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Abstract
Posttraumatic stress disorder (PTSD) is often chronic and disabling across the lifespan.

The gold standard treatment for adolescent PTSD is Trauma-Focused Cognitive-Behavioral

Therapy (TF-CBT), though treatment response is variable and mediating neural mecha-

nisms are not well understood. Here, we test whether PTSD symptom reduction during TF-

CBT is associated with individual differences in large-scale brain network organization dur-

ing emotion processing. Twenty adolescent girls, aged 11–16, with PTSD related to assault-

ive violence completed a 12-session protocol of TF-CBT. Participants completed an

emotion processing task, in which neutral and fearful facial expressions were presented

either overtly or covertly during 3T fMRI, before and after treatment. Analyses focused on

characterizing network properties of modularity, assortativity, and global efficiency within an

824 region-of-interest brain parcellation separately during each of the task blocks using

weighted functional connectivity matrices. We similarly analyzed an existing dataset of

healthy adolescent girls undergoing an identical emotion processing task to characterize

normative network organization. Pre-treatment individual differences in modularity, assorta-

tivity, and global efficiency during covert fear vs neutral blocks predicted PTSD symptom

reduction. Patients who responded better to treatment had greater network modularity and

assortativity but lesser efficiency, a pattern that closely resembled the control participants.

At a group level, greater symptom reduction was associated with greater pre-to-post-treat-

ment increases in network assortativity and modularity, but this was more pronounced

among participants with less symptom improvement. The results support the hypothesis

that modularized and resilient brain organization during emotion processing operate as

mechanisms enabling symptom reduction during TF-CBT.
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Introduction
Early life assaultive violence exposure is a potent risk factor for pediatric posttraumatic stress
disorder (PTSD), particularly among girls [1,2]. Left untreated, PTSD is often chronic and
associated with significant morbidity and poor quality of life across the lifespan [3,4]. The cur-
rent gold standard treatment for pediatric PTSD is Trauma-Focused Cognitive-Behavioral
Therapy (TF-CBT) [5–7], which is a manualized treatment typically delivered in 12–16 weekly
sessions and includes modules addressing psychoeducation about trauma and PTSD; parenting
skills; affect regulation skills; and developing a narrative of the traumatic event and cognitive
processing of associated thoughts and feelings. Numerous clinical trials have demonstrated
efficacy for TF-CBT in reducing PTSD symptoms, depression, anxiety, and behavior problems
among traumatized youth [8].

Despite the replicated efficacy of TF-CBT, treatment response is variable and tends to dem-
onstrate a moderate effect size [8]. For example, in a recent TF-CBT clinical trial, the mean
decrease in total number of PTSD symptom from pre-to-post treatment was 3.3 with a stan-
dard deviation of 3.48, indicating significant individual differences in treatment response [7].
The purpose of the present study was to identify modes of functional organization of neural
processing networks as predictors of individual variation in treatment response towards the
larger goal of elucidating for whom TF-CBT is most likely to work and through what brain
organization principles it produces clinical outcomes.

Contemporary neuroimaging research is moving away from functional segregation analyses
and towards computational approaches that model the brain as a distributed network of infor-
mation processing [9–11]. These approaches frequently employ concepts from graph theory
and model the brain as a graph composed of nodes (brain regions or vertices) and edges (con-
nections between nodes). Graph-theory-based analyses of human brain functional connectivity
have been used to demonstrate important large-scale organizing principles of the human brain,
including small world properties, high communication efficiency, and resilience to targeted
node attacks [12–14]. One graph theory concept that is hypothesized to be a key organizing
principle of most complex systems is modularity [15]. Modularity refers to the degree to which
a network can be subdivided into discrete and functionally specialized modules (or communi-
ties), and a modularized network is characterized by greater within-module connectivity rela-
tive to between-module connectivity [16]. Modular organizational properties may emerge out
of evolutionary and developmental demands to simultaneously minimize connection costs and
average path lengths while maximizing network adaptive value and dynamic stability [13,17].
Modular networks are more adaptive to changing environmental demands and more resilient
to structural perturbations of the network [13,18]. Prior research demonstrates decreased mod-
ular brain organization among individuals high in neuroticism [19] and diagnosed with schizo-
phrenia [20], and that modular organization of the human brain becomes more sophisticated
across development [21], thus demonstrating associations between the degree of modularity of
functional brain networks and clinical, personality, and neurodevelopmental processes.

Related graph theoretical concepts pertaining to optimal global network functional organi-
zation include assortativity and global efficiency. Assortativity characterizes the degree to
which highly connected nodes tend to connect to other highly connected nodes [22]. Networks
with positive assortativity coefficients tend to be more resilient to targeted node insults due to
having mutually interconnected central nodes (i.e., hubs), whereas networks with negative
assortativity coefficients are vulnerable to insults due to their having relatively disconnected
hubs [23,24]. Global efficiency refers to the average inverse shortest path length (i.e., routes of
information flow between nodes) within a network and is a general measure of network inte-
gration, with higher global efficiency representing a more integrated network [22].
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Recent research had demonstrated altered large-scale brain organization in PTSD. Pediatric
PTSD has been linked with a greater clustering coefficient (i.e., fraction of a node’s neighbors
that neighbors of each other, averaged across the network) yet with a higher average path
length during resting-state [25]. In a similar analysis, adults with PTSD demonstrated
increased small-worldness of brain networks during resting-state, characterized by higher clus-
tering coefficients and lower path lengths [26]. Among adults exposed to combat, higher re-
experiencing symptoms were related to lower network density (i.e., fewer network connections)
during resting-state[27]. The current analysis adds to this early and growing literature by
examining large-scale brain organization during task and linking network properties with
treatment outcome. As a relevant example of the role of global network organization as predic-
tors of treatment outcome, obsessive compulsive disorder symptom reduction during pharma-
cological treatment was shown to be significantly correlated with increases in global small-
world brain network organization and modularity [28].

Here, we investigate whether particular patterns of large-scale brain network organization,
characterized using the global network indices of modularity, assortativity, and global effi-
ciency, similarly operate as mechanisms predicting PTSD symptom reduction during TF-CBT.
Support for this hypothesis would suggest novel models of the brain mechanisms by which
TF-CBT variably works and for whom it is most likely to work. We focused on a pediatric
PTSD sample homogenous with respect to age (11–16), sex (all girls), and trauma exposure (all
exposed to assaultive violence). Given the centrality of emotion processing to neurocircuitry
models of PTSD [29,30], we characterized global network functional organization patterns dur-
ing an emotion processing task.

Method

Participants and assessments
Thirty-four adolescent girls, aged 11–16, meeting DSM-IV criteria for PTSD, having a positive
history of assaultive violence exposure, and having a consistent caregiver with whom to partici-
pate in treatment, were enrolled in the study and began TF-CBT. Twenty adolescent girls com-
pleted all 12 sessions of TF-CBT and had usable imaging data at pre- and post-treatment (e.g.,
no excessive head motion, see below). Participants were recruited through networking with
local outpatient clinics, child advocacy centers, schools, juvenile justice system, churches, and
community organizations. No participant had previously received TF-CBT. Exclusion criteria
consisted of MRI contraindications (e.g., internal ferromagnetic objects), psychotic symptoms,
lack of a consistent caregiver, and presence of a developmental disorder. Concurrent psycho-
tropic medication was not exclusionary. Demographic and clinical characteristics of the sample
are provided in Table 1. Adolescents provided written assent and a caregiver/legal guardian
provided written informed consent. This study was conducted with the University of Arkansas
for Medical Sciences Institutional Review Board approval of all study procedures.

As part of a separate study, a cohort of 15 healthy adolescent girls, aged 12–16
(mean = 14.27; SD = 1.28), with no history of interpersonal violence, no current mental health
disorders, and no current psychotropic medication were additionally recruited and participated
in the identical emotion processing task during fMRI.

PTSD participant’s pre- and post-treatment mental health was assessed with the MINI-KID
[31], a structured clinical interview for most Axis I disorders found in childhood and adoles-
cence. Assaultive trauma histories were characterized using the trauma assessment section of
the National Survey of Adolescents (NSA) [1,2], a structured interview used in prior epidemio-
logical studies of assault and mental health functioning among adolescents that uses behavior-
ally specific dichotomous questions to assess sexual assault, physical assault, severe abuse from
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a caregiver, and witnessed violence. A trained female research coordinator with several years of
experience with structured clinical interviews completed the MINI and NSA interviews with
participants under the supervision of a licensed clinical psychologist.

The pre- and post-treatment assessment also included measures of verbal IQ (receptive one
word picture vocabulary test [32]), PTSD symptom severity (UCLA PTSD Reaction Index
[33]) and depression (Short Mood and Feelings Questionnaire [34]; SMFQ). Additionally, par-
ticipants completed these same measures of PTSD and depression symptom severity prior to
each therapy visit.

TF-CBT
TF-CBT was delivered by two postdoctoral clinical psychology fellows and a predoctoral clini-
cal psychology intern. The therapists were trained in TF-CBT according to an established pro-
tocol approved by Anthony Mannarino, Ph.D., a co-developer of TF-CBT, which included
completion of TF-CBTWeb (accessible at www.musc.edu/tfcbt) an online TF-CBT training,
three days of in-person TF-CBT training with Dr. Mannarino, and one hour of weekly supervi-
sion with a licensed clinical psychologist with expertise in supervising the model. TF-CBT in
this study used a 12-week protocol of 60 to 90 minute weekly sessions.

MRI Acquisition
Among the treatment-seeking sample, a Philips 3T Achieva X-series MRI system with a
32-channel head coil (Philips Healthcare, USA) was used to acquire imaging data. Anatomic

Table 1. Demographic, clinical characteristics, and treatment response of the samples.

All Patients (n = 20) Large Treatment Response
(n = 10)

Small Treatment Response
(n = 10)

P value of group
difference

Variable Mean/frequency
(SD)

Mean/frequency (SD) Mean/frequency (SD)

Age 13.75 (1.8) 14.4 (1.8) 13.1 (1.7) .66

Verbal IQ 92.6 (13.32) 93.7 (15.8) 91.4 (11.1) .71

Ethnicity 35% Caucasian 40% Caucasian 30% Caucasian .66

55% African
American

60% African American 50% African American

10% Biracial 0% Biracial 20% Biracial

Total number of types of
assaults

5.9 (4.22) 5.7 (3.3) 6.1 (5.1) .84

Psychotropic Medication 50% 30% 70% .40

Pre-Treatment UCLA PTSD
Index

37.3 (17.88) 39.83 (17.3) 34.82 (17.87) .49

PTSD symptom reduction
slope

-.95 (.70) -1.44 (.51) -.46 (.46) < .001

SMFQ 12.1 (8.5) 12.3 (8.9) 11.9 (8.6) .92

# comorbid diagnoses 3.9 (2.3) 2.1 (2.0) 3.6 (2.5) .15

Bipolar Disorder 0% 0% 0% -

Major depression 60% 60% 60% -

Anxiety disorder 45% 40% 50% .67

Alcohol Use Disorder 10% 10% 10% -

Substance Use Disorder 15% 10% 20% .56

Note. SMFQ = Short mood and feelings questionnaire.

doi:10.1371/journal.pone.0159620.t001
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images were acquired with a MPRAGE sequence (matrix = 256x256, 160 sagittal slices, TR/TE/
FA = 2600ms/3.02ms/80, final resolution = 1x1x1mm3 resolution). Echo planar imaging (EPI)
sequences were used to collect the functional images using the following sequence parameters:
TR/TE/FA = 2000ms/30ms/900, FOV = 240x240mm, matrix = 80x80, 37 oblique slices (paral-
lel to AC-PC plane to minimize OFC sinal artifact), slice thickness = 2.5 mm with a 0.5 mm
gap between slices, resampled during preprocessing to a final resolution = 3x3x3 mm3.

The healthy control participants were recruited for a separate study and their imaging
acquisition parameters were slightly different. An 8-channel head coil was used to acquire the
imaging data. Anatomic images were collected using identical sequences and parameters. The
EPI images were collected using identical parameters except slice thickness was 3mm and col-
lected with an interleaved sequence. The head coil differences between groups is a limitation of
the current study; nonetheless, it worth noting that large fMRI repositories combine datasets
across scanners, head coils, and acquisition parameters under the premise that variability in
scan parameters exerts less of an impact on brain function estimates relative to interindividual
differences [35,36].

Image preprocessing
Image preprocessing followed standard steps and was completed using AFNI software. In the
following order, images underwent despiking, slice timing correction, deobliquing, motion cor-
rection using rigid body alignment, alignment to participant’s normalized anatomical images,
spatial smoothing using a 8 mm FWHMGaussian filter (AFNIs 3dBlurToFWHM that esti-
mates the amount of smoothing to add to each dataset to result in the desired level of final
smoothing), and rescaling into percent signal change. Images were normalized using the MNI
152 template brain. Following recent recommendations [37,38], we corrected for head motion-
related signal artifacts by using motion regressors derived from Volterra expansion, consisting
of [R R2 Rt-1 R

2
t-1], where R refers to each of the 6 motion parameters, and separate regressors

for mean signal in the CSF andWM. This step was implemented directly after motion correc-
tion and normalization of the EPI images in the image preprocessing stream. Additionally, we
censored TRs from the first-level GLMs based on a previously used threshold of framewise dis-
placement (FD)> 0.5. FD refers to the sum of the absolute value of temporal differences across
the 6 motion parameters; thus, a cut-off of 0.5 results in censoring TRs where the participant
moved, in total across the 6 parameters, more than ~0.5 mm plus the immediately following
TR (to account for delayed effects of motion artifact). Additionally, we censored isolated TRs
where the preceding and following TRs were censored, and we censored entire runs if more
than 50% of TRs within that run were censored.

Implicit Threat Processing Task
During this commonly used task [39], participants made button presses indicating decisions
related to the sex of the poser while viewing human faces taken from the NimStim facial stimuli
set. The faces contained either neutral or fearful expressions, presented either overtly or
covertly, in alternating blocks. There were an equal number of female and male faces. Overt
faces were presented for 500 ms, with a 1200 ms inter-stimulus-interval displaying a blank
screen with a fixation cross, in blocks of 8 presentations for a total block length of ~17 s. Covert
face blocks used a similar design but were presented for 33 ms followed immediately by a neu-
tral facial expression mask for 166 ms from the same actor depicted in the covert image, and
the ISI was 1500 ms. Rest blocks that displayed a blank screen with a fixation cross and lasted
10 s were additionally included. The task was presented in two runs, each lasting ~8 min, dur-
ing which each block type was presented 5 times. There were 10 total blocks for each stimulus
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category. We conducted parallel analyses on the contrasts of covert fear vs covert neutral, overt
fear vs overt neutral, and all fear vs all neutral blocks.fMRI Data Analysis

Defining task-specific network properties
To characterize patterns of large-scale network organization, we used a previously defined
functional brain parcellation atlas consisting of 883 unique ROIs [40]. After accounting for
individual differences in spatial coverage (e.g., some participants did not have complete cover-
age in the cerebellum) and signal dropout (e.g., signal dropout in the OFC), 824 ROIs were
retained that were shared across all participants. Rather than calculating the correlation
between ROIs using the full timeseries, we are interested in task-modulated functional connec-
tivity and accordingly focus on functional connectivity specific to each stimulus condition for
each of the 824 ROIs. This was computed using the beta series method [41,42], in which a sepa-
rate beta coefficient is estimated for each unique block across each voxel, resulting in 10 beta
coefficients for each voxel for each stimulus condition. This was completed using AFNI’s
3dLSS and censoring out TRs where participants moved> .5mm (see above preprocessing sec-
tion). It is relevant to mention that prior research demonstrates the validity of the beta series
method for block tasks and with 10 repetitions per stimulus condition [42]. By contrast, identi-
fying a unique beta coefficient for each face presentation within each block would necessarily
create collinearity within the design matrix (e.g., the stimuli aren’t jittered or randomized
within a block) and considerably biased estimates. We then extracted the mean timeseries of
beta coefficients across the voxels within each of 824 ROIs, separately for each stimulus condi-
tion. These series of beta coefficients were then correlated separately for each stimulus condi-
tion, resulting in four 824x824 square correlation matrices. The correlation matrices were then
r-to-z transformed to improve normality, the diagonals were removed, and we restricted the
matrices to positive connectivity values (i.e., ignoring anti-correlated connections that have
ambiguous functional interpretations) [22].

Next, network indices were calculated on each of the connectivity matrices separately. We
used the Brain Connectivity Toolbox [22] implemented in Matlab to calculate modularity (the
‘community_louvain.m’ function with a gamma value of 1.11), assortativity (‘assortativity.m’),
and global efficiency (‘efficiency_wei.m’). Note that we calculated these indices on the weighted
functional connectivity matrix, as opposed to a binary adjacency matrix that requires arbitrary
thresholding. Given that modularity is estimated using an algorithm that does not necessarily
converge repeatedly on identical solutions (though the variance is considerably small), we
repeated each modularity estimation 10 times for each participant for each stimulus condition
and used the median modularity estimate across the 10 iterations. Note that the median modu-
larity estimate across the 10 iterations refers to the median scalar modularity Q value and not
to the module to which each ROI was assigned (which would not be valid as the module num-
ber is arbitrary across iterations). This resulted in a unique network modularity Q value for
each of the four stimulus block types. We additionally computed modularity Q values using
the identical community detection algorithm on a randomly generated network with a degree
(centrality) distribution matching the actual network (using the ‘randmio_und.m’ function).

While numerous network organization indices exist (see [22]), we focus specifically on
modularity, assortativity, and global efficiency. Modularity and global efficiency (the average
inverse of the shortest path length) were chosen due to their canonical implication in complex
network organization and functional specialization [10,13,43]. Assortativity was chosen due to
its relationship with network resilience to nodal insults [23]. Given that we are testing the rela-
tionship between network organization and treatment response, network resilience demon-
strates clear face validity as a possible index of interest.
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Defining group-level community structure of the brain during emotion
processing
To identify the specific modular organization of brain networks during emotion processing
among our treatment-seeking sample, we used a similar procedure as described above, except
that we calculated the square correlation matrices for each participant collapsed across stimu-
lus categories, and then created a group-level connectivity-matrix by taking the median con-
nectivity values across patients, resulting in a single 824x824 connectivity matrix. We then
implemented the adaptation of the Louvain community detection algorithm 2000 times on this
median connectivity matrix, storing the community structure (community labels of each ROI
and number of detected communities) across each iteration. We then used principal compo-
nent analysis (PCA) on the network memberships of the ROIs across the 2000 iterations to
identify the six network modules explaining the greatest source of variance in community
structure across the 2000 iterations (six networks were chosen based on the scree plot from the
PCA and the median number of detected communities across the 2000 iterations). This com-
munity structure is depicted in Fig 1. Note that this analysis is meant to provide an estimate of
the group’s community structure to aid in visualization and interpretation; the community
detection algorithm was implemented separately on each individual when estimating Q values
for subsequent analysis with treatment outcome.

PTSD Symptom Change
Following a recent study linking fMRI data to symptom change in depression [44]and our
prior analysis with this sample [45], our primary measure of clinical response consisted of
slope estimates representing trajectories of PTSD symptom change across treatment sessions.
We calculated these slope estimates of symptom trajectories across treatment using ordinary
least squares regression: Yt = B0 + B1X + B2Yt-1, where X is a linear predictor consisting of each
measurement number, and Yt-1 is an autoregressive predictor (the clinical assessment measure
at time t-1). Using a trajectory slope, as opposed to only pre-post treatment measures, has the
advantage of incorporating all data points from a given subject and therefore results in more
reliable estimates of change over time that are less affected by week-to-week variability in
symptom severity (Heller, Johnstone, Peterson, Kolden, Kalin, & Davidson 2013). S1 Fig pro-
vides a histogram of the PTSD symptom slopes to indicate the degree of variability in the sam-
ple (also see Table 1 for mean and SD).

Fig 1. Graphical depiction of the group-level community structure.Modules were identified using the group-
level median 824x824 functional connectivity matrix across all task stimuli. The modular are displayed over the
ICBM 452 template brain.

doi:10.1371/journal.pone.0159620.g001
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Defining the relationship between network patterns and symptom
reductions during TF-CBT
We used robust regression [46] analyses with a bisquare weighting function (Matlab’s robust-
fit) to test the degree to which stimulus-specific network patterns were related to PTSD symp-
tom improvements. For identifying pre-treatment network predictors of subsequent PTSD
symptom change, we regressed the PTSD symptom slope simultaneously onto: pre-treatment
level of PTSD symptoms (controlling for initial PTSD severity), the contrast of fear vs neutral
block network index (i.e., network measure for fear–network measure for neutral), and the
sum of pre-treatment framewise displacement (i.e., controlling for degree of head motion,
which can affect functional connectivity estimates). Separate analyses were conducted for each
of the three network indices and for covert and overt stimulus blocks.

For identifying pre- to post-treatment changes in network patterns that correlated with pre-
to post-treatment changes in PTSD symptoms, we conducted comparable analyses in which
the PTSD symptom slopes were regressed simultaneously onto: pre-treatment level of PTSD
symptoms (controlling for initial PTSD severity), the contrast of [(post-treatment fear vs neu-
tral block network index)–(pre-treatment fear vs neutral block network index)], and the sum
of pre-treatment and post-treatment framewise displacement.

Results

Task engagement is associated with modular and positively assortative
organization of functional brain connectivity
Across all four stimulus block types at both pre- and post-treatment, the estimated network
modularity Q values across the participants were significantly greater than zero (all ps< .001)
and significantly greater than a randomly generated network of the same size with similar
degree distribution (all ps< .001) (S2 Fig). Similarly, network assortativity coefficients were
significantly positive and greater across tasks than a randomly generated network (all ps<
.001) (S3 Fig). By contrast, global network efficiency was significantly lower than a comparable
randomly generated network across all stimulus conditions (all ps< .001) (S4 Fig). These data
confirm that task engagement is associated with increased modular and resilient organization
of brain functional connectivity while simultaneously decreasing global functional integration.

Fig 1 illustrates the estimated community structure from the median functional connectivity
matrix across all participants at pre-treatment. As can be seen, the functional connectivity
matrix illustrates a brain organization pattern of distinct and spatially distributed communities
representing a frontoparietal network, striatal network, ventral visual stream network, motor
and sensory network, default mode network, and temporal lobe and orbitofrontal cortex net-
work. For illustrative purposes, S5 Fig demonstrates the effect of individual differences in esti-
mated modularity Q values on the functional connectivity patterns between networks. As can
be seen, participants with high Q values (using a median split across all stimuli) have more
clearly segregated patterns of functional connectivity between the networks compared to the
participants with low Q values. This visually demonstrates the effect of individual differences
in Q values estimates of modularity on the global patterns of functional connectivity.

Relationship between brain network organization and PTSD symptom
reduction
Robust regression analyses demonstrated that the pre-treatment covert fear vs covert neutral
modularity Q value contrasts significantly predicted PTSD symptom trajectory slopes (B =
-.42, t = -2.69, p = .016) when controlling for initial PTSD symptom severity and head motion
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(Fig 2), such that participants with steeper treatment slopes had greater pre-treatment modu-
larity compared to participants with shallower slopes. Comparable analyses also demonstrated
that the global efficiency contrast for covert fear vs neutral blocks significantly predicted PTSD
symptom trajectory slopes (B = .53, t = 3.16, p = .006), as did the covert fear vs neutral contrast
for the assortativity coefficient (B = -.23, t = -2.25, p = .039), indicating that participants with
steeper treatment slopes had lower efficiency and higher assortativity at pre-treatment. The
comparable analyses for the overt fear vs neutral contrasts for modularity, global efficiency,
and assortativity were all non-significant (all ps> .4).

To illustrate these effects on the functional connectivity patterns, we displayed the mean
pre-treatment functional connectivity maps for adolescents with steep vs shallow PTSD symp-
tom trajectory slopes (via a median split) during TF-CBT separately for covert fear and covert
neutral blocks (Fig 3, left hand portion). As can be seen, and consistent with the direction of
the statistical relationships reported in the above paragraph, participants with shallow PTSD
symptom trajectory slopes demonstrated less modular organization of functional connectivity
relative to participants with steep PTSD symptom trajectory slopes only for covert fear blocks.
An alternative visual representation of network organization differences is additionally indi-
cated in the right hand portion of Fig 3, where the differences in network segregation are also
clearly visible between the groups.

Testing whether changes in modularity across treatment are associated with PTSD symp-
tom trajectory slopes, robust regression analyses demonstrated that change in assortativity

Fig 2. Bar graphs comparing the network organization indices of modularity (panel A), global efficiency (panel B),
and assortativity (panel C) between patients with steep (n = 10) and shallow (n = 10) treatment responses. The pre-
treatment comparisons additionally include the mean network indices for a healthy comparison group of 15
adolescent girls. Error bars indicate standard errors. * indicates p < .05; ** indicates p = .076; *** indicates p =
.059.

doi:10.1371/journal.pone.0159620.g002
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from pre-to post-treatment for the covert fear vs covert neutral contrast significantly predicted
PTSD symptom trajectory slopes (B = .17, t = 2.32, p = .035), controlling for initial PTSD
symptom severity and head motion. Comparable analyses demonstrated a marginally signifi-
cant relationship between pre- to post-treatment changes in the covert fear vs neutral contrasts
and PTSD symptom slopes for modularity (B = .29, t = 2.09; p = .054), but not global efficiency
(B = -.21; t = -1.59; p = .13). The comparable analyses using the overt fear vs neutral contrasts
were not significant (ps> .5). However, subsequent analyses demonstrated that only the partic-
ipants with shallow courses of symptom trajectories demonstrated significant pre- to post-
treatment changes in global efficiency (t = 2.4, p = .04), modularity (t = 2.62, p = .028), and
marginally significant changes in assortativity (t = 2.16, p = .059), while the participants with
steep symptom slopes did not (ps> .75) (see Fig 2).

Brain Organization Compared to Healthy Controls
As can be seen in Fig 2, at pre-treatment, adolescents with steep symptom trajectory slopes gener-
ally more closely resembled the healthy control participants. The healthy control participants
demonstrated significantly greater assortativity than PTSD participants with shallow treatment
slopes (t = 2.57, p = .017), marginally significantly greater modularity (t = 1.86, p = .076), and
there were no differences in global efficiency (t = 1.17, p = .25). Further, the group contrast of
[PTSD participants with steep trajectories + healthy controls] versus PTSD participants with
shallow trajectories was significant for both modularity (t = 2.41, p = .022) and assortativity
(t = 2.76, p = .009) and marginally significant for global efficiency (t = 1.75, p = .09).

Addressing potentially confounding variables
Given variability among participants in age, psychotropic medication use, comorbid diagnoses,
and ethnicity, we conducted additional robust regression analyses to test for relationships
between these variables and treatment response (PTSD symptom slopes), modularity, assorta-
tivity, and global efficiency for the pre-treatment contrast of covert fear vs covert neutral. The
potentially confounding variables did not demonstrate significant relationships with treatment
response (all ps> .18) or the network organization indices (all ps> .17). Finally, given that the
primary analyses reported above tested the relationship between network organization and
treatment response while controlling for only pre-treatment PTSD severity and head motion,

Fig 3. A) Heat map comparison of the median 824x824 functional connectivity matrices of participants with steep
(n = 10) and shallow (n = 10) treatment slopes for pre-treatment covert fear blocks (left) and cover neutral blocks
(right). B) Visual depiction of covert fear network organization (from the left hand column in Panel A) for the
participants with steep (n = 10) and shallow (n = 10) treatment slopes. The figures were generated using Gephi
(v0.8.2) with the ForceAtlas2 graph layout algorithm using group-level connectivity matrices with a density
threshold of 0.02.

doi:10.1371/journal.pone.0159620.g003
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we repeated the analyses testing whether the relationships between network organization and
treatment response held when separately controlling for age, medication, verbal IQ, number of
comorbid diagnoses, and ethnicity. These analyses demonstrated essentially no effect of the dif-
ferent possible confounding variables on the magnitude of the relationship between the net-
work organization indices and treatment response (see S6 Fig).

Discussion
The purpose of the present investigation was to identify modes of functional connectivity of
large-scale brain networks associated with individual variation in PTSD symptom reduction
during TF-CBT among adolescent girls with assault-related PTSD. It is important to acknowl-
edge that our design did not include a no-treatment control group, precluding the ability to dif-
ferentiate treatment-specific symptom reduction vs spontaneous symptom reduction, and this
limitation should temper inferences accordingly. With that limitation clearly stated, we sum-
marize the major findings as follows. First, we demonstrated that the large-scale network orga-
nization indices of modularity, assortativity, and global efficiency all differed significantly from
random networks (S3–S5 Figs), providing support for the validity of these indices applied to
task data. Second, we found that the response at pre-treatment to implicit fear processing for
the network indices of modularity, global efficiency, and assortativity predicted greater subse-
quent PTSD symptom reduction. Third, we found that the pre-treatment patterns of functional
network organization among the adolescents who responded best to therapy more closely
resembled the functional network organization patterns of healthy controls, whereas the func-
tional network organization patterns of the adolescents who did not respond as well to treat-
ment tended to differ from the normative patterns. Fourth, we observed that it was specifically
the subgroup of adolescents who responded less to treatment that demonstrated the greatest
pre- to post-treatment changes in functional network organization. Finally, the observed effects
were specific to covert fear processing and not observed for overt fear processing, suggesting
the primacy of automatic/implicit processing rather than strategic/explicit processing of fear
signals.

The finding that pre-treatment patterns of implicit fear processing network organization
predicted subsequent PTSD symptom reduction during therapy suggests that these patterns
represent neural mechanisms that enable subsequent symptom reduction. Specifically, the
extent to which the network-level organization of neural information processing as a response
to implicit perceptions of fear for adolescent females with assault-related PTSD conformed to
the normative pattern of simultaneously enhancing modular and assortative organization and
decreasing global efficiency appears to signal symptom reduction. As noted above, modular
organization of complex networks decreases wiring costs while concurrently enhancing
dynamic stability, and networks with higher assortativity are more resilient and less susceptible
to targeted node insults [16,18,22]. Global efficiency refers to the average shortest path lengths
within a network, with higher global efficiency representing a more integrated network but
with higher wiring costs [22]. As such, girls who demonstrated the greatest symptom reduction
functionally organized brain networks in response to covert fear signals in a manner character-
ized by greater resilience and modularized information processing but with lower overall effi-
ciency. By contrast, girls who demonstrate the lowest symptom reduction organized brain
networks in response to covert signals in a manner characterized by greater overall network
integration but at the cost of less resilient and modularized organization. It is noteworthy that
the healthy control adolescent girls more closely resembled the PTSD participants with better
symptom reduction. That is, it is not the case that the girls who improved most had some type
of enhanced, compensatory, or overdeveloped network organizational pattern; rather, it seems
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to be the case that the girls who responded most poorly to therapy lacked normative patterns
of brain organization prior to engaging in therapy. It is certainly the case that differing head
coils used between the healthy group and the PTSD group should temper inferences from the
direct statistical comparisons of the groups; nonetheless, there is no reason to suspect that the
head coil used would alter the qualitative direction of the effects which corroborate the differ-
ing network patterns in the girls with shallower treatment slopes.

The maturation of cognitive ability across adolescence is related to the dynamic maturation
of network modules as cognitive systems with their increasing functional segregation [47]. Per-
haps a varying response to trauma is the extent to which this developmental process of growing
network modularity is developmentally disrupted by trauma exposure rendering some girls
less readily amenable to the therapeutic effects of TF-CBT on network organization and trauma
recovery. A further hypothesis is that intact network organization responses enable neuroplas-
ticity necessary for cognitive processing of the traumatic memory and related therapeutic
learning that occurs during TF-CBT. It is also noteworthy that the effects were only found for
covert fear signals. Perhaps strategic processing of overt fear signals washes out differences in
network organization across individuals, whereas covert fear signals, which preclude the use of
a cognitive strategy, allow these inherent network organization differences to emerge.

While the finding that pre- to post-treatment increases in assortativity, and to a lesser extent
modularity, during covert fear processing scaled with PTSD symptom reduction suggests that,
overall, symptom reduction might be mediated by increased assortative brain network organiza-
tion, it is important to note that in fact it was only the girls with the least symptom reduction who
demonstrated pre- to post-treatment changes in modularity, global efficiency, and assortativity.
By contrast, the girls with steeper symptom slopes did not demonstrate significant pre- to post-
treatment changes in network organization. This observation precludes the inference that symp-
tom reduction is mediated by changes in large-scale network organization because the girls with
the least symptom reduction demonstrated the greatest normalization of network organization.
As such, these observations are consistent with the hypothesis that intact normative brain organi-
zation responses to covert fear signals represents a mechanism enabling subsequent symptom
reduction during therapy, as opposed to being a mechanism of symptom reduction itself. That is,
these data suggest that it might be necessary for the brain to attain normative modes of network
organization, characterized by modular and resilient organization, before symptom reduction can
then occur. This causal relationship was not tested here yet could directly be tested through
repeated measurement of brain organization and PTSD symptoms throughout treatment (e.g.,
PTSD symptom assessment and fMRI after every 3 sessions for 12–18 sessions). Future research
is clearly necessary to elucidate the temporal relationships between large-scale patterns of brain
organization, their changes during treatment, and their relationships with trauma recovery.

The observation that a (relatively speaking) homogenous group of adolescent girls with
PTSD demonstrated significant individual differences in these large scale brain organization
patterns, with only the girls with steeper treatment slopes demonstrating normative patterns,
underscores the inference that these organization patterns are not a mechanism of PTSD.
Rather, brain networks with modular and resilient organization are perhaps more dynamic,
thus permitting new learning during therapy and subsequent symptom reduction. It is also
interesting to observe that TF-CBT had opposing effects on participants depending on pre-
treatment modes of network organization: among those with intact normative network organi-
zation, TF-CBT appeared to produce clinically significant PTSD symptom reduction (mean
decrease of 20 points on the UCLA-PTSD index) without modifying network organization;
among those with altered network organization, TF-CBT appeared to normalize the network
alterations while producing less PTSD symptom reduction (mean decrease of 6 points on the
UCLA PTSD index). These findings suggest interesting approaches to individualize and
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optimize clinical interventions. If it were the case that network normalization enables symptom
reduction, then we would expect that the low-responding group would have begun demon-
strating greater PTSD symptom reductions had therapy continued. It is interesting then to
speculate whether there are components of TF-CBT that specifically enable network normali-
zation (e.g., the relaxation and affective modulation skills) and components that specifically
enable symptom reduction (e.g., cognitive processing of the trauma). If this is the case, then it
might advantageous to prolong those components that enable network normalization among
those without normative brain organization at pre-treatment until the patterns attain a nor-
malized brain state. By contrast, among those with normative brain organization patterns, it
might be possible to move more quickly into the treatment components that target symptom
reduction. However, it is also possible that the same TF-CBT component elicit different
responses depending on the adolescent’s maturational state of brain organization and resulting
cognitive plasticity. Future research is clearly needed along these lines, preferably with a design
in which symptoms and brain networks are repeatedly measured across a longer duration of
therapy (e.g., up to 18 sessions based on participant need; [48]).

While the current data provide novel inferences regarding large-scale brain network organi-
zation patterns in adolescent PTSD and their relationships with symptom reduction during
TF-CBT, the current study is not without limitations. First, the sample was small and limited
to girls, necessitating replication with larger and mixed-sexed or male samples. Second, we did
not have a control group of adolescents with PTSD who did not receive treatment and were
assessed at matched intervals to our treatment group, therefore we cannot differentiate between
spontaneous symptom courses of reduction vs response to treatment specifically. Third, brain
imaging data were only acquired at pre- and post-treatment, precluding inferences regarding
causal relationships (e.g., did the brain patterns or PTSD symptoms change first?). Fourth, fol-
low-up data were not available, precluding inferences regarding maintenance of either brain
changes or PTSD symptom reductions. Fifth, the healthy control group was scanned using a
different head coil (8-channel vs 32-channel among the PTSD sample), introducing the possi-
bility of head-coil induced confounds on the network indices among this sample, and statistical
comparisons between the groups in network organization should accordingly be interpreted
with caution. Sixth, we did not exclude based on current psychotropic medication usage, and
while we did not find a relationship between medication usage and treatment response or net-
work indices, it is nonetheless possible that medication usage confounded the results in some
unforeseen manner. Seventh, we did not include a manipulation check on the masking of the
stimuli to conclusively verify that participants were unable to explicitly process the masked
faces. Finally, we did not have a control group of abused adolescents who did not have a current
diagnosis of PTSD, thus inferences cannot be made regarding differential effects of PTSD vs
trauma exposure in this study.

Supporting Information
S1 Fig. Histogram of log-transformed PTSD symptom slopes for the current sample.
(TIF)

S2 Fig. Comparison of mean modularity values across the stimulus conditions between real
networks and randomly generated networks at pre- and post-treatment. Error bars denote
standard errors.
(TIF)

S3 Fig. Comparison of mean global efficiency values across the stimulus conditions
between real networks and randomly generated networks at pre- and post-treatment. Error
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bars denote standard errors.
(TIF)

S4 Fig. Comparison of mean assortativity values across the stimulus conditions between
real networks and randomly generated networks at pre- and post-treatment. Error bars
denote standard errors.
(TIF)

S5 Fig. Heat map comparison of the high (n = 10) and low (n = 10) modularity (Q value)
participants’median 824x824 functional connectivity matrix, based on a median split of Q
values, at pre-tx (left hand portion) and post-tx (right hand portion).
(TIF)

S6 Fig. Graphical depiction of the change in beta values (top) and p values (bottom) when
including different covariates in the regression models. ‘Original’ = beta values and p values for
the network indices in the regression model reported in the manuscript in which head motion
and pre-treatment PTSD symptom severity are included in the model. ‘Age’ = beta values and
p values for the network indices in the regression model when also including age as a covariate,
and so forth for ‘race’, ‘IQ’, etc. ‘Meds’ = psychiatric medication. ‘comorbid’ = number of
comorbid diagnoses.
(TIF)
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