
ADAR Mediated RNA Editing Modulates MicroRNA Targeting in 
Human Breast Cancer

Justin T. Roberts1, Dillon G. Patterson1, Valeria M. King1, Shivam V. Amin1, Caroline J. 
Polska1, Dominika Houserova2, Aline Crucello1, Emmaline C. Barnhill1, Molly M. Miller1, 
Timothy D. Sherman1, and Glen M. Borchert1,2,*

1Department of Biology, University of South Alabama, Mobile, AL 36688-0002, USA;

2Department of Pharmacology, USA College of Medicine, Mobile, AL 36688-0002, USA; 
dh1001@jagmail.southalabama.edu

Abstract

RNA editing by RNA specific adenosine deaminase acting on RNA (ADAR) is increasingly being 

found to alter microRNA (miRNA) regulation. Editing of miRNA transcripts can affect their 

processing, as well as which messenger RNAs (mRNAs) they target. Further, editing of target 

mRNAs can also affect their complementarity to miRNAs. Notably, ADAR editing is often 

increased in malignancy with the effect of these RNA changes being largely unclear. In addition, 

numerous reports have now identified an array of miRNAs that directly contribute to various 

malignancies although the majority of their targets remain largely undefined. Here we propose that 

modulating the targets of miRNAs via mRNA editing is a frequent occurrence in cancer and an 

underappreciated participant in pathology. In order to more accurately characterize the relationship 

between these two regulatory processes, this study examined RNA editing events within mRNA 
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sequences of two breast cancer cell lines (MCF-7 and MDA-MB-231) and determined whether or 

not these edits could modulate miRNA associations. Computational analyses of RNA-Seq data 

from these two cell lines identified over 50,000 recurrent editing sites within human mRNAs, and 

many of these were located in 3’ untranslated regions (UTRs). When these locations were 

screened against the list of currently-annotated miRNAs we discovered that editing caused a 

subset (~9%) to have significant alterations to mRNA complementarity. One miRNA in particular, 

miR-140–3p, is known to be misexpressed in many breast cancers, and we found that mRNA 

editing allowed this miRNA to directly target the apoptosis inducing gene DFFA in MCF-7, but 

not in MDA-MB-231 cells. As these two cell lines are known to have distinct characteristics in 

terms of morphology, invasiveness and physiological responses, we hypothesized that the 

differential RNA editing of DFFA in these two cell lines could contribute to their phenotypic 

differences. Indeed, we confirmed through western blotting that inhibiting miR-140–3p increases 

expression of the DFFA protein product in MCF-7, but not MDA-MB-231, and further that 

inhibition of miR-140–3p also increases cellular growth in MCF-7, but not MDA-MB-231. 

Broadly, these results suggest that the creation of miRNA targets may be an underappreciated 

function of ADAR and may help further elucidate the role of RNA editing in tumor pathogenicity.
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1. Introduction

Transcript variation at the single nucleotide level is increasingly being found to have 

widespread occurrences within the transcriptome with fundamental roles in numerous 

biological processes including development and disease. Specifically, several independent 

studies have reported that there are hundreds of thousands of RNA editing sites catalyzed by 

the enzyme ADAR (adenosine deaminase acting on RNA) within human mRNAs [1–6]. 

Editing via ADAR is characterized by the conversion of the nucleic acid adenosine to 

inosine via deamination at the C6 position [7] (Figure 1). Since inosines have been shown to 

preferentially bind to cytosines, functionally the ADAR-catalyzed editing changes an ‘A’ to 

a ‘G’ in the transcript sequence [7]. Interestingly, the vast majority (>99%) of editing sites 

occur in the UTRs of primate-specific Alu elements [8–10], likely due to the common 

occurrence of two oppositely oriented Alus located in the same pre-mRNA pairing together 

to produce the long and stable double-stranded RNA structure that is required for ADAR to 

bind. As the ability to convert nucleotides adds a great deal of functionality to the 

transcriptome, it is not surprising that it has fundamental roles in many cellular activities. 

Editing events within mRNA coding for various neuroreceptors, such as serotonin and 

glutamate, have been intensively detailed in an array of organisms from flatworms to 

primates and found to be critical for routine neural activity [11]. With regards to gene 

regulation, sequence editing of RNA has widespread implications, including splice site 

alteration, localization and nuclear retention, and modification to the RNA secondary 

structure itself [12]. Further, given these abundant roles for ADAR editing in routine cellular 

function, it should also not be surprising that dysfunction of this important mechanism can 

have detrimental effects and, indeed, an increasing number of reports indicate a strong 
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correlation between altered ADAR activity and a variety of pathologies. Specifically, 

because ADAR has been shown to be such an integral player in apoptotic regulation and 

cellular differentiation, cancer is of especially heightened interest and, in fact, more and 

more evidence is pointing to dysregulation of the editing process being a major factor in 

tumorigenesis [13–18].

Editing events can also have widespread effects on the gene regulatory ability of noncoding 

RNAs, such as miRNAs [17,19]. MiRNAs are small regulatory RNA molecules roughly 20 

to 23 nucleotides in length that regulate cell processes by binding to their target mRNAs and 

inhibiting translation [20]. MiRNAs are initially transcribed as primary miRNAs (pri-

miRNAs) consisting of several thousand nucleotides in length that are then processed by into 

mature miRNAs by the enzymes Dicer and Drosha before entering the RNAi gene silencing 

complex where they regulate gene expression by binding to the 3’ UTR of their mRNA 

targets via complimentary base pairing and silencing the gene by either repressing 

translation of the mRNA or triggering its degradation [21]. MiRNAs have been found to play 

a role in numerous cellular processes, from cell cycle control and apoptosis regulation to 

hormone production and immune response [22]. Importantly, misexpression of miRNAs has 

been implicated in a number of different disease states ranging from cardiovascular [23] and 

neurological disorders [24] to many types of cancer [25]. Having been associated with such 

a wide array of processes and pathologies, these molecules have garnered increased attention 

recently as investigators begin to evaluate their potential utility as biomarkers and therapies.

While these two mechanisms are fairly well understood independently, only recently have 

reports profiled the functional connection between RNA editing and miRNAs. For example, 

it has been shown that ADAR1 forms a complex with Dicer through direct protein 

interactions and enhances global miRNA processing [26]. Further, ADAR deamination of 

pri-miRNA transcripts can cause alterations to their structural conformations and subsequent 

maturation and processing by Drosha and Dicer [27,28]. In addition, while any editing of 

miRNA transcripts can have functional implications, arguably the most critical changes are 

to the seed regions of the miRNAs as this can drastically alter the set of genes able to be 

regulated [29]. This is especially true in cancer where altered miRNA regulation of 

oncogenes and tumor suppressors can lead to tumor formation [17]. Importantly, it should be 

noted that, in addition to editing the miRNA transcript, ADAR can also edit the 3’ UTR of 

target mRNAs. This modification dramatically increases the interplay between miRNAs and 

their targets by allowing a different set of miRNAs to regulate a given mRNA depending on 

if the transcript has been edited or not. Unfortunately, while the effects of editing the 

miRNA transcripts themselves have been well documented, this opposite effect of editing 

mRNAs in regions complementary to miRNA seeds is less understood. However, a number 

of reports suggesting this plays a significantly underappreciated role in miRNA targeting 

have surfaced within the last year [30–33]. To examine this, our study identified edit sites 

within two breast cancer cell lines (MCF-7 and MDA-MB-231) and analyzed the effect 

these edits had on subsequent regulation by miRNAs.
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2. Materials and Methods

2.1. NGS Sequencing of MCF-7 and MDA-MB-231

Two breast cancer cell lines (MCF-7 and MDA-MB-231) grown under standard procedures 

were obtained from colleagues at the Mitchell Cancer Institute (Mobile, AL, USA). RNA 

was isolated and suspended in Trizol per standard manufacture protocol before being 

shipped to Otogenetics (Otogenetics Corporation, Atlanta, GA, USA) for commercial next-

generation sequencing on an Illumina HiSeq2000 sequencer. Two RNA-Seq protocols were 

requested: (1) a total polyA selected RNA-Seq to provide mRNA transcripts, and (2) a small 

size selected RNA-Seq to provide small RNAs ranging from 17 to 35 nt in length. Raw 

paired-end reads were received totaling around 6 billion base pairs per cell line. Reads were 

uploaded to the NCBI Sequence Read Archive (SRA) and assigned the project number 

SRP101635.

2.2. Identification of A-to-G Edits in Breast Cancer Cells

Reads from the polyA selected RNA-Seq were filtered for low-quality reads and adapter 

contamination using Trimmomatic [34] and then aligned to the GRCh38 human reference 

genome using TopHat [35] (one mismatch allowed per alignment, only unique mappings 

reported). Edit sites were identified using the ‘mpileup’ command of SAMtools [36] which 

generates a VCF file containing location information for observed variations between the 

reads and the reference. All identified variations other than A-to-G and T-to-C were 

removed, and the remaining locations were cross-referenced with the dbSNP database to 

exclude variations that are known SNPs. To be considered a probable edit, at least 10% of 

transcriptome reads were required to differ from the reference genome at the edit position 

(with a minimum of 30 total reads).

2.3. Computational Identification of MiRNAs Biased towards Editing

The list of remaining putative edit sites (plus the sites identified in a previous study [37]) 

were used to generate a dataset consisting of two files each containing 201 bp sequences 

(edit site plus/minus 100 bp flanking sequences from the human reference genome). One file 

contained an ‘unedited’ version of the transcript with the edit site corresponding to the 

reference genome, and the other file contained an ‘edited’ version where the central site was 

edited. An in-house program written in Java was used to compare the reverse complement of 

the 7 nt seed sequences from all 2588 known human miRNAs in miRbase [38] to each 

possible 7-mer sequence within the generated dataset using a sliding window approach that 

counted perfect seed matches and recorded the position of each match in an Excel file 

(illustrated in Figure 2). Both the edited and unedited set of transcripts were analyzed for 

comparison, and after statistical analysis those miRNAs whose total number of seed matches 

increased or decreased significantly (10-fold or higher) in one set or the other were said to 

be biased towards editing.

2.4. Small RNA-Seq Analysis

To generate miRNA expressions data, reads from the small RNA-Seq experiment were 

aligned to known miRNA transcripts using the BLAST+ [39] sequence aligner. In order to 
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be reported as valid the alignment was required to be over 99% similar with no more than 

one mismatch over 36 base pairs.

2.5. Cell Growth Assay

MDA-MB-231 cells were first transfected with either 100 nmol/L of miR-140 antagomir 

(Anti-140) (Cat # C-301055–01-0005, GE Healthcare Dharmacon, Chicago, IL, USA) or 

scrambled negative control (Ctrl-140) (catalog number CN-001000–01-05, Dharmacon) 

using Lipofectamine (Life Technologies, Carlsbad, CA, USA) according to the 

manufacturers protocol. Cell number was determined by trypan blue staining and manual 

counting at 24, 36, and 48 h post-transfection. Growth was determined as the relative cell 

number compared with vehicle-treated (0.1% DMSO) controls.

2.6. Western Blot Analysis

Following transfection of cells with anti-miRNAs, at 36 h existing media was replaced with 

lysis buffer containing protease inhibitors, incubated for 15 min at 4 °C, and then transferred 

to tubes. The cell proteins were electrophoresed through an 8% SDS–polyacrylamide gel 

and transferred to polyvinylidene fluoride membranes for the immobilization of the proteins. 

The membranes were blocked for 1 h in 2% non-fat milk in phosphate-buffered saline 

containing 0.05% Tween-20 surfactant and then washed and incubated with primary DFFA 

(ICAD) antibody (LF-PA0058, Thermo Scientific, Rockford, IL, USA) overnight at 4 °C. 

Following subsequent washing and incubation with goat anti-rabbit peroxidase-conjugated 

secondary antibody the immunoreactive bands were visualized and quantified using a 

Flurochem densitometer for the reporting of the protein levels.

3. Results

In order to characterize transcriptional differences between MCF-7 and MDA-MB-231 cells, 

RNA was isolated from each and split into “mRNA” (>200 nt RNAs) and “small RNA” 

(<200 nt RNAs including mature miRNAs) fractions. These samples were commercially 

sequenced resulting in over 2 billion nucleotides of small RNA reads and roughly 6 billion 

nucleotides of the longer mRNA reads.

3.1. Identification of RNA Edit Sites

Identification of putative RNA edit sites within each of the two cell lines was performed by 

mapping RNA-Seq reads to the GRCh38 human reference genome. As read alignments are 

reported with respect to the leading strand of the reference genome, a putative edit site 

would appear as an A-to-G mutation if the read arose from the forward strand, or a T-to-C 

mutation in the case of the reverse strand (Figure 3). In all, 19,462 unique edit sites were 

identified in MCF-7 and 35,090 sites were found in MDA-MB-231 (Table S1). That said, we 

found reads containing edits differed from the reference genome at the edit position 51.8% 

of the time in MCF-7s on average and 49.8% of the time in MDA-MB-231s.

3.2. MiRNAs Biased towards Editing

Subsequent identification of miRNAs whose set of predicted target mRNAs were 

significantly affected due to our identified mRNA deaminations was achieved by screening 
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the ‘seed’ regions from all 2588 currently-annotated human miRNAs in miRBase [38] 

against our full set of putative edit sites and an independently-generated publicly-available 

set of >12,000 A-to-I human edit sites [37] (Figure 2). Cataloging all of a miRNA’s seed 

matches in both edited and unedited transcripts identified a subset whose mRNA target sets 

were significantly altered due to RNA editing (Tables 1, S2 and S3). In total, 206 miRNAs 

were shown to have altered target sites caused by ADAR-mediated single nucleotide 

mutations. Interestingly, we found that 86 of these miRNAs appeared to specifically target 

edited sequences and participate in regulations nonexistent prior to editing (Table S2) and, 

conversely, that the targets sites of the other 120 miRNAs were instead ablated upon ADAR 

editing due to a loss of sequence complementarity to their predicted mRNA targets (Table 

S3). As such, in order to ascertain whether any of these miRNAs were being actively 

expressed in our two cell lines, we next performed an expression analysis using our small 

RNA-Seq reads via BLAST+ [39]. Reads were aligned to known miRNAs, limited to only 

the highest scoring alignment per read, and required to be 100% identical to annotated 

miRNAs. Using these criteria, we identified 20 miRNAs for further evaluation based on their 

relative high expressions (>50 reads per million) in both MCF-7 and MDA-MB-231 (Table 

1).

3.3. MiR-140 Is Able to Target DFFA in MCF-7 but not MDA-MB-231

Next, after a thorough examination of the subset of miRNAs whose set of predicted target 

mRNAs were significantly affected by deamination in our cell lines, we selected miR-140–

3p for a detailed experimental examination. Importantly, we found miR-140–3p was highly 

expressed in both cell lines and, notably, its set of target mRNAs was found to be 

significantly altered by RNA editing in MCF-7 cells, but not in the MDA_MB-231 cells. 

Importantly, we found A-to-G mutations caused dramatic changes to miR-140’s set of 

predicted mRNA target sites in MCF-7s, with deamination events leading to the creation of 

91 new putative target sites in 34 mRNAs. Of note, through utilizing strategies we 

previously employed to successfully identify sites created in a publicly-available set of 

>12,000 A-to-I human edit sites [37,41] (Figure 4), we identified a particularly interesting 

target site created for miR-140–3p in MCF-7 cells—DNA fragmentation factor alpha 

(DFFA), also known as inhibitor of caspase-activated DNase (ICAD) (Figure 5). As the 

principle function of DFFA is to trigger DNA fragmentation during apoptosis, we 

hypothesized that the miRNA-mediated downregulation of this gene specifically in MCF-7 

cells might directly contribute to their characteristically lower rate of cellular proliferation as 

compared to MDA-MB-231s.

3.4. Inhibiting miR-140–3p Increases DFFA Expression in MCF-7

In order to determine if miR-140–3p directly regulates the endogenous expression of DFFA, 

we performed DFFA Western blots (Figure 6A) to examine the effects of introducing a 

specific miR-140–3p antagomir as compared to a non-specific control. Excitingly, although 

we found a marked increase of DFFA levels following miR-140–3p inhibition in MCF-7s 

(where a target site is created by ADAR deamination), we found no appreciable effect of 

inhibiting miR-140–3p in MDA-MB-231s (in which DFFA does not undergo deamination). 

Furthermore, qPCR analysis of DFFA expression found no effect on DFFA mRNA levels 
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following miR-140–3p inhibition in either cell line (data not shown) confirming miR-140–

3p regulates DFFA post transcriptionally.

3.5. Inhibiting miR-140–3p Increases MCF-7 Cellular Proliferation

We next examined the effects of inhibiting miR-140–3p on cellular growth and similarly 

found cellular growth was largely unaffected by decreased miR-140–3p levels in MDA-

MB-231, whereas we found there was over a 110% increase in MCF-7 cellular growth 

following miR-140–3p depletion at 24 h post transfection (Figure 6B). Importantly, these 

results strongly agree with our examination of DFFA regulations and further support the idea 

that miR-140–3p mediated downregulation of DFFA specifically in MCF-7 cells directly 

contributes to the characterized differences of these two cell lines in cellular growth.

4. Discussion

ADAR-mediated RNA editing is well characterized as having dramatic effects on a 

multitude of cellular processes [11,18,42,43]. However, the molecular mechanisms through 

which ADAR editing confers these effects remain largely undefined. That said, ADAR 

editing of miRNA transcripts has now been shown to affect their regulatory ability, in some 

cases leaving them unable to bind to their target transcripts and in others leading to 

unintended inhibition of new targets altogether [17,19,44]. To add to the relationship 

between A-to-I editing and miRNAs, we have now successfully shown that mRNA editing 

can also affect miRNA targeting by changing the complementarity between a 3’ UTR 

binding site and the seed region of a miRNA. Results from our analysis strongly suggest that 

A-to-I editing is routinely employed to modify mRNA complementarities to a specific 

subset of 233 human microRNAs currently annotated in miRBase [38]. Interestingly, for 86 

of these miRNAs ADAR editing leads to the generation of new regulatory targets, whereas 

A-to-I editing conversely results in a significant loss of complementarity to mRNAs and, 

therefore, a loss of putative targets for the other 120 miRNAs. We find these two subsets of 

ADAR editing-related miRNAs to be completely distinct—86 specifically targeting edited 

mRNAs and 120 specifically targeting unedited mRNAs (or whose regulation is blocked by 

editing). This latter observation is notable as the ability of ADAR to destroy mRNA targets 

has not been previously reported and is in direct contrast to previous work that suggested 

ADAR editing could likely only create targets for miRNAs [41].

Based on these results, we believe that the generation of novel miRNA regulatory networks 

is a critical function of ADAR editing, and, notably, that dysregulated editing may create 

susceptibilities that allow tumorigenesis and tumor progression to occur. Corroborating this 

idea, several studies have already established a clear precedent for ADAR activity being 

implicated in cancer biology. Recently, Chen et al. [15] described direct involvement of 

ADAR editing in human hepatocellular carcinoma (HCC), showing how the transcripts of an 

oncoprotein degrader and confirmed contributor to HCC pathology, antizyme inhibitor 1 

(AZIN1), are modified at specific sites by ADAR1, and that ADAR1 is commonly 

upregulated in HCC patient tumors resulting in even higher AZIN1 editing frequency and 

poorer prognosis. In addition, the authors were able to successfully demonstrate that higher 

levels of edited AZIN1 promoted an increased incidence of tumor formation and invasive 
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ability. Over-editing of AZIN1 has also been implicated in other cancers, such as esophageal 

squamous cell carcinoma [13]. Other recent studies suggest that ADAR1 might also play a 

pathogenic role in chronic myeloid leukemia (CML). Jiang et al. [14] have recently shown 

that overexpression of ADAR1 in cultured blood progenitor cells can promote 

reprogramming of myeloid progenitor cells resulting in heightened hematopoietic 

differentiation toward the myeloid lineage. Increased ADAR1 levels were repeatedly found 

in CML patient samples leading the authors to speculate that ADAR played a causal role. In 

fact, a related study recently found CML could not be induced in mice following a bone 

marrow transplant of marrow cells carrying an ADAR deletion suggesting ADAR1 may be 

essential for leukemia cell survival [14].

In contrast to the previous examples linking hyper-editing to malignancy, the opposite 

scenario, hypo-editing, has also been implicated as contributing to various cancers, 

specifically in relation to miRNAs. For instance, it has been shown by Choudhury et al. [17] 

that reduced editing of miR-376a promotes glioblastoma cell invasion in orthotopic glioma. 

Normally-edited miR-376a targets and suppresses the receptor for the autocrine motility 

factor (AMF) that stimulates tumor motility via base pair complementarity with the 3’ UTR 

of the AMF receptor mRNA; however, when unedited, the miRNA loses this ability. It was 

also demonstrated that unedited miR-376a binds to the 3’ UTR of the RAP2A mRNA 

transcript (coding for a protein known to suppress glioblastoma cell invasion), causing the 

RAP2A protein’s function to be inhibited. This report does an excellent job of 

demonstrating how ADAR-induced single base pair changes in miRNAs can alter their 

target specificity and ultimately lead to pathologically significant ramifications. Further, 

while it is clear that RNA editing can be fundamentally linked to cancer via sequence 

alteration and the expression/repression of oncogenes, there is also evidence of involvement 

in other tumorigenic pathways. For instance, a correlation has been shown between reduced 

editing of Alu elements and multiple tumors, including brain, prostate, lung, and kidneys 

[14,18]. Additionally, chronic inflammation related to viral infection has been previously 

implicated in tumorigenesis and this may be due, in part, to overexpression of ADAR1 

mediated by inflammation [45]. Of note, in this work we identify 19,462 unique edit sites in 

MCF-7 cells versus 35,090 unique sites in MDA-MB-231s suggesting generally higher 

ADAR1 activity in this more aggressive breast cancer cell line.

Importantly, the work presented here represents the most comprehensive of only a handful of 

analyses of the effects of mRNA A-to-I editing on miRNA targeting published to date [30–

32], and represents only the second ever experimental evidence indicating that the 

modulation of miRNA targeting through ADAR editing may directly contribute to breast 

cancer pathology [33]. When taken together, this report along with recently published 

studies suggesting mRNA editing can alter microRNA regulations [30–33] (all published 

within the last few months) strongly suggest that the participation of A-to-I editing in 

directing microRNA targeting is currently significantly underappreciated.

That said, our analysis of the RNA editing data from two breast cancer cell lines 

demonstrate that miR-140–3p is able to regulate the apoptosis inducing gene DFFA in 

MCF-7 but not in MDA-MB-231. DFFA is the larger of two protein subunits that comprise 

caspase-activated DNase (CAD) and, when bound to CAD, DFFA inhibits its ability to 
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degrade DNA and condense chromatin, but during apoptosis caspase-3 cleaves DFFA 

resulting in DNA fragmentation [46]. As misexpression of an apoptotic contributor can have 

significant ramifications in terms of tumor development, the differential regulation of DFFA 

by miR-140 between our two cell lines is highly intriguing, especially as numerous reports 

have previously implicated a role for miR-140 in breast malignancy [47–49]. That said, the 

two cell lines involved in this study, MCF-7 and MDA-MB-231, have very distinct 

characteristics in terms of morphology, invasiveness, and physiological responses. While 

they are both adenocarcinomas (cancers of the breast epithelium tissue that originated in the 

mammary gland), the MCF-7 line was derived from an in situ carcinoma where the 

cancerous cells had not yet invaded surrounding tissues. These cells are weakly invasive, 

luminal epithelial-like, and are hormone responsive, requiring noticeably less aggressive 

therapies [50]. In contrast, the highly-invasive, fibroblast-like MDA-MB-231 line was 

derived from a metastatic carcinoma and is a triple-negative breast cancer making it highly 

chemoresistant and, thus, significantly more difficult to treat [51]. When taken in 

conjunction with reports of elevated ADAR activity in many breast cancers, it is feasible to 

assume that RNA editing could contribute to some of the characteristic phenotypic 

differences observed between these two cell lines. Excitingly, we suggest the work presented 

here strongly supports this as we find ADAR editing directly mediates the regulation of 

DFFA in MCF-7s whereas the absence of DFFA editing in MDA-MB-231 conversely 

disallows DFFA regulation by miR-140–3p in these cells. Simply put, we find miR-140 is 

able to bind and regulate DFFA due to editing in MCF-7s, so inhibition of the miRNA 

increases growth. As it is unable to bind in MDA-MB-231, no effect is seen. As such, it is 

tempting to speculate that the differential regulation of DFFA by miR-140–3p between these 

two breast cancer lines directly contributes to their observed differences in cellular 

proliferation and cellular survival (Figure 6). That said, miR-140–3p undoubtedly regulates 

multiple mRNAs and the observed effects on cellular growth may be mediated through more 

than DFFA restriction alone. Of note, Salem et al. [52] recently demonstrated that 

transfecting several breast cancer cell lines with miR-140–3p isoform mimics commonly 

resulted in a decrease in breast cancer cell viability (nicely complementing the increased 

cellular growth we observe in MCF-7s following transfection of miR-140–3p inhibitor). 

Additionally, and also in agreement with our findings, this group similarly observed no 

change in MDA-MB-231 viability following manipulation of miR-140–3p levels via 

transfection of a miR-140–3p mimic.

While this work represents the first direct indication of a contributory role for A-to-I editing 

in modulating miRNA targeting in malignancy, we suggest the repeated observation of a 

correlation between altered ADAR activity and various pathologies suggests altered miRNA 

regulations due to alterations in A-to-I profiles may represent a significant currently 

underappreciated contributor to an array of pathologies. Perhaps of broader importance. 

However, our findings lead us to believe that many miRNA targets can only be identified by 

analyzing expressed sequences, and that accurate miRNA target prediction may ultimately 

require analyzing transcriptomes and not genomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ADARs deaminate adenosine to inosine, potentially altering miRNA complementarities. A 

cartoon depicting adenosine (left), deaminated adenosine (inosine, in center), and guanine 

(right).
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Figure 2. 
Effect of RNA editing on DFFA. A representative deamination site (green) occurring in the 

3’ UTR of DNA fragmentation factor α (DFFA) is shown in both the unedited (left) and 

edited (right) state. The seed of miR-140–3p (blue) was screened using a sliding windows 

approach (depicted with a yellow box) against all possible seed matches within the DFFA 

sequence. Complimentary base pairing is indicated by the black lines.
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Figure 3. 
Alignment of RNA-Seq reads to the human genome. Poly(A) selected RNA from two breast 

cancer cell lines (MCF-7 and MDA-MB-231) were sequenced with an Illumina Hi-Seq to 

provide high coverage mRNA transcripts. These transcripts were then compared to reference 

genome (top in red), with mismatches indicating a possible site of editing activity. Here one 

such site is shown within the red box, with mismatched reads outlined in green. Alignment 

was generated using ClustalW (http://www.genome.jp/tools-bin/clustalw) [40].
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Figure 4. 
A-to-I edits create novel target sites for miR-140–3p. mRNA sequences from the edit sites 

previously identified [37] (each consisting of a central A-to-I deamination and 100 nt flanks) 

were screened for complementarity to human miRNAs. The graphs represent all miR-140–

3p seed matches occurring at each possible position within both the unedited (left) and 

edited (right) states.
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Figure 5. 
MiR-140 can regulate DFFA in MCF-7, but not MDA-MB-231. (A) Alignment of 21 nt 

segments of six RNA-Seq reads (three from each cell line) to a portion of the apoptosis 

inducing gene DFFA. Our edit identification algorithm identified an A-to-G edit site at 

basepair 10,460,668 on Chromosome 1, and corresponding reads mapping to that location 

were extracted and trimmed to 21 bp (edit site plus/minus 10 bp flanking regions). Edit 

location is outlined in red. The alignment was generated via ClustalW [40]. (B) Illustration 

showing complimentary base pairing between the miR-140 seed (blue) and the DFFA gene 

in both cell lines. The edit site is indicated in green.
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Figure 6. 
Depletion of DFFA protein expression and the effect of miR-140–3p on cellular growth. (A) 

Representative blots for DFFA and β-actin (loading control) are shown (n = 3). The miRNA 

is able to bind and regulate the DFFA gene in MCF-7, but not in MDA-MB-231 due the 

presence of an A-to-I edit. WT, wild type; Ctl, empty lipo transfection; Ant-140, miR-140 

antagomir; Ant-Ctl, random antagomir. (B) Cell growth assay examining effects of 

transfecting a miR-140 inhibitor in both cell lines. Five microscopic fields randomly chosen 

from each assay were counted individually, and the statistical significance between treatment 

and control determined by t-test.
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Table 1.

List of top 10 miRs where ADAR editing of mRNAs alters complementarity to miR seed regions and either 

(A) creates novel target sites for regulation or (B) destroys predicted target sites. In addition to altered edit 

complementarity, microRNAs included were also required to be present at >50 reads per million in MCF-7 

and MDA-MB-231 small RNA-Seq datasets.

miR miRBase ID Seed (RC) Targets
(Edited)

Targets
(Unedited)

Expected

A

hsa-miR-513a-5p MIMAT0002877 CCTGTGA 258 0 0.63

hsa-miR-450b-3p MIMAT0004910 GATCCCA 252 4 0.79

hsa-miR-769–3p MIMAT0003887 GATCCCA 252 4 0.79

hsa-miR-6089 MIMAT0023714 CGGCCTC 219 0 3.83

hsa-miR-4691–3p MIMAT0019782 GTGGCTG 181 0 1.16

hsa-miR-3189–3p MIMAT0015071 CCCAAGG 140 5 0.48

hsa-miR-140–3p MIMAT0004597 CTGTGGT 139 0 1.11

hsa-miR-3065–3p MIMAT0015378 GGTGCTG 118 0 0.5

hsa-miR-3940–3p MIMAT0018356 CCGGGCT 111 0 0.72

hsa-miR-3680–3p MIMAT0018107 ATGCAAA 108 2 0.82

B

hsa-miR-5089–5p MIMAT0021081 AATCCCA 0 644 21.39

hsa-miR-6504–3p MIMAT0025465 CTGTAAT 58 587 19.93

hsa-miR-6506–5p MIMAT0025468 ATCCCAG 18 377 21.57

hsa-miR-619–5p MIMAT0026622 ATCCCAG 18 377 21.57

hsa-miR-4775 MIMAT0019931 AAAATTA 0 351 19.37

hsa-miR-4735–5p MIMAT0019860 AAATTAG 6 305 17.31

hsa-miR-6514–3p MIMAT0025485 ACAGGCA 10 216 9.59

hsa-miR-4794 MIMAT0019967 TAGCCAG 10 173 8.05

hsa-miR-664a-5p MIMAT0005948 TAGCCAG 10 173 8.05

hsa-miR-1273e MIMAT0018079 TCAAGCA 2 169 5.22
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