiSFIT obtains poorer results, overestimating
the anisotropy in highly isotropic regions. These PA esti-
mates, however, get more accurate the more anisotropic
the region is.

Regarding the relative MSE (top of Figure 7), MiSFIT
yields to smaller errors, constantly outperforming MAPL
values for any given bandwidth, PSNR or fiber bundle con-
figuration. This latter variable is responsible of the poorer
behavior of MiSFIT in Figure 5 with PSNR= 16. Arguably,
both PA estimates worsen as the number of crossing
fibers increases, which may be caused by the represen-
tation’s difficulties when computing the isotropic EAP

counterpart from bundles that may have different diffu-
sion properties. Notice that, despite the results being worse
for the third bundle configuration, they still outperform
MAPL’s.

The discussion for the NG is not equally good to
MiSFIT. Firstly, the two left-most columns of Figure 6
(PSNR 16 and 32, respectively) show bigger variability
across the measure’s dynamic range, even for those val-
ues with means closer to the ground truth than those
reported by MAPL. With respect to MiSFIT, there are
multiple sources of error that end up stacking one to
each other, the main one is driven by the noise—which
causes the metric to be underestimated, specially in
regions with high-Gaussianity behavior—but also by the
estimated EAP—which affects the non-Gaussian regions
estimates—and the DTI-estimated equivalent Gaussian
EAP—which is greatly palliated as the fiber crossings
increases.

On the other hand, the rMSE depicted from MiSFIT’s
NG (bottom of Figure 7) seems to be dominated by the
EAP reconstruction error, which results in MiSFIT under-
estimating the NG. This behavior is consistent with the
one explained in Reference 16 (Figure 8). Interestingly, the
rMSE increases when dealing with single-fiber configura-
tions. This may be caused by MiSFIT’s construction: The
convolution of the Gaussian kernel with a very prolate but
not-completely-sampled ODF (i.e. possibly non-Gaussian)
results in Gaussian-like distributions, which yields to
underestimated NG results. Alternatively, when adding
fibers onto the configuration, the reconstructed EAP
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function gets smoother over the surface of the sphere, thus
getting more accurately defined by the sampling scheme,
which in turn leads to more precise estimations of the orig-
inal EAP. This can also be appreciated in the bottom of
Figure 7.

In order to relate the numerically obtained results
with in vivo images, the PSNR has been computed for
a subject of the MICRA dataset by dividing the filtered
(denoised) image by the estimated noise level. Both fil-
tered image and noise level have been computed by using
dwidenoise (MRtrix3, Tournier et al., NeuroImage, 2019)
on the raw images. Finally, a WM mask has been crafted
by merging all the (previously eroded) JHU WM labels.
The resulting PSNR is 28.12, a usual result for good-quality
acquisitions such as MICRA. This result indicates that
the in vivo images in Figures 2 and 3 (from MICRA
dataset) can be related to the middle column in Figures
4, 5, and 6. In this PSNR range, the MiSFIT’s PA portrays
a much less variable estimation than MAPL’s. MiSFIT
tends to overestimate the mid-low PA values, while MAPL
tends to subestimate them. MiSFIT’s RMSE depicts a bet-
ter accuracy in either bundle configuration and through-
out the entire bandwidth range. Regarding the NG, the
variance of the estimation increases significantly, yield-
ing to subestimated results for both MiSFIT and MAPL.
Concerning the RMSE, for the lower bandwidth ranges
the MiSFIT’s NG results in slightly less accurate estima-
tions, which are improved in the mid-to-high bandwidth
ranges.

4.3 Reliability study

The results corresponding to the experiment described in
Section 3.4 are summarized in Tables 1 and 2. Table 1
reports the FoM—the reliability measurement—together
with the CV of the repeatability values. Table 2 shows the
FOM’s bootstrapped CV.

The first thing to notice from Table 1 is that all FoM
values are greater than one, meaning that, for any given
ROI, the intersubject variability of the metrics is greater
than the intrasubject variability. Regarding the PA, both
MiSFIT and MAPL exhibit the same tendency, yielding to
reliability values in the same order of magnitude, with the
exception of the GCC where MAPL depicts much greater
results than MiSFIT, and the external capsule where MiS-
FIT depicts greater results than MAPL. The reliability of
the MiSFIT’s NG, on the other hand, outperforms MAPL
in most regions, for example in the three subregions of the
corpus callosum (CC)—genu, body, and splenium—which
together form one of the biggest connective pathways in
the brain.

In terms of repeatability, both measures result in stable
outputs throughout the various sessions of a given sub-
ject, yielding low CV values. MAPL’s PA results in more
repeatable values in 6 out of 11 regions while giving vir-
tually equal values for two of the rest (BCC and PLIC,
with less than 10% difference between both frameworks);
whereas MAPL’s NG depicts higher repeatability in 5 out
of the 11 regions. To widen the comparison with existing

T A B L E 1 Repeatability coefficient of variation (‰) over reliability (FoM) values for each of the regions, measures (PA, NG) and
methods (MiSFIT, MAPL)

PA FA NG MK

Region MAPL MiSFIT DTI MAPL MiSFIT DKI

MCP 0.113 / 3.54 0.064 / 2.09 0.184 / 2.64 0.035 / 2.66 0.136 / 3.82 0.039 / 1.44

GCC 0.067 / 13.49 0.151 / 4.59 0.192 / 13.20 0.120 / 3.59 0.070 / 19.74 0.072 / 8.58

BCC 0.057 / 4.66 0.061 / 4.31 0.077 / 7.42 0.087 / 1.98 0.016 / 4.37 0.010 / 11.83

SCC 0.006 / 14.7 0.026 / 10.86 0.018 / 33.42 0.049 / 5.77 0.003 / 40.94 0.025 / 17.46

ALIC 0.078 / 3.04 0.148 / 5.25 0.149 / 2.57 0.056 / 4.00 0.045 / 1.40 0.035 / 13.01

PLIC 0.045 / 6.55 0.049 / 3.72 0.059 / 7.07 0.030 / 3.31 0.015 / 8.43 0.021 / 9.43

ACR 0.152 / 3.42 0.024 / 3.39 0.033 / 11.33 0.026 / 4.55 0.036 / 14.30 0.024 / 14.37

SCR 0.232 / 3.38 0.019 / 3.21 0.067 / 24.30 0.023 / 2.26 0.040 / 35.15 0.017 / 5.32

PCR 0.157 / 3.14 0.034 / 2.00 0.349 / 1.20 0.021 / 2.34 0.152 / 2.12 0.037 / 6.70

PTR 0.192 / 5.05 0.023 / 5.98 0.252 / 2.06 0.036 / 3.42 0.083 / 2.03 0.016 / 18.82

External capsule 0.729 / 3.39 0.035 / 17.30 0.352 / 5.35 0.075 / 7.1 0.491 / 5.47 0.022 / 18.84

Notes: DTI’s FA and DKI’s MK have been added for a wider comparison. Results indicate a good ratio between inter-subject and the intra-subject variability
for both measures. On average, MiSFIT’s NG obtain slightly better results than MAPL’s, for example, in the corpus callosum, while resulting in less reliable PA
maps than those obtained with MAPL or DTI’s FA.
Abbreviations: FA, Fractional Anisotropy; MiSFIT, micro-structure adaptive convolution kernels and dual Fourier integral transforms; NG, non-Gaussianity;
PA, Propagator Anisotropy.
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T A B L E 2 Bootstrap-derived CV of the FoM values for each of the regions, measures (PA, NG) and methods (MiSFIT, MAPL),
together with the DTI’s FA and the DKI’s MK, for a wider comparison

PA FA NG MK

Region MAPL MiSFIT DTI MAPL MiSFIT DKI
MCP 0.596 0.658 0.613 0.494 0.225 0.325

GCC 0.385 0.230 0.243 0.318 0.303 0.199

BCC 0.524 0.557 0.588 0.310 0.408 0.437

SCC 0.488 0.431 0.516 0.324 0.293 0.486

ALIC 0.331 0.368 0.332 0.351 0.322 0.322

PLIC 0.719 0.399 0.553 0.409 0.342 0.203

ACR 0.359 0.275 0.416 0.488 0.649 0.323

SCR 0.679 0.522 0.491 0.502 0.488 0.430

PCR 0.256 0.559 0.334 0.378 0.382 0.326

PTR 0.170 0.304 0.333 0.388 0.513 0.586

External capsule 0.659 0.328 0.276 0.305 0.326 0.201

Note: The bootstrap was computed by doing 200 runs.
Abbreviations: FA, Fractional Anisotropy; FoM, Figure of Merit; MiSFIT, micro-structure adaptive convolution kernels and dual Fourier integral
transforms; NG, non-Gaussianity; PA, Propagator Anisotropy.

and previously validated measures, the table also includes
the reliability and repeatability values for FA and MK
(mean Kurtosis) from DTI and DKI frameworks, respec-
tively. As it can be seen, the FA shows the same tendency
to that of MAPL and MiSFIT, with the only exceptions
being ACR and SCR. Concerning the MK, which outper-
forms both MAPL and MiSFIT’s reliability values in six of
the regions, it is worth noticing that this measure is not
as similar to the NG as the FA is to the PA. That is simply
because, by definition, the mean Kurtosis is computed as
the mean of individual kurtoses calculated along all gradi-
ent directions, whereas NG requires the three-dimensional
EAP and its three-dimensional Gaussian counterpart to
compute the dissimilarity of the projection onto a multi-
dimensional vector; thus being affected by moments with
order higher than kurtosis.

The results shown in the previous table are supple-
mented by the bootstrap-derived coefficients of variation
of the reliability values in Table 2, which gives us insights
about the reliability of the FoM values. For example, we
can conclude that repeated acquisitions of the FoM value
for the MAPL’s PA in the middle cerebellar peduncle (MCP,
2.09) yield to variations 0.658 times its mean, thereby mak-
ing us aware of the variation of such value, and able to
question its trustworthiness.

4.4 Computational time evaluation

Arguably, one notorious factor that conditions the actual
clinical applicability of EAP imaging resides in the compu-
tational time requirements. Table 3 shows the time needed

T A B L E 3 Time consumption on the different phases of the
metric’s computation. Fitting the MAPL model is three-orders of
magnitude more time-expensive than MiSFIT

Phases MAPL MiSFIT

Fit Model 8 h 36 min 17 s

PA Computation 2 h 19 min 1 s

NG Computation 3 s 6 s

Total time 10 h 56 min 23 s

Note: MAPL requires almost 11 h for a single DWI volume, in comparison
with MiSFIT’s 23 s, which makes the former unfeasible for clinical
applicability.
Abbreviations: FA, Fractional Anisotropy; MiSFIT, micro-structure
adaptive convolution kernels and dual Fourier integral transforms; NG,
non-Gaussianity; PA, Propagator Anisotropy.

by MiSFIT and MAPL to (1) fit the signal, (2) compute
the PA, and (3) compute the NG. As it can be seen, fitting
the signal to MAPL requires almost 9 h for a single DWI
MICRA volume with size (110, 110, 66, 266). MiSFIT does
so in less than 20 s.

As expected, the PA computation is time-consuming
for the MAPL approach, which has to recalculate
the MAP-MRI isotropic coefficients from those of the
anisotropic representation. MiSFIT, on the contrary, only
has to take the first SH coefficient to estimate the isotropic
counterpart. This process ends up taking MAPL 2 h 20
min in comparison with MiSFIT’s 0.345 s.

Finally, the NG is easily computed by MAPL, which
only has to take the first coefficient (Gaussian) from its
series expansion and compute the angular divergence. In
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this case, MAPL computes the measure in 3.6 s while
MiSFIT takes 5.8 s.

To sum up, the total time required by either framework
to actually produce a meaningful map is no less than 8 h 30
min for MAPL (fit the model and compute the NG) com-
pared with MiSFIT’s maximum of 22 s (fit the model and
compute the NG). Needless to say, this time-consuming
difference is of main importance not only in clinical set-
tings, but also in the processing of large data sets that are
becoming more common in the dMRI community.

5 DISCUSSION

In this paper we have shown how two descriptors of the
WM anatomy, PA and NG, can be computed within MiS-
FIT with very little computational effort. This way, we have
generalized the analysis described in the original work,16

based on raw moments, to normalized indices that can be
easier to interpret.

Regarding the PA, we have shown that MiSFIT yields
to maps comparable to those obtained with MAPL. Yet,
according to the numerical simulations, MiSFIT results
are more accurate. This remains true in regions with
diverse anisotropic behavior, and becomes compromised
only when dealing with attenuation signals highly con-
taminated by noise. The reliability evaluation depicts com-
parable outcomes for both frameworks; meaning that, in
general, none is far superior than the other and result, on
average, in estimates almost identical (5.85 for MAPL, 5.70
for MiSFIT). In some particular regions, however, substan-
tial differences can be found. The repeatability assessment,
on the other hand, yields to MiSFIT estimates more repeat-
able than MAPL’s (on average, 0.06 and 0.17%0, respec-
tively). Thus, we conclude not only that MiSFIT’s PA leads
to a desirable stability of measurements throughout the
sessions (in its maximum, the average subject’s measures
of the GCC varies 0.151%0 its mean), but also that its
reliability is comparable to that of MAPL.

Concerning the NG, we have shown the high cor-
relation between MiSFIT’s and MAPL’s estimates, dis-
turbed only by MiSFIT’s noisier behavior in Gaussian
regions. Overall, MiSFIT exhibits a positive bias compared
to MAPL for all the range of NG. According to the numer-
ical simulations in Figure 6, however, both frameworks
clearly underestimate the actual value of the NG. Paradox-
ically, the negative bias in MAPL increases with the PSNR.
Yet, the (negative) bias introduced by MiSFIT is less severe
than MAPL’s, which is consistent with the experiment in
Figure 4 with real data. Therefore, the large relative errors
reported in Figure 7 for the NG (far larger than those for
the PA) are likely explained by the bias in the estimation.
Similar to PA, both frameworks depict highly repeatable

results across intra-subject sessions (0.05%0 for MAPL,
0.10%0 for MiSFIT, averaging across regions). In terms of
reliability, MiSFIT’s estimates are, on average, far more
reliable (12.52 against MAPL’s 3.73).

Note the evaluation of the NG based on ground-truth is
far more difficult than it is for the PA, since the definition
of the NG is tightly related to the MAP-MRI represen-
tation: with MAP-MRI, the closest Gaussian is trivially
computed as the first addend of the expansion, so that
the non-Gaussian part of the EAP is orthogonal to its
Gaussian part. This property is unique to MAP-MRI, and
does not hold neither for MiSFIT nor for the designed
ground-truth signal. Consequently, it remains unclear if
our ground truth is actually the desirable target. Given this
situation, the reliability analysis grants a valuable quan-
titative information without the need of a ground-truth.
In this sense, MiSFIT outperforms MAPL’s estimation of
the NG in 7 out of the 11 regions studied, including the
CC. Taking also into account that MiSFIT offers a higher
dynamic range for the NG, see Figure 4 (left), we postulate
that MiSFIT can be an attractive alternative to compute
this index.

The numerical validation based on reliability, not
just repeatability, is indeed a novel contribution of the
present paper, as separability is a desirable property for any
anatomical index. We claim that assessing the reliability
is mandatory when comparing different dMRI techniques
since EAP imaging approaches crop the otherwise infinite
bandwidth of the diffusion signal in different ways (see
Reference 16), depending on the representation used. The
main limitation of the reliability assessment is the need
for a robust intersubject registration, so that the registra-
tion error does not become a critical confounding factor.
In this sense, the repeatability values added to the analy-
sis together with the computation of bootstrapped FoMs
in Table 2 gives an idea of the confidence we can put on
the results in Table 1. As long as the coefficients of varia-
tion are relatively large in all cases, we may conclude that
more work is needed to pose the assessment of reliability
as a state of the art procedure.

A critical issue with previous implementations of both
the PA and the NG is their time-consuming nature,
unsuited for clinical practice. According to Table 3, the
time required for processing an entire volume of the
MICRA database with MAPL is well over 8 hours when
Generalized Cross-validation and Positivity Constraints
are used. For a subject in the HCP database, this time
can grow up to 52 h. Provided that for a clinical study
a whole database needs to be processed, researchers will
be compelled to use sub-optimal configurations, without
positivity constraints, with fixed Laplacian penalty terms,
or cropping the maximum order of the basis functions,
which will compromise the accuracy of the measures
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and, in turn, the quality of the study. MiSFIT, on the
other hand, is two orders of magnitude faster for any
configuration.

To sum up, in this work the PA and NG measures
have been introduced, their equations derived for MiS-
FIT’s full composite attenuation signal and their perfor-
mance within such framework validated. Both measures,
with several proven clinical applications, result in consis-
tent and reliable maps. All of this, together with MiSFIT’s
proven efficiency—capable of modeling the signal and
computing both maps in less than a minute compared
to MAPL’s 11 h—make the MiSFIT framework qualified
for the new standardized dMRI protocol within clinical
settings.
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